login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000045 Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
(Formerly M0692 N0256)
3460
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Also sometimes called Lamé's sequence.

F(n+2) = number of binary sequences of length n that have no consecutive 0's.

F(n+2) = number of subsets of {1,2,...,n} that contain no consecutive integers.

F(n+1) = number of tilings of a 2 X n rectangle by 2 X 1 dominoes.

F(n+1) = number of matchings in a path graph on n vertices: F(5)=5 because the matchings of the path graph on the vertices A, B, C, D are the empty set, {AB}, {BC}, {CD} and {AB, CD}. - Emeric Deutsch, Jun 18 2001

F(n) = number of compositions of n+1 with no part equal to 1. [Cayley, Grimaldi]

Positive terms are the solutions to z = 2*x*y^4 + (x^2)*y^3 - 2*(x^3)*y^2 - y^5 - (x^4)*y + 2*y for x,y >= 0 (Ribenboim, page 193). When x=F(n), y=F(n + 1) and z>0 then z=F(n + 1).

For Fibonacci search see Knuth, Vol. 3; Horowitz and Sahni; etc.

F(n) is the diagonal sum of the entries in Pascal's triangle at 45 degrees slope. - Amarnath Murthy, Dec 29 2001

F(n+1) is the number of perfect matchings in ladder graph L_n = P_2 X P_n. - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002

F(n+1) = number of (3412,132)-, (3412,213)- and (3412,321)-avoiding involutions in S_n.

This is also the Horadam sequence (0,1,1,1). - Ross La Haye, Aug 18 2003

An INVERT transform of A019590. INVERT([1,1,2,3,5,8,...]) gives A000129. INVERT([1,2,3,5,8,13,21,...]) gives A028859. - Antti Karttunen, Dec 12 2003

Number of meaningful differential operations of the k-th order on the space R^3. - Branko Malesevic, Mar 02 2004

F(n)=number of compositions of n-1 with no part greater than 2. Example: F(4)=3 because we have 3 = 1+1+1 = 1+2 = 2+1.

F(n) = number of compositions of n into odd parts; e.g., F(6) counts 1+1+1+1+1+1, 1+1+1+3, 1+1+3+1, 1+3+1+1, 1+5, 3+1+1+1, 3+3, 5+1. - Clark Kimberling, Jun 22 2004

F(n) = number of binary words of length n beginning with 0 and having all runlengths odd; e.g., F(6) counts 010101, 010111, 010001, 011101, 011111, 000101, 000111, 000001. - Clark Kimberling, Jun 22 2004

The number of sequences (s(0),s(1),...s(n)) such that 0<s(i)<5, |s(i)-s(i-1)|=1 and s(0)=1 is F(n+1); e.g., F(5+1) = 8 corresponds to 121212, 121232, 121234, 123212, 123232, 123234, 123432, 123434. - Clark Kimberling, Jun 22 2004 [corrected by Neven Juric, Jan 09 2009]

Likewise F(6+1) = 13 corresponds to these thirteen sequences with seven numbers: 1212121, 1212123, 1212321, 1212323, 1212343, 1232121, 1232123, 1232321, 1232323, 1232343, 1234321, 1234323, 1234343. - Neven Juric, Jan 09 2008

A relationship between F(n) and the Mandelbrot set is discussed in the link "Le nombre d'or dans l'ensemble de Mandelbrot" (in French). - Gerald McGarvey, Sep 19 2004

For n>0, the continued fraction for F(2n-1)*Phi=[F(2n);L(2n-1),L(2n-1),L(2n-1),...] and the continued fraction for F(2n)*Phi=[F(2n+1)-1;1,L(2n)-2,1,L(2n)-2,...]. Also true: F(2n)*Phi=[F(2n+1);-L(2n),L(2n),-L(2n),L(2n),...] where L(i) is the i-th Lucas number (A000204).... - Clark Kimberling, Nov 28 2004 [corrected by Hieronymus Fischer, Oct 20 2010]

F(n) = number of permutations p of 1,2,3,...,n such that |k-p(k)|<=1 for k=1,2,...,n. (For <=2 and <=3, see A002524 and A002526.) - Clark Kimberling, Nov 28 2004

The ratios F(n+1)/F(n) for n>0 are the convergents to the simple continued fraction expansion of the golden section. - Jonathan Sondow, Dec 19 2004

Lengths of successive words (starting with a) under the substitution: {a -> ab, b -> a}. - Jeroen F.J. Laros, Jan 22 2005

The Fibonacci sequence, like any additive sequence, naturally tends to be geometric with common ratio not a rational power of 10; consequently, for a sufficiently large number of terms, Benford's law of first significant digit (i.e., first digit 1 =< d =< 9 occurring with probability log_10(d+1) - log_10(d)) holds. - Lekraj Beedassy, Apr 29 2005

a(n) = Sum(abs(A108299(n, k)): 0 <= k <= n). - Reinhard Zumkeller, Jun 01 2005

a(n) = A001222(A000304(n)).

Fib(n+2)=sum(k=0..n, binomial(floor((n+k)/2),k)), row sums of A046854. - Paul Barry, Mar 11 2003

Number of order ideals of the "zig-zag" poset. See vol. 1, ch. 3, prob. 23 of Stanley. - Mitch Harris, Dec 27 2005

F(n+1)/F(n) is also the Farey fraction sequence (see A097545 for explanation) for the golden ratio, which is the only number whose Farey fractions and continued fractions are the same. - Joshua Zucker, May 08 2006

a(n+2) is the number of paths through 2 plates of glass with n reflections (reflections occurring at plate/plate or plate/air interfaces). Cf. A006356-A006359. - Mitch Harris, Jul 06 2006

F(n+1) equals the number of downsets (i.e., decreasing subsets) of an n-element fence, i.e., an ordered set of height 1 on {1,2,...,n} with 1 > 2 < 3 > 4 < ... n and no other comparabilities. Alternatively, F(n+1) equals the number of subsets A of {1,2,...,n} with the property that, if an odd k is in A, then the adjacent elements of {1,2,...,n} belong to A, i.e., both k - 1 and k + 1 are in A (provided they are in {1,2,...,n}). - Brian Davey, Aug 25 2006

Number of Kekulé structures in polyphenanthrenes. See the paper by Lukovits and Janezic for details. - Parthasarathy Nambi, Aug 22 2006

Inverse: With phi = (sqrt(5) + 1)/2, round(log_phi(sqrt((sqrt(5) a(n) + sqrt(5 a(n)^2 - 4))(sqrt(5) a(n) + sqrt(5 a(n)^2 + 4)))/2)) = n for n >= 3, obtained by rounding the arithmetic mean of the inverses given in A001519 and A001906. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007

A result of Jacobi from 1848 states that every symmetric matrix over a p.i.d. is congruent to a triple-diagonal matrix. Consider the maximal number T(n) of summands in the determinant of an n X n triple-diagonal matrix. This is the same as the number of summands in such a determinant in which the main-, sub- and super-diagonal elements are all nonzero. By expanding on the first row we see that the sequence of T(n)'s is the Fibonacci sequence without the initial stammer on the 1's. - Larry Gerstein (gerstein(AT)math.ucsb.edu), Mar 30 2007

Suppose psi=log(phi). We get the representation F(n)=(2/sqrt(5))*sinh(n*psi) if n is even; F(n)=(2/sqrt(5))*cosh(n*psi) if n is odd. There is a similar representation for Lucas numbers (A000032). Many Fibonacci formulas now easily follow from appropriate sinh- and cosh-formulas. For example: the de Moivre theorem (cosh(x)+sinh(x))^m=cosh(mx)+sinh(mx) produces L(n)^2+5F(n)^2=2L(2n) and L(n)F(n)=F(2n) (setting x=n*psi and m=2). - Hieronymus Fischer, Apr 18 2007

Inverse: floor(log_phi(sqrt(5)*Fib(n))+0.5)=n, for n>1. Also for n>0, floor(1/2*log_phi(5*Fib(n)*Fib(n+1)))=n. Extension valid for integer n, except n=0,-1: floor(1/2*sign(Fib(n)*Fib(n+1))*log_phi|5*Fib(n)*Fib(n+1)|)=n (where sign(x) = sign of x). - Hieronymus Fischer, May 02 2007

F(n+2) = The number of Khalimsky-continuous functions with a two-point codomain. - Shiva Samieinia (shiva(AT)math.su.se), Oct 04 2007

From Kauffman and Lopes, Proposition 8.2, p. 21: "The sequence of the determinants of the Fibonacci sequence of rational knots is the Fibonacci sequence (of numbers)." - Jonathan Vos Post, Oct 26 2007

This is a_1(n) in the Doroslovacki reference.

Let phi = 1.6180339...; then phi^n = (1/phi)*a(n) + a(n+1). Example: phi^4 = 6.8541019...= (.6180339...)*3 + 5. Also phi = 1/1 + 1/2 + 1/(2*5) + 1/(5*13) + 1/(13*34) + 1/(34*89) + ... - Gary W. Adamson, Dec 15 2007

The sequence of first differences, fib(n+1)-fib(n), is essentially the same sequence: 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... - Colm Mulcahy, Mar 03 2008

a(n)= the number of different ways to run up a staircase with n steps, taking steps of odd sizes where the order is relevant and there is no other restriction on the number or the size of each step taken. - Mohammad K. Azarian, May 21 2008

Equals row sums of triangle A144152. - Gary W. Adamson, Sep 12 2008

Except for the initial term, the numerator of the convergents to the recursion x = 1/(x+1). - Cino Hilliard, Sep 15 2008

F(n) is the number of possible binary sequences of length n that obey the sequential construction rule: if last symbol is 0, add the complement (1); else add 0 or 1. Here 0,1 are metasymbols for any 2-valued symbol set. This rule has obvious similarities to JFJ Laros's rule, but is based on addition rather than substitution and creates a tree rather than a single sequence. - Ross Drewe, Oct 05 2008

F(n) = Product_{k=1..(n-1)/2} (1 + 4*cos^2 k*Pi/n), where terms = roots to the Fibonacci product polynomials, A152063. - Gary W. Adamson, Nov 22 2008

Fp == 5^((p-1)/2) mod p, p = prime [Schroeder, p. 90]. - Gary W. Adamson & Alexander R. Povolotsky, Feb 21 2009

(Ln)^2 - 5*(Fn)^2 = 4*(-1)^n. Example: 11^2 - 5*5 = -4. - Gary W. Adamson, Mar 11 2009

Output of Kasteleyn's formula for the number of perfect matchings of an m X n grid specializes to the Fibonacci sequence for m=2. - Sarah-Marie Belcastro (smbelcas(AT)toroidalsnark.net), Jul 04 2009

(Fib(n),Fib(n+4)) satisfies the Diophantine equation: X^2 + Y^2 - 7XY = 9*(-1)^n. - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 06 2009

(Fib(n),Fib(n+2)) satisfies the Diophantine equation: X^2 + Y^2 - 3XY = (-1)^n. - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 08 2009

a(n+2)=A083662(A131577(n)). - Reinhard Zumkeller, Sep 26 2009

Difference between of number of closed walks of length n+1 from a node on a pentagon and number of walks of length n+1 between two adjacent nodes on a pentagon. - Henry Bottomley, Feb 10 2010

F(n+1) = number of Motzkin paths of length n having exactly one weak ascent. A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps. Example: a(5)=5 because we have (HHHH), (HHU)D, (HUH)D, (UHH)D, and (UU)DD (the unique weak ascent is shown between parentheses; see A114690). - Emeric Deutsch, Mar 11 2010

(F(n-1) + F(n+1))^2 - 5F(n-2)*F(n+2) = 9*(-1)^n. - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Mar 31 2010

From the Pinter and Ziegler reference's abstract: authors "show that essentially the Fibonacci sequence is the unique binary recurrence which contains infinitely many three-term arithmetic progressions. A criterion for general linear recurrences having infinitely many three-term arithmetic progressions is also given." - Jonathan Vos Post, May 22 2010

F(n+1) = number of paths of length n starting at initial node on the path graph P_4. - Johannes W. Meijer, May 27 2010

F(k) = Number of cyclotomic polynomials in denominator of generating function for number of ways to place k nonattacking queens on an n X n board. - Vaclav Kotesovec, Jun 07 2010

As n-> inf., (a(n)/a(n-1) - a(n-1)/a(n)) tends to 1.0. Example: a(12)/a(11) - a(11)/a(12) = 144/89 - 89/144 = 0.99992197.... - Gary W. Adamson, Jul 16 2010

From Hieronymus Fischer, Oct 20 2010: (Start)

Fibonacci numbers are those numbers m such that m*phi is closer to an integer than k*phi for all k, 1<=k<m. More formally: a(0)=0, a(1)=1, a(2)=1, a(n+1)=minimal m>a(n) such that m*phi is closer to an integer than a(n)*phi.

For all numbers 1<=k<Fib(n), the inequality |k*phi-round(k*phi)| > |Fib(n)*phi-round(Fib(n)*phi)| holds.

Fib(n)*phi - round(Fib(n)*phi) = -((-phi)^(-n)), for n>1.

fract(0.5+Fib(n)*phi) = 0.5 -(-phi)^(-n), for n>1.

fract(Fib(n)*phi) = (1/2)*(1+(-1)^n)-(-phi)^(-n), n>1.

Inverse: n = -log_phi |0.5-fract(0.5+Fib(n)*phi)|. (End)

F(A001177(n)*k) mod n = 0, for any integer k. - Gary Detlefs, Nov 27 2010

F(n+k)^2-F(n)^2 = F(k)*F(2n+k), for even k. - Gary Detlefs, Dec 04 2010

F(n+k)^2+F(n)^2 = F(k)*F(2n+k), for odd k. - Gary Detlefs, Dec 04 2010

"Even the Fibonacci sequence - 1,1,2,3,5,8,13 - follows Benford's law." See Pickover.

F(n) = round(phi* F(n-1)) for n>1. - Joseph P. Shoulak, Jan 13 2012

For n > 0: a(n) = length of n-th row in Wythoff array A003603. - Reinhard Zumkeller, Jan 26 2012

From Bridget Tenner, Feb 22 2012: (Start)

The number of free permutations of [n].

The number of permutations of [n] for which s_k in supp(w) implies s_{k+-1} not in supp(w).

The number of permutations of [n] in which every decomposition into length(w) reflections is actually composed of simple reflections. (End)

The sequence F(n+1)^(1/n) is increasing. The sequence F(n+2)^(1/n) is decreasing. - Thomas Ordowski, Apr 19 2012

Two conjectures: For n > 1, F(n+2)^2 mod F(n+1)^2 = F(n)*F(n+1) - (-1)^n. For n > 0, (F(2n) + F(2n+2))^2 = F(4n+3) + sum_{k = 2..2n}F(2k). - Alex Ratushnyak, May 06 2012

From Ravi Kumar Davala, Jan 30 2014: (Start)

Proof of Ratushnyak's first conjecture: For n > 1, F(n+2)^2 - F(n)*F(n+1)  + (-1)^n = 2F(n+1)^2.

Consider: F(n+2)^2 - F(n)*F(n+1) - 2F(n+1)^2

         = F(n+2)^2 - F(n+1)^2 - F(n+1)^2 - F(n)*F(n+1)

         =(F(n+2) + F(n+1))*(F(n+2) - F(n+1)) - F(n+1)*(F(n+1) + F(n))

         = F(n+3)*F(n) - F(n+1)*F(n+2) = -(-1)^n.

Proof of second conjecture: L(n) stands for Lucas number sequence from A000032.

Consider the fact that

    L(2n+1)^2 = L(4n+2) - 2

   (F(2n) + F(2n+2))^2 = F(4n+1) + F(4n+3) - 2

   (F(2n) + F(2n+2))^2 = sum{k = 2..2n, F(2k)} + F(4n+3).

(End)

The relationship: INVERT transform of (1,1,0,0,0,...) = (1, 2, 3, 5, 8,...), while the INVERT transform of (1,0,1,0,1,0,1,...) = (1, 1, 2, 3, 5, 8,...) is equivalent to: The numbers of compositions using parts 1 and 2 is equivalent to the numbers of compositions using parts == 1 mod 2 (i.e., the odd integers). Generally, the numbers of compositions using parts 1 and k is equivalent to the numbers of compositions of (n+1) using parts 1 mod k. Cf. A000930 for k = 3 and A003269 for k = 4. Example: for k = 2, n = 4 we have the compositions (22; 211, 121; 112; 1111) = 5; but using parts 1 and 3 we have for n = 5: (311, 131, 113, 11111, 5) = 5. - Gary W. Adamson, Jul 05 2012

The sequence F(n) is the binomial transformation of the alternating sequence (-1)^(n-1)*F(n), whereas the sequence F(n+1) is the binomial transformation of the alternating sequence (-1)^n*F(n-1). Both of these facts follow easily from the equalities a(n;1)=F(n+1) and b(n;1)=F(n) where a(n;d) and b(n;d) are so-called "delta-Fibonacci" numbers as defined in comments to A014445 (see also the papers of Witula et al.). - Roman Witula, Jul 24 2012

F(n) is the number of different (n-1)-digit binary numbers such that all substrings of length > 1 have at least one digit equal to 1. Example: for n = 5 there are 8 binary numbers with n - 1 = 4 digits (1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111), only the F(n) = 5 numbers 1010, 1011, 1101, 1110 and 1111 have the desired property. - Hieronymus Fischer, Nov 30 2012

For positive n, F(n+1) equals the determinant of the n X n tridiagonal matrix with 1's along the main diagonal, i's along the superdiagonal and along the subdiagonal where i = sqrt(-1). Example: Det([1,i,0,0; i,1,i,0; 0,i,1,i; 0,0,i,1]) = F(4+1) = 5. - Philippe Deléham, Feb 24 2013

For n>=1, number of compositions of n where there is a drop between every second pair of parts, starting with the first and second part; see example. Also, a(n+1) is the number of compositions where there is a drop between every second pair of parts, starting with the second and third part; see example. - Joerg Arndt, May 21 2013

Central terms of triangles in A162741 and A208245, n > 0. - Reinhard Zumkeller, Jul 28 2013

For n>=4, F(n-1) is the number of simple permutations in the geometric grid class given in A226433. - Jay Pantone, Sep 08 2013

a(n) are the pentagon (not pentagonal) numbers because the algebraic degree 2 number rho(5) = 2*cos(pi/5) = phi (golden section), the length ratio diagonal/side in a pentagon, has minimal polynomial C(5,x) = x^2 - x - 1 (see A187360, n=5), hence rho(5)^n = a(n-1)*1 + a(n)*rho(5), n >= 0, in the power basis of the algebraic number field Q(rho(5)). One needs a(-1) = 1 here. See also the P. Steinbach reference under A049310. - Wolfdieter Lang, Oct 01 2013

A010056(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2013

Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n+2k)^2 - F(n)^2 = F(n+k)*( F(n+3k) - F(n-k) ). - Charlie Marion, Dec 20 2013

( F(n), F(n+2k) ) satisfies the Diophantine equation: X^2 + Y^2 - L(2k)*X*Y = F(4k)^2*(-1)^n.  This generalizes Bouhamida’s comments dated Sep 06 2009 and Sep 08 2009. - Charlie Marion, Jan 07 2014

For any prime p there is an infinite periodic subsequence within F(n) divisible by p, that begins at index n = 0 with value 0, and its first nonzero term at n = A001602(i), and period k = A001602(i). Also see A236479. - Richard R. Forberg, Jan 26 2014

Range of row n of the circular Pascal array of order 5. - Shaun V. Ault, May 30 2014 [orig. Kicey-Klimko 2011, and observations by Glen Whitehead; more general work found in Ault-Kicey 2014]

Nonnegative range of the quintic polynomial 2*y - y^5 + 2*x*y^4 + x^2*y^3 - 2*x^3*y^2 - x^4*y with x, y >= 0, see Jones 1975. - Charles R Greathouse IV, Jun 01 2014

The expression round(1/(F(k+1)/F(n) + F(k)/F(n+1))), for n > 0, yields a Fibonacci sequence with k-1 leading zeros (with rounding 0.5 to 0). - Richard R. Forberg, Aug 04 2014

Conjecture: For n > 0, F(n) is the number of all admissible residue classes for which specific finite subsequences of the Collatz 3n + 1 function consists of n+2 terms. This has been verified for 0 < n < 51. For details see Links. - Mike Winkler, Oct 03 2014

a(4)=3 and a(6)=8 are the only Fibonacci numbers that are of the form prime+1. - Emmanuel Vantieghem, Oct 02 2014

a(1)=1=a(2), a(3)=2 are the only Fibonacci numbers that are of the form prime-1. - Emmanuel Vantieghem, Jun 07 2015

Any consecutive pair (m, k) of the Fibonacci sequence a(n) illustrates a fair equivalence between m miles and k kilometers. For instance, 8 miles ~ 13 km; 13 miles ~ 21 km. -Lekraj Beedassy, Oct 06 2014

(n -> oo) lim (log F(n+1)/log F(n))^n = e. - Thomas Ordowski, Oct 06 2014

a(n+1) counts closed walks on K_2, containing one loop on the other vertex. Equivalently the (1,1)_entry of A^(n+1) where the adjacency matrix of digraph is A=(0,1; 1,1). - David Neil McGrath, Oct 29 2014

a(n-1) counts closed walks on the graph G(1-vertex;l-loop,2-loop). - David Neil McGrath, Nov 26 2014

From Tom Copeland, Nov 02 2014: (Start)

Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).

Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].

Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).

BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)].

Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).

Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].

(End)

In keeping with historical accounts (see the references by P. Singh and S. Kak), the generalized Fibonacci sequence a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, ... can also be described as the Gopala-Hemachandra numbers H(n) = H(n-1) + H(n-2), with F(n) = H(n) for a = b = 1, and Lucas sequence L(n) = H(n) for a = 2, b = 1. - Lekraj Beedassy, Jan 11 2015

D. E. Knuth writes: "Before Fibonacci wrote his work, the sequence F_{n} had already been discussed by Indian scholars, who had long been interested in rhythmic patterns that are formed from one-beat and two-beat notes. The number of such rhythms having n beats altogether is F_{n+1}; therefore both Gopāla (before 1135) and Hemachandra (c. 1150) mentioned the numbers 1, 2, 3, 5, 8, 13, 21, ... explicitly." (TAOCP Vol. 1, 2nd ed.) - Peter Luschny, Jan 11 2015

F(n+1) equals the number of binary words of length n avoiding runs of zeroes of odd lengths. - Milan Janjic, Jan 28 2015

From Russell Jay Hendel, Apr 12 2015: (Start)

We prove Conjecture 1 of Rashid listed in the Formula section.

We use the following notation: F(n)=A000045(n), the Fibonacci numbers, and L(n) = A000032(n), the Lucas numbers. The fundamental Fibonacci-Lucas recursion asserts that G(n) = G(n-1)+ G(n-2), with "L" or "F" replacing "G".

We need the following prerequisites which we label (A), (B),(C), (D). The prerequisites are formulae in the Koshy book listed in the References section. (A) F(m-1)+F(m+1) = L(m) (Koshy, p. 97, #32), (B) L(2m)+2(-1)^m = L(m)^2 (Koshy p. 97, #41), (C) F(m+k)F(m-k) = (-1)^n F(k)^2 (Koshy, p. 113, #24, Tagiuri's identity), and (D) F(n)^2+F(n+1)^2 = F(2n+1) (Koshy, p 97, #30).

We must also prove (E), L(n+2) F(n-1) = F(2n+1)+2(-1)^n. To prove (E), first note that by (A), proof of (E) is equivalent to proving that F(n+1)F(n-1) + F(n+3)F(n-1) = F(2n+1)+2(-1)^n. But by (C) with k=1, we have F(n+1)F(n-1) = F(n)^2 +(-1)^n. Applying (C) again with k=2 and m=n+1, we have F(n+3)F(n-1) = F(n+1)+(-1)^n. Adding these two applications of (C) together and using (D) we have, F(n+1)F(n-1) + F(n+3)F(n-1) = F(n)^2 + F(n+1)^2 + 2(-1)^n = F(2n+1)+2(-1)^n, completing the proof of (E).

We now prove Conjecture 1. By (A) and the Fibonacci-Lucas recursion, we have F(2n+1)+F(2n+2)+F(2n+3)+F(2n+4) = [F(2n+1)+F(2n+3)] + [F(2n+2)+F(2n+4)] = L(2n+2)+L(2n+3)=L(2n+4). But then by (B), with m=2n+4, we have sqrt(L(2n+4)+2(-1)^n)) = L(n+2). Finally by (E), we have L(n+2) F(n-1)= F(2n+1)+2*(-1)^n. Dividing both sides by F(n-1), we have (F(2n+1)+2*(-1)^n)/F(n-1) = L(n+2) = sqrt(F(2n+1)+F(2n+2)+F(2n+3)+F(2n+4)+2(-1)^n), as required. (End)

In Fibonacci's Liber Abaci the rabbit problem appears in the translation of L. E. Sigler on pp. 404-405, and a remark [27] on p. 637. - Wolfdieter Lang, Apr 17 2015

a(n) counts partially ordered partitions of (n-1) into parts 1,2,3 where only the order of adjacent 1's and 2's are unimportant. (See example.) - David Neil McGrath, Jul 27 2015

F(n) divides F(nk). Proven by Marjorie Bicknell and Verner E Hoggatt Jr. - Juhani Heino, Aug 24 2015

F(n) is the number of UDU-equivalence classes of ballot paths of length n. Two ballot paths of length n with steps U = (1,1), D = (1,-1) are UDU-equivalent whenever the positions of UDU are the same in both paths. - Kostas Manes, Aug 25 2015

REFERENCES

Abrate, Marco; Barbero, Stefano; Cerruti, Umberto; Murru, Nadir. Colored compositions, Invert operator and elegant compositions with the "black tie". Discrete Math. 335 (2014), 1--7. MR3248794

Andrews, George E. Fibonacci numbers and the Rogers-Ramanujan identities. Fibonacci Quart. 42 (2004), no. 1, 3--19. MR2060558(2005b:11161)

S. V. Ault and C. Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics (2014).

Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.

Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7,  No. 38, 2012, pp. 1871-1876.

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7,  No. 42, 2012, pp. 2053-2059.

Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.

P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 70.

R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 84.

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 4.

Marjorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.

S. Brlek, E. Duchi, E. Pergola and S. Rinaldi, On the equivalence problem for succession rules, Discr. Math., 298 (2005), 142-154.

N. D. Cahill and D. A. Narayan. "Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants". Fibonacci Quarterly, 42(3):216-221, 2004.

A. Cayley, Theorems in Trigonometry and on Partitions, Messenger of Mathematics, 5 (1876), pp. 164, 188 = Mathematical Papers Vol. 10, n. 634, p. 16.

D. Chmiela, K. Kaczmarek, R. Witula, Binomials Transformation Formulae of Scaled Fibonacci Numbers (submitted 2012).

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (2nd edition), CUP, 2002. (See Exercise 1.15.)

B. Davis, 'The law of first digits' in 'Science Today'(subsequently renamed '2001') March 1980 p. 55, Times of India, Mumbai.

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.

R. P. Grimaldi, Compositions without the summand 1, Proceedings Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 152 (2001), 33-43.

N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.

H. Halberstam and K. F. Roth, Sequences, Oxford, 1966; see Appendix.

S. Happersett, "Mathematical meditations", Journal of Mathematics and the Arts, 1 (2007), 29 - 33.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954; see esp. p. 148.

J. Hermes, Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden, Math. Ann., 45 (1894), 371-380.

V. E. Hoggatt and C. T. Long. "Divisibility Properties of Generalized Fibonacci Polynomials"; Fibonacci Quarterly, 12:113-130, 1974.

V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.

E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press, 1976; p. 338.

C. W. Huegy and D. B. West, A Fibonacci tiling of the plane, Discrete Math., 249 (2002), 111-116.

P. W. Kasteleyn, The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), 1209-1225.

M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 63.

C. Kicey and K. Klimko, Some geometry of Pascal's triangle, Pi Mu Epsilon Journal, 13(4):229-245 (2011).

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 78; Vol. 3, Section 6.2.1.

Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.

Lukovits et al., Nanotubes: Number of Kekulé structures and aromaticity, J. Chem. Inf. Comput. Sci, (2003), vol. 43, 609-614. See eq. 2 on page 610.

I. Lukovits and D. Janezic, "Enumeration of conjugated circuits in nanotubes", J. Chem. Inf. Comput. Sci., vol. 44, 410-414 (2004). See Table 1, second column.

B. Malesevic: Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.

G. Mantel, Resten van wederkeerige Reeksen, Nieuw Archief v. Wiskunde, 2nd series, I (1894), 172-184.

A. Milicevic and N. Trinajstic, "Combinatorial Enumeration in Chemistry", Chem. Modell., Vol. 4, (2006), pp. 405-469.

Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 49.

Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 274.

A. S. Posamentier & I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, Amherst, NY 2007.

P. Ribenboim, The New Book of Prime Number Records, Springer, 1996.

J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.

A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.

J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 288.

Manfred R. Schroeder, "Number Theory in Science and Communication", 5th ed., Springer-Verlag, 2009

Mark A. Shattuck, Tiling proofs of some formulas for the Pell numbers of odd index, Integers, 9 (2009), 53-64.

L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 404-405 and [26] on p. 627.

Simson, [No first name given], An explanation of an obscure passage in Albert Girard's Commentary ..., Phil. Trans. Royal Soc., 10 (1753), 430-433.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Van Ravenstein, Tony. "The three gap theorem (Steinhaus conjecture)."Journal of the Australian Mathematical Society (Series A) 45.03 (1988): 360-370.

N. N. Vorob'ev, Chisla fibonachchi [Russian], Moscow, 1951. English translation, Fibonacci Numbers, Blaisdell, New York and London, 1961.

N. N. Vorobiev, Fibonacci Numbers, Birkhauser (Basel;Boston) 2002.

D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 61-7, Penguin Books 1987.

R. Witula, D. Slota, delta-Fibonacci Numbers, Appl. Anal. Discrete Math., 3 (2009), 310-329.

LINKS

N. J. A. Sloane, The first 2000 Fibonacci numbers: Table of n, F(n) for n = 0..2000

Amazing Mathematical Object Factory, Information on the Fibonacci sequences

Matt Anderson, Jeffrey Frazier and Kris Popendorf, The Fibonacci series: the section index [broken link]

P. G. Anderson, Fibonacci Facts

Joerg Arndt, Matters Computational (The Fxtbook)

J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.

Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

Marjorie Bicknell and Verner E Hoggatt Jr, To Prove: F(n) Divides F(nk), A Primer for the Fibonacci Numbers: IX (1973)

J. Bodeen, S. Butler, T. Kim, X. Sun, S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7

H. Bottomley and N. J. A. Sloane, Illustration of initial terms: the Fibonacci tree

Brantacan, Fibonacci Numbers [broken link]

J. Britton & B. V. Eeckhout, Fibonacci Interactive [broken link]

N. D. Cahill, J. R. D'Errico, J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fib. Quart. 41 (2003) 13

C. K. Caldwell, The Prime Glossary, Fibonacci number

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

Hongwei Chen, Evaluations of Some Variant Euler Sums, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.3.

J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences

E. S. Croot, Notes on Linear Recurrence Sequences

Paul Cubre, The Z-densities of the Fibonacci sequence, M. A. Thesis, Wake Forest University, May 2012;

C. Dement, Posting to Math Forum [broken link].

R. M. Dickau, Fibonacci numbers

R. Doroslovacki, Binary sequences without 011...110 (k-1 1's) for fixed k, Mat. Vesnik 46 (1994), no. 3-4, 93-98.

A.-S. Elsenhans and J. Jahnel, The Fibonacci sequence modulo p^2 - an investigation by computer for p < 10^14.

Nathaniel D. Emerson, A Family of Meta-Fibonacci Sequences Defined by Variable-Order Recursions, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.8.

Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.

G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3

G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255. MR1990179

Philipp Fahr and Claus Michael Ringel, Categorification of the Fibonacci Numbers Using Representations of Quivers

John Farrier, Fibonacci Pigeons [From Sarah Spolaor, Sep 30 2010]

Helaman and Claire Ferguson, Celebrating Mathematics in Stone and Bronze, Notices of the American Mathematical Society, 57 (2010), 840-850. See page 844

Emmanuel Ferrand, Deformations of the Taylor Formula, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.7.

D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux,

I. Galkin, "Fibonacci Numbers Spelled Out"

Dale Gerdemann, Video of Fibonacci tree

Dale Gerdemann, Video of Fibonacci tree(s) (another version)

Dale Gerdemann, Golden Ratio Base Contains Zeckendorf and Negative Indexed Bunder Forms

C. J. Glasby, S. P. Glasby, F. Pleijel, Worms by number, Proc. Roy. Soc. B, Proc. Biol. Sci. 275 (1647) (2008) 2071-2076.

L. Goldsmith, The Fibonacci Numbers [broken link]

M. Griffiths, A Restricted Random Walk defined via a Fibonacci Process, Journal of Integer Sequences, Vol. 14 (2011), #11.5.4.

Guo-Niu Han, Enumeration of Standard Puzzles [broken link]

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

S. Happersett, Mathematical meditations

A. P. Hillman & G. L. Alexanderson, Algebra Through Problem Solving, Chapter 2 pp. 11-16, The Fibonacci and Lucas Numbers [broken link]

A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 12. Book's website

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 9 [broken link]

Tina Hill Janzen, Fibonacci sequence / Golden scale [broken link]

Q.-H. Hou, Z.-W. Sun and H.-M. Wen, On monotonicity of some combinatorial sequences, arXiv:1208.3903.

James P. Jones, Diophantine representation of the Fibonacci numbers, Fibonacci Quarterly 13:1 (1975), pp. 84-88.

R. Jovonovic, Fibonacci Function Calculator [broken link]

R. Jovonovic, The relations between the Fibonacci and the Lucas numbers [broken link]

R. Jovanovic, First 70 Fibonacci numbers [broken link]

S. Kak, The Golden Mean and the Physics of Aesthetics, arXiv:physics/0411195

Louis H. Kauffman and Pedro Lopes, Graded forests and rational knots, arXiv:0710.3765

Blair Kelly, Fibonacci and Lucas factorizations

Tanya Khovanova, Recursive Sequences

C. Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.

R. Knott, Fibonacci numbers and the golden section

R. Knott, Mathematics of the Fibonacci Series

R. Knott, Fibonacci numbers with tables of F(0)-F(500).

A. Krowne, PlanetMath.org, Fibonacci sequence [broken link]

Hendrik Lenstra, Profinite Fibonacci Numbers

M. A. Lerma, Recurrence Relations

D. Litchfield, D. Goldenheim and C. H. Dietrich, Euclid, Fibonacci and Sketchpad, Math. Teacher, 90 (1997). [broken link]

B. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n [broken link].

Charles P. McKeague, Fibonacci numbers from MathTV

Graeme McRae, Sum of 2m consecutive Fibonacci numbers

D. Merlini, R. Sprugnoli and M. C. Verri, Strip tiling and regular grammars, Theoret. Computer Sci. 242, 1-2 (2000) 109-124. [broken link]

D. Merrill, The Fib-Phi Link Page [broken link]

Jean-Christophe Michel, Le nombre d'or dans l'ensemble de Mandelbrot (in French, 'The golden number in the Mandelbrot set')

Kerry Mitchell, Spirolateral-Type Images from Integer Sequences, 2013

H. Mishima, Factorizations of Fibonacci numbers n=1..100, n=101..200, n=201..300, n=301..400, n=401..480

P. Moree, Convoluted convolved Fibonacci numbers

Newton's Institute, Posters in the London Underground

Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.4.

J. J. O'Connor and E. F. Robertson, Mac Tutor History of Mathematics, Archarya Hemachandra

Arzu Özkoç, Some algebraic identities on quadra Fibona-Pell integer sequence, Advances in Difference Equations, 2015, 2015:148.

Ram Krishna Pandey, On Some Magnified Fibonacci Numbers Modulo a Lucas Number, Journal of Integer Sequences, Vol. 16 (2013), #13.1.7.

J. Patterson, The Fibonacci Sequence. [broken link]

T. K. Petersen and B. E. Tenner, The depth of a permutation, arXiv:1202.4765v1 [math.CO].

Ivars Peterson, Fibonacci's Missing Flowers.

Akos Pinter and Volker Ziegler, On Arithmetic Progressions in Recurrences - A new characterization of the Fibonacci sequence, arXiv:1005.3624

Simon Plouffe, Project Gutenberg, The First 1001 Fibonacci Numbers [broken link]

Project Nayuki, Fast Fibonacci algorithms (fast doubling is faster than matrix multiplication).

S. Rabinowitz, Algorithmic Manipulation of Fibonacci Identities (1996).

Arulalan Rajan, R. Vittal Rao, Ashok Rao and H. S. Jamadagni, Fibonacci Sequence, Recurrence Relations, Discrete Probability Distributions and Linear Convolution, arXiv preprint arXiv:1205.5398, 2012. - From N. J. A. Sloane, Oct 23 2012

Marc Renault, Properties of the Fibonacci sequence under various moduli, MSc Thesis, Wake Forest U, 1996.

N. Renton, The fibonacci Series

B. Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.

Rosetta Code, A collection of codes to compute fibonacci numbers with different computer languages

E. S. Rowland, Fibonacci Sequence Calculator up to n=1474

Shiva Samieinia, Digital straight line segments and curves. Licentiate Thesis. Stockholm University, Department of Mathematics, Report 2007:6.

A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.

D. Schweizer, First 500 Fibonacci Numbers in blocks of 100. [broken link]

Mark A. Shattuck and Carl G. Wagner, Periodicity and Parity Theorems for a Statistic on r-Mino Arrangements, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.6.

S. Silvia, Fibonacci sequence [broken link]

Parmanand Singh, The so-called Fibonacci numbers in ancient and medieval India, Historia Mathematica, Volume 12 (3), 1985, 229-244.

Jaap Spies, Sage program for computing A000045

Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.

Z.-H. Sun, Congruences For Fibonacci Numbers

Roberto Tauraso, A New Domino Tiling Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.3.

Thesaurus.Maths.org, Fibonacci sequence [broken link]

K. Tognetti, Letter to N. J. A. Sloane (with attachments), May 25 1994

K. Tognetti, The Search for the Golden Sequence, Draft Manuscript, May 25 1994.

K. Tognetti, Fibonacci-His Rabbits and His Numbers and Kepler

Tony van Ravenstein, The three gap theorem (Steinhaus conjecture), Journal of the Australian Mathematical Society (Series A) 45.03 (1988): 360-370. [Annotated scanned copy]

C. Vila, Nature by numbers (animation).

Christobal Vila, Nature Numbers (Video related to Fibonacci numbers)

N. N. Vorob'ev, Fibonacci numbers, Springer's Encyclopaedia of Mathematics.

Carl G. Wagner, Partition Statistics and q-Bell Numbers (q = -1), J. Integer Seqs., Vol. 7, 2004.

Robert Walker, Inharmonic "Golden Rhythmicon" - Fibonacci Sequence in Pairs Approaching Golden Ratio - With Bounce

Eric Weisstein's World of Mathematics, Fibonacci Number, Double-Free Set, Fibonacci n-Step Number, Resistor Network

Wikipedia, Fibonacci number

Willem's Fibonacci site, Fibonacci

Mike Winkler, On the structure and the behaviour of Collatz 3n + 1 sequences - Finite subsequences and the role of the Fibonacci sequence, arXiv:1412.0519 [math.GM], 2014.

Roman Witula, Damian Slota and Edyta Hetmaniok, Bridges between different known integer sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 255-263.

Aimei Yu and Xuezheng Lv, The Merrifield-Simmons indices and Hosoya indices of trees with k pendant vertices, J. Math. Chem., Vol. 41 (2007), pp. 33-43. See page 35.

Tianping Zhang and Yuankui Ma, On Generalized Fibonacci Polynomials and Bernoulli Numbers, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.3.

Index entries for "core" sequences

Index to divisibility sequences

Index entries for related partition-counting sequences

Index entries for linear recurrences with constant coefficients, signature (1,1).

Index entries for two-way infinite sequences

FORMULA

G.f.: x / (1 - x - x^2).

G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x). - Paul D. Hanna, Oct 26 2013

F(n) = ((1+sqrt(5))^n-(1-sqrt(5))^n)/(2^n*sqrt(5)).

Alternatively, F(n) = ((1/2+sqrt(5)/2)^n-(1/2-sqrt(5)/2)^n)/sqrt(5).

F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).

F(n) = round(phi^n/sqrt(5)).

F(n+1) = Sum(0 <= j <= [n/2]; binomial(n-j, j)).

This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). - Michael Somos, Apr 07 2012

E.g.f.: (2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - Len Smiley (smiley(AT)math.uaa.alaska.edu), Nov 30 2001

[0 1; 1 1]^n [0 1] = [F(n); F(n+1)]

x | F(n) ==> x | F(kn).

A sufficient condition for F(m) to be divisible by a prime p is (p - 1) divides m, if p == 1 or 4 (mod 5); (p + 1) divides m, if p == 2 or 3 (mod 5); or 5 divides m, if p = 5. (This is essentially Theorem 180 in Hardy and Wright.) - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 29 2001

a(n)=F(n) has the property: F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1). - Miklos Kristof, Nov 13 2003

Kurmang. Aziz. Rashid, Feb 21 2004, makes 4 conjectures and gives 3 theorems:

Conjecture 1: for n>=2 sqrt{F(2n+1)+F(2n+2)+F(2n+3)+F(2n+4)+2*(-1)^n}={F(2n+1)+2*(-1)^n}/F(n-1).

Conjecture 2: for n>=0, {F(n+2)* F(n+3)}-{F(n+1)* F(n+4)}+ (-1)^n = 0.

Conjecture 3: for n>=0, F(2n+1)^3 - F(2n+1)*[(2*A^2)-1] - [A + A^3]=0, where A = {F(2n+1)+sqrt{5*F(2n+1)^2 +4}}/2.

Conjecture 4: for x>=5, if x is a Fibonacci number >= 5 then g*x*[{x+sqrt{5*(x^2) +- 4}}/2]*[2x+{{x+sqrt{5*(x^2) +- 4}}/2}]*[2x+{{3x+3*sqrt {5*(x^2) +- 4}}/2}]^2+[2x+{{x+sqrt{5*(x^2) +- 4}}/2}] +- x*[2x+{{3x+3*sqrt{5*(x^2) +- 4}}/2}]^2 -x*[2x+{{x+sqrt{5*(x^2) +- 4}}/2}]*[x+{{x+sqrt{5*(x^2) +- 4}}/2}]* [2x+{{3x+3*sqrt{5*(x^2) +- 4}}/2}]^2= 0, where g = {1 + sqrt(5)/2}.

Theorem 1: for n>=0, {F(n+3)^ 2 - F(n+1)^ 2}/F(n+2)={F(n+3)+ F(n+1)}.

Theorem 2: for n>=0, F(n+10) = 11*F(n+5) + F(n).

Theorem 3: for n>=6, F(n) = 4*F(n-3) + F(n-6).

Conjecture 2 of Rashid is actually a special case of the general law F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1) (take n <- n+1 and m <- -(n+4) in this law). - Harmel Nestra (harmel.nestra(AT)ut.ee), Apr 22 2005

Conjecture 2 of Rashid Kurmang simplified:  F(n)*F(n+3) = F(n+1)*F(n+2)-(-1)^n. Follows from d'Ocagne's identity: m=n+2. - Alex Ratushnyak, May 06 2012

Conjecture: for all c such that 2-Phi <= c < 2*(2-Phi) we have F(n) = floor(Phi*a(n-1)+c) for n > 2. - Gerald McGarvey, Jul 21 2004

|2*Fib(n) - 9*Fib(n+1)| = 4*A000032(n) + A000032(n+1). - Creighton Dement, Aug 13 2004

For x > Phi, Sum n=0..inf F(n)/x^n = x/(x^2 - x - 1) - Gerald McGarvey, Oct 27 2004

F(n+1) = exponent of the n-th term in the series f(x, 1) determined by the equation f(x, y) = xy + f(xy, x). - Jonathan Sondow, Dec 19 2004

a(n-1) = sum(k=0, n, (-1)^k*binomial(n-ceil(k/2), floor(k/2))). - Benoit Cloitre, May 05 2005

F(n+1) = sum{k=0..n, binomial((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2}. - Paul Barry, Aug 28 2005

Fibonacci(n) = Product(1 + 4[cos(j*Pi/n)]^2, j=1..ceil(n/2)-1). [Bicknell and Hoggatt, pp. 47-48.] - Emeric Deutsch, Oct 15 2006

F(n) = 2^-(n-1)*sum{k=0..floor((n-1)/2), binomial(n,2*k+1)*5^k}. - Hieronymus Fischer, Feb 07 2006

a(n) = (b(n+1)+b(n-1))/n where {b(n)} is the sequence A001629. - Sergio Falcon, Nov 22 2006

F(n*m) = Sum{k = 0..m, binomial(m,k)*F(n-1)^k*F(n)^(m-k)*F(m-k)}. The generating function of F(n*m) (n fixed, m = 0,1,2...) is G(x) = F(n)*x / ((1-F (n-1)*x)^2-F(n)*x*(1-F(n-1)*x)-( F(n)*x)^2). E.g., F(15) = 610 = F(5*3) = binomial(3,0)* F(4)^0*F(5)^3*F(3) + binomial(3,1)* F(4)^1*F(5)^2*F(2) + binomial(3,2)* F(4)^2*F(5)^1*F(1) + binomial(3,3)* F(4)^3*F(5)^0*F(0) = 1*1*125*2 + 3*3*25*1 + 3*9*5*1 + 1*27*1*0 = 250 + 225 + 135 + 0 = 610. - Miklos Kristof, Feb 12 2007

From Miklos Kristof, Mar 19 2007: (Start)

  Let L(n) = A000032(n) = Lucas numbers. Then:

  For a>=b and odd b, F(a+b)+F(a-b)=L(a)*F(b).

  For a>=b and even b, F(a+b)+F(a-b)=F(a)*L(b).

  For a>=b and odd b, F(a+b)-F(a-b)=F(a)*L(b).

  For a>=b and even b, F(a+b)-F(a-b)=L(a)*F(b).

  F(n+m)+(-1)^m*F(n-m)=F(n)*L(m);

  F(n+m)-(-1)^m*F(n-m)=L(n)*F(m);

  F(n+m+k)+(-1)^k*F(n+m-k)+(-1)^m*(F(n-m+k)+(-1)^k*F(n-m-k)) =F(n)*L(m)*L(k);

  F(n+m+k)-(-1)^k*F(n+m-k)+(-1)^m*(F(n-m+k)-(-1)^k*F(n-m-k)) =L(n)*L(m)*F(k);

  F(n+m+k)+(-1)^k*F(n+m-k)-(-1)^m*(F(n-m+k)+(-1)^k*F(n-m-k)) =L(n)*F(m)*L(k);

  F(n+m+k)-(-1)^k*F(n+m-k)-(-1)^m*(F(n-m+k)-(-1)^k*F(n-m-k)) =5*F(n)*F(m)*F(k). (End)

A corollary to Kristof 2007 is 2*F(a+b)=F(a)*L(b)+L(a)*F(b). - Graeme McRae, Apr 24 2014

For n>m, the sum of the 2m consecutive Fibonacci numbers F(n-m-1) thru F(n+m-2) is F(n)*L(m) if m is odd, and L(n)*F(m) if m is even (see the McRae link). - Graeme McRae, Apr 24 2014.

Fib(n) = b(n)+(p-1)*sum{1<k<n, floor(b(k)/p)*Fib(n-k+1)} where b(k) is the digital sum analog of the Fibonacci recurrence, defined by b(k)=ds_p(b(k-1))+ds_p(b(k-2)), b(0)=0, b(1)=1, ds_p=digital sum base p. Example for base p=10: Fib(n)=A010077(n)+9*sum{1<k<n, A059995(A010077(k))*Fib(n-k+1)}. - Hieronymus Fischer, Jul 01 2007

Fib(n) = b(n)+p*sum{1<k<n, floor(b(k)/p)*Fib(n-k+1)} where b(k) is the digital product analog of the Fibonacci recurrence, defined by b(k)=dp_p(b(k-1))+dp_p(b(k-2)), b(0)=0, b(1)=1, dp_p=digital product base p. Example for base p=10: Fib(n)=A074867(n)+10*sum{1<k<n, A059995(A074867(k))*Fib(n-k+1)}. - Hieronymus Fischer, Jul 01 2007

a(n) = denominator of continued fraction [1,1,1,...] (with n ones); e.g., 2/3 = continued fraction [1,1,1]; where barover[1] = [1,1,1...] = 0.6180339.... - Gary W. Adamson, Nov 29 2007

F(n + 3) = 2F(n + 2) - F(n), F(n + 4) = 3F(n + 2) - F(n), F(n + 8) = 7F(n + 4) - F(n), F(n + 12) = 18F(n + 6) - F(n). - Paul Curtz, Feb 01 2008

1 = 1/(1*2) + 1/(1*3) + 1/(2*5) + 1/(3*8) + 1/(5*13) + ... = 1/2 + 1/3 + 1/10 + 1/24 + 1/65 + 1/168 + ...; where A059929 = (0, 2, 3, 10, 24, 65, 168,...). - Gary W. Adamson, Mar 16 2008

a(2^n) = prod{i=0}^{n-2}B(i) where B(i) is A001566. Example 3*7*47 = Fib(16). - Kenneth J Ramsey, Apr 23 2008

F(n) = (1/(n-1)!) * (n^(n-1) - (C(n-2,0) + 4*C(n-2,1) + 3*C(n-2,2))*n^(n-2) + (10*C(n-3,0) + 49*C(n-3,1) + 95*C(n-3,2) + 83*C(n-3,3) + 27*C(n-3,4))*n^(n-3) - (90*C(n-4,0) + 740*C(n-4,1) + 2415*C(n-4,2) + 4110*C(n-4,3) + 3890*C(n-4,4) + 1950*C(n-4,5) + 405*C(n-4,6))*n^(n-4) + ... ). - André F. Labossière, Nov 24 2004

a(n+1) = Sum_{k, 0<=k<=n} A109466(n,k)*(-1)^(n-k). -Philippe Deléham, Oct 26 2008

a(n) = sum_{l_1=0}^{n+1} sum_{l_2=0}^{n}...sum_{l_i=0}^{n-i}... sum_{l_n=0}^{1} delta(l_1,l_2,...,l_i,...,l_n), where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i + l_(i+1) >= 2 for i=1..n-1

  and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009

a(n+1) = 2^n sqrt(Product_{k=1..n} cos(k Pi/(n+1))^2+1/4)) (Kasteleyn's formula specialized). - Sarah-Marie Belcastro (smbelcas(AT)toroidalsnark.net), Jul 04 2009

a(n+1) = sum_{k=floor[n/2] mod 5} C(n,k) - sum_{k=floor[(n+5)/2] mod 5} C(n,k) = A173125(n) - A173126(n) = |A054877(n)-A052964(n-1)|. - Henry Bottomley, Feb 10 2010

If p[i]=modp(i,2) and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010

Limit(F(k+n)/F(k), k = infinity) = (L(n) + F(n)*sqrt(5))/2 with the Lucas numbers L(n)= A000032(n). - Johannes W. Meijer, May 27 2010

For n>=1, F(n)=round(log_2(2^{phi*F(n-1)} + 2^{phi*F(n-2)})), where phi is the golden ratio. - Vladimir Shevelev, Jun 24 2010, Jun 27 2010

For n>=1, a(n+1)=ceil(phi*a(n)), if n is even and a(n+1)=floor(phi*a(n)), if n is odd (phi = golden ratio). - Vladimir Shevelev, Jul 01 2010

a(n) = 2*a(n-2) + a(n-3), n>2. - Gary Detlefs, Sep 08 2010

a(2^n) = Prod_{i=0..n-1} A000032(2^i). - Vladimir Shevelev, Nov 28 2010

a(n)^2 - a(n-1)^2 = a(n+1)*a(n-2), see A121646.

a(n) = sqrt((-1)^k*(a(n+k)^2 - a(k)*a(2n+k))), for any k. - Gary Detlefs, Dec 03 2010

F(2*n) = F(n+2)^2 - F(n+1)^2 - 2*F(n)^2. - Richard R. Forberg, Jun 04 2011

(-1)^(n+1) = F(n)^2 + F(n)*F(1+n) - F(1+n)^2.

  F(n) = -F(n+2)(-2 + (F(n+1))^4 + 2*(F(n+1)^3*F(n+2)) - (F(n+1)*F(n+2))^2 2*F(n+1)(F(n+2))^3 + (F(n+2))^4)- F(n+1). - Artur Jasinski, Nov 17 2011

F(n) = 1 + sum_{x=1..n-2} F(x). - Joseph P. Shoulak, Feb 05 2012

F(n) = 4*F(n-2) - 2*F(n-3) - F(n-6). - Gary Detlefs, Apr 01 2012

F(n) = round(phi^(n+1)/(phi+2)). - Thomas Ordowski, Apr 20 2012

From Sergei N. Gladkovskii, Jun 03 2012: (Start)

G.f. A(x) = x/(1-x-x^2) = G(0)/sqrt(5) where G(k)= 1 -((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*c^k/G(k+1))) and a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).

Let E(x) be the e.g.f., i.e.,

E(x) = 1*x + 1/2*x^2 + 1/3*x^3 + 1/8*x^4 + 1/24*x^5 + 1/90*x^6 + 13/5040*x^7 + ...; then

E(x) = G(0)/sqrt(5); G(k)= 1 -((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*(k+1)*c^k/G(k+1))), where a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).

(End)

From Hieronymus Fischer, Nov 30 2012: (Start)

Fib(n) = 1 + sum_{j_1=1..n-2} 1 + sum_{j_1=1..n-2} sum_{j_2=1..j_1-2} 1 + sum_{j_1=1..n-2} sum_{j_2=1..j_1-2} sum_{j_3=1..j_2-2} 1 + ... + sum_{j_1=1..n-2} sum_{j_2=1..j_1-2} sum_{j_3=1..j_2-2} ... sum_{j_k=1..j_(k-1)-2} 1, where k = floor((n-1)/2).

Example: Fib(6) = 1 + sum_{j=1..4} 1 + sum_{j=1..4} sum_{k=1..(j-2)} 1 + 0 = 1 + (1 + 1 + 1 + 1) + (1 + (1 + 1)) = 8.

Fib(n) = sum_{j=0..k} S(j+1,n-2j), where k = floor((n-1)/2) and the S(j,n) are the n-th j-simplex sums: S(1,n) = 1 is the 1-simplex sum, S(2,n) = sum_{k=1..n} S(1,k) = 1+1+...+1 = n is the 2-simplex sum, S(3,n) = sum_{k=1..n} S(2,k) = 1+2+3+...+n is the 3-simplex sum (= triangular numbers = A000217), S(4,n) = sum_{k=1..n} S(3,k) = 1+3+6+...+n(n+1)/2 is the 4-simplex sum (= tetrahedral numbers = A000292) and so on.

Since S(j,n) = binomial(n-2+j,j-1), the formula above equals the well-known binomial formula, essentially. (End)

G.f. A(x) = x / (1 - x / (1 - x / (1 + x))). - Michael Somos, Jan 04 2013

sum{n>=1}(-1)^(n-1)/(a(n)*a(n+1)) = 1/phi (phi=golden ratio). - Vladimir Shevelev, Feb 22 2013

From Vladimir Shevelev, Feb 24 2013: (Start)

(1) Expression a(n+1) via a(n): a(n+1) = (a(n) + sqrt(5*(a(n))^2 + 4*(-1)^n))/2;

(2) sum_{k=1,...,n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);

(3) a(n)/a(n+1) = 1/phi + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)

F(n+1) = F(n)/2 + sqrt((-1)^n + 5*F(n)^2/4), n>=0. F(n+1) = U_n(i/2)/i^n, (U:= Chebyshef 2nd kind). - Bill Gosper, Mar 04 2013

G.f.: -Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013

G.f.: x-1-1/x + 1/x/Q(0), where Q(k) = 1 - (k+1)*x/(1 - x/(x - (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013

G.f.: x*G(0), where G(k)= 1 + x*(1+x)/(1 - x*(1+x)/(x*(1+x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013

G.f.: x^2 - 1 + 2*x^2/(W(0)-2), where W(k) = 1 + 1/(1 - x*(k + x)/( x*(k+1 + x) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013

G.f.: Q(0) -1, where Q(k) = 1 + x^2 + (k+2)*x -x*(k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013

Let b(n) = b(n-1) + b(n-2), with b(0) = 0, b(1) = phi. Then, for n>=2, F(n)= floor(b(n-1)) if n is even, F(n) = ceil(b(n-1)), if n is odd, with convergence. - Richard R. Forberg, Jan 19 2014

a(n) = sum(t1*g(1)+t2*g(2)+...+tn*g(n)=n, multinomial(t1+t2 +...+tn,t1,t2,...,tn), where g(k)=2*k-1. - Mircea Merca, Feb 27 2014

F(n) = round(sqrt(F(n-1)^2 + F(n)^2 + F(n+1)^2)/2), for n > 0. This rule appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Jul 27 2014

F(n) = round(2/(1/F(n) + 1/F(n+1) + 1/F(n+2)), for n > 0.  This rule also appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Aug 03 2014

F(n) = round(1/sum(j>=n+2, 1/F(j))). - Richard R. Forberg, Aug 14 2014

a(n) = hypergeometric([-n/2+1/2, -n/2+1], [-n+1], -4) for n>=2. - Peter Luschny, Sep 19 2014

F(n) = (L(n+1)^2 - L(n-1)^2)/(5*L(n)), where L(n) is A000032(n), with a similar inverse relationship. - Richard R. Forberg, Nov 17 2014

Consider the graph G[1-vertex;1-loop,2-loop]in comment above. Construct the power matrix array T(n,j)=[A^*j]*[S^*(j-1)] where A=(1,1,0,...) and S=(0,1,0,...)(A063524). [* is convolution operation] Define S^*0=I with I=(1,0,...). Then T(n,j) counts n-walks containing (j) loops and a(n-1)=sum[j=1...n,T(n,j)]. - David Neil McGrath, Nov 21 2014

Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n) = F(k)*F(n-k+3) - F(k-1)*F(n-k+2) - F(k-2)*F(n-k) + (-1)^k*F(n-2k+2). - Charlie Marion, Dec 04 2014

F(n+k)^2 - L(k)*F(n)*F(n+k) + (-1)^k*F(n)^2 = (-1)^n*F(k)^2,  if L(k) = A000032(k). - Alexander Samokrutov, Jul 20 2015

F(2*n) = F(n+1)^2 - F(n-1)^2, similar to Koshy (D) and Forberg 2011, but different. - Hermann Stamm-Wilbrandt, Aug 12 2015

EXAMPLE

For x = 0,1,2,3,4, x=1/(x+1) = 1, 1/2, 2/3, 3/5, 5/8. These fractions have numerators 1,1,2,3,5, which are the 2nd to 6th entries in the sequence. - Cino Hilliard, Sep 15 2008

From Joerg Arndt, May 21 2013: (Start)

There are a(7)=13 compositions of 7 where there is a drop between every second pair of parts, starting with the first and second part:

01:  [ 2 1 2 1 1 ]

02:  [ 2 1 3 1 ]

03:  [ 2 1 4 ]

04:  [ 3 1 2 1 ]

05:  [ 3 1 3 ]

06:  [ 3 2 2 ]

07:  [ 4 1 2 ]

08:  [ 4 2 1 ]

09:  [ 4 3 ]

10:  [ 5 1 1 ]

11:  [ 5 2 ]

12:  [ 6 1 ]

13:  [ 7 ]

There are abs(a(6+1))=13 compositions of 6 where there is no rise between every second pair of parts, starting with the second and third part:

01:  [ 1 2 1 2 ]

02:  [ 1 3 1 1 ]

03:  [ 1 3 2 ]

04:  [ 1 4 1 ]

05:  [ 1 5 ]

06:  [ 2 2 1 1 ]

07:  [ 2 3 1 ]

08:  [ 2 4 ]

09:  [ 3 2 1 ]

10:  [ 3 3 ]

11:  [ 4 2 ]

12:  [ 5 1 ]

13:  [ 6 ]

(End)

Partially ordered partitions of (n-1) into parts 1,2,3 where only the order of the adjacent 1's and 2's are unimportant. E.g., a(8)=21. These are (331),(313),(133),(322),(232),(223),(3211),(2311),(1321),(2131),(1132),(2113),(31111),(13111),(11311),(11131),(11113),(2221),(22111),(211111),(1111111). - David Neil McGrath, Jul 25 2015

MAPLE

A000045 := proc(n) combinat[fibonacci](n); end;

ZL:=[S, {a = Atom, b = Atom, S = Prod(X, Sequence(Prod(X, b))), X = Sequence(b, card >= 1)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..38); # Zerinvary Lajos, Apr 04 2008

spec := [B, {B=Sequence(Set(Z, card>1))}, unlabeled ]: seq(combstruct[count](spec, size=n), n=1..39); # Zerinvary Lajos, Apr 04 2008

# The following Maple command isFib(n) yields true or false depending on whether n is a Fibonacci number or not.

with(combinat): isFib := proc(n) local a: a := proc(n) local j: for j while fibonacci(j) <= n do fibonacci(j) end do: fibonacci(j-1) end proc: evalb(a(n) = n) end proc: # Emeric Deutsch, Nov 11 2014

MATHEMATICA

Table[ Fibonacci[ k ], {k, 0, 50} ] (* to generate 0 as well as all other nonzero Fibonacci numbers, the lower limit is changed from 1 to 0; Mohammad K. Azarian, Jul 11 2015 *)

Table[ 2^n Sqrt@Product[( Cos[Pi k/(n + 1)]^2 + 1/4), {k, n}]//FullSimplify, {n, 15}]; (* Kasteleyn's formula specialized, Sarah-Marie Belcastro (smbelcas(AT)toroidalsnark.net), Jul 04 2009 *)

Table[Fibonacci[n]^5 - Fibonacci[1 + n] + 3 Fibonacci[n]^4 Fibonacci[1 + n] + Fibonacci[n]^3 Fibonacci[1 + n]^2 - 3 Fibonacci[n]^2 Fibonacci[1 + n]^3 -   Fibonacci[n] Fibonacci[1 + n]^4 + Fibonacci[1 + n]^5, {n, 1, 10}] (* Artur Jasinski, Nov 17 2011 *)

LinearRecurrence[{1, 1}, {0, 1}, 40] (* Harvey P. Dale, Aug 03 2014 *)

PROG

(Axiom) [fibonacci(n) for n in 0..50]

(MAGMA) [Fibonacci(n): n in [0..38]];

(Maxima) makelist(fib(n), n, 0, 100); /* Martin Ettl, Oct 21 2012 */

(PARI) {a(n) = fibonacci(n)};

(PARI) {a(n) = imag(quadgen(5)^n)};

(PARI) a(n)=my(phi=quadgen(5)); (phi^n-(-1/phi)^n)/(2*phi-1) \\ Charles R Greathouse IV, Jun 17 2012

(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, k+x +x*O(x^n))/prod(k=1, m, 1+k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Oct 26 2013

(Python) # Jaap Spies, Jan 05 2007 (Change leading dots to blanks.)

def fib():

... """ Generates the Fibonacci numbers, starting with 0 """

... x, y = 0, 1

... while 1:

....... yield x

....... x, y = y, x+y

.

f = fib()

a = [f.next() for i in range(100)]

.

def A000045(n):

... """ Returns Fibonacci number with index n, offset 0, 4 """

... return a[n]

................

def A000045_list(N):

... """ Returns a list of the first n Fibonacci numbers """

... return a[:N]

.

(Sage) ## Demonstration program from Jaap Spies:

a = sloane.A000045; ## choose sequence

print a ## This returns the name of the sequence.

print a(38) ## This returns the 38th number of the sequence.

print a.list(39) ## This returns a list of the first 39 numbers.

(Haskell)

-- Based on code from http://www.haskell.org/haskellwiki/The_Fibonacci_sequence

-- which also has other versions.

fib :: Int -> Integer

fib n = fibs !! n

.. where

.... fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

{- Example of use: map fib [0..38] Gerald McGarvey, Sep 29 2009 -}

(Sage) [i for i in fibonacci_sequence(0, 40)] # Bruno Berselli, Jun 26 2014

(MAGMA) [0, 1] cat [n: n in [1..50000000] | IsSquare(5*n^2-4) or IsSquare(5*n^2+4)]; // Vincenzo Librandi, Nov 19 2014

CROSSREFS

Cf. A039834 (signed Fibonacci numbers), A001690 (complement), A000213, A000288, A000322, A000383, A060455, A030186, A020695, A020701, A071679, A099731, A100492, A094216, A094638, A000108, A101399, A101400, A001611, A000071, A157725, A001911, A157726, A006327, A157727, A157728, A157729, A167616, A059929, A144152, A152063, A114690, A003893, A000032, A060441, A000930, A003269, A000957, A057078, A007317, A091867, A104597, A249548.

First row of arrays A103323, A234357. Second row of arrays A099390, A048887, and A092921 (k-generalized Fibonacci numbers).

a(n) = A094718(4, n). a(n) = A101220(0, j, n).

a(n) = A090888(0, n+1) = A118654(0, n+1) = A118654(1, n-1) = A109754(0, n) = A109754(1, n-1), for n > 0.

Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074.

Boustrophedon transforms: A000738, A000744.

Powers: A103323, A105317, A254719.

Sequence in context: A152163 A039834 * A236191 A020695 A212804 A132916

Adjacent sequences:  A000042 A000043 A000044 * A000046 A000047 A000048

KEYWORD

core,nonn,nice,easy,hear,changed

AUTHOR

N. J. A. Sloane, Apr 30 1991

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 10 18:27 EDT 2015. Contains 261502 sequences.