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1. Basic properties of Fibonacci numbers.
The Fibonacci sequence {F,} was introduced by Italian mathematician Leonardo
Fibonacci (1175-1250) in 1202. For integers n, {F,,} is defined by

FO = 0, Fl = 1, Fn_|_1 = Fn + Fn—l (7’1, = O,:I:l,:I:Z, :|:3, .. )
The first few Fibonacci numbers are shown below:

n: 1 2 3 45 6 7 & 9 10 11 12 13 14 15
F,:1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

The companion of Fibonacci numbers is the Lucas sequence {L, } given by
LOZQ, L1 :1, Ln—‘,—l :Ln+Ln—1 (n:O,:l:l,:EQ,:l:3,)

It is easily seen that

(1.1) F,=D"1'F, L_,=(-1)"L,
and

1
(12) L, = n—l—l"’Fn—l; F, = g(Ln—i—l_"Ln—l)-

Using induction one can easily prove the following Binet’s formulas (see [D],[R2]):

R e
(1.4 L <1+2\/3> . <1—2\/3>

In 2001 Z.H.Sun[S5] announced a general identity for Lucas sequences. Putting
ap = ag = =1, U, = F,, and U/ = F,, or L,, in the identity (4.2) of [S5] we get the
following two identities, which involve many known results.
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Theorem 1.1. Let k,m,n,s be integers with m > 0. Then

m - m s—1)(m—j | pym—J
(1.5) F B = Y () 0D B
i=o \J
and
(1,6) F:@Lk,ern = Z (7;1)( )(s 1)(m— J)FJFm ijern
j=0

Proof. Let z = (1 ++/5)/2 and y = (1 —+/5)/2. Then z +y = 1, zy = —1 and
F. = (2" —y")/(x — y). Thus applying the binomial theorem we obtain

7N
<

m s—1)(m—j | rm—J
')<_1)( W j)Flng—stjs—Fn

=> <m) (= 1)1 (m=3) (xk - yk)J (wk_s - yk_s)m_J it s

r—y r—y r—Yy

1 mim\ . |
= T ( ->(~’6”+" — ) (" — ) (a8t — 2ty
j=0

(z—y) J
j=0

m
m .
—y" <j>(wky3—y’”s) (2" — aty*)™ ”}
=0
1
— W{xn(xk+s . xkys)m . yn(xsyk . yk—l—s)m}

_ 1 n km n km s s\m __ ms_ys " xk’m-{-n_ykm—‘,—n
= ) = =

:F;anm—l—n-

This proves (1.5).
As for (1.6), noting that L, = F, + 2F,_; and then applying (1.5) we get

Z( ) (S D J)Fij jLJs—Fn

7=0

Z ( ) N e 22 (J) (=1 IR Fjapn-

=0 7=0
:FS ka—‘,—n—i_QF;an:m—i—n—l :F;nLk:m—i—n-
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This completes the proof.

In the special case s = 1 and n = 0, (1.5) is due to H.Siebeck ([D,p.394]), and the
general case s = 1 of (1.5) is due to Z.W.Sun.

Taking m =1 in (1.5) and (1.6) we get
(17) Fst+n = Fan+s - (_1)8kaan7 FstJrn = FkLnJrs - (_1)8Fk:stn-
From this we have the following well-known results (see [D],[R1] and [R2]):

(1.8) (Catalan) FrinFrp=F2 — (1) F2,

(1.9) Fon = Fy Ly, Fony1=F2+ F2yy, Lo, = L2 —2(—1)".

Putting n =1 in (1.8) we find Fy_1Fy11 — F? = (—1)* and so Fj_; is prime to F}.
For m > 1 it follows from (1.5) that

(1.10)  F™Fppin = (-1 VmEm By (—1) DDy g pm-1E L (mod F2).

So

(1.11) Frmin = F" 1 Fy + mFyF" ' Fyyq (mod F)
and hence

(1.12) Frm = mFRF" 7" (mod F).

Let (a,b) be the greatest common divisor of a and b. From the above we see that
(ka+n7 sz) = (F]Z;n_anv Fk) = (Fk; Fn)

From this and Euclid’s algorithm for finding the greatest common divisor of two given
numbers, we have the following beautiful result due to E.Lucas (see [D] and [R1]).

Theorem 1.2 (Lucas’ theorem). Let m and n be positive integers. Then

(FmaFn) = F(m,n)'

Corollary 1.1. If m and n are positive integers with m # 2, then
F,. | F, < m|n.
Proof. From Lucas’ theorem we derive that
m|n <= (mn)=m <= F,,=F, < (I, F,)=F, < F,|F,.
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2. Congruences for F}, and F,;; modulo p.
Let (£) be the Legendre symbol of a and p. For p # 2,5, using quadratic reciprocity

»
law we see that
(5)_(p)_ 1 if p=41 (mod 5),
- —1 if p=+2 (mod 5).
From [D] and [R1] we have the following well-known congruences.

Theorem 2.1(Legendre,Lagrange). Let p be an odd prime. Then

L,=1 (modp) and F,= <§> (mod p).

Proof. Since
p

)kt = plp 1+~ K+ 1) = 0 (mod p)

we see that p | (Z) for k=1,2,... ,p— 1. From this and (1.4) we see that

Similarly, by using (1.3) and Euler’s criterion we get

szi{<1+2¢5>p_ (1_2\/3>p}

— \/51. - kzo (i) <(\/3)k _ (_\/S)k)

S

1
2p—1

(1)s 7 =5 =3 = (&) (ot .

p
=0
1k

o 3

This proves the theorem.

Theorem 2.2(Legendre,Lagrange). Let p be an odd prime. Then

1_ (2 14 (2
) (mod p) and Fpiq = +(5)

4
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Proof. From (1.2) we see that
Ly=Fy1+F, 1 =F,+2F,_ | =2F, . —F,

Thus
Lp — F P
2

This together with Theorem 2.1 yields the result.

L,+F,

Fp_y = >

and F,iq =

Corollary 2.1. Let p be a prime. Then p | Fp_(%).
Corollary 2.2. Let p > 3 be a prime, and let q be a prime divisor of F),. Then

q= <g> (mod p) and ¢q=1 (mod 4).

Proof. From Corollary 2.1 we know that ¢ | F, (s). Thus ¢ | (Fq_(%), F,). Applying
Lucas’ theorem we get q | F{;, 4 (2)). Hence (p,q — (£)) =p andsop|q—(}).

Since p > 3 is a prime, by Corollary 1.1 we have F3 { F, and hence F), and ¢ are odd.
By (1.9) we have F2,, + F2, = F, = 0 (mod ¢). Observing that (FpTH,Fprl) =1
2

2
we get g 1 Fpi1 Fpor. Hence (FPTH /lﬂ%l)2 = —1 (mod ¢) and so ¢ = 1 (mod 4). This
finishes the proof.

3. Lucas’ law of repetition.

For any integer k, using (1.3) and (1.4) one can easily prove the following well-known
identity:
(3.1) L —5F7 = 4(—1)~.

From (3.1) we see that (Ly, F) =1 or 2.
Let k,n € Z with k # 0. Putting s = —k in (1.7) and then applying (1.1) we find

(—DF Py Fry = FrFy_p — (—1)*Fo F,.
Since Fy, = Fj Ly and Fj # 0 we see that
(3.2) Fiyn = LpFp + (=) 1E, .

This identity is due to E.Lucas ([D]).
Using (3.2) we can prove

Theorem 3.1. Let k and n be integers with k # 0. Then

Fin { (=1)*™(2m + 1) (mod 5F) if n=2m+ 1,
5



Proof. By (1.1) we have F_j, = (—=1)*""1F},. From this we see that it suffices
to prove the result for n > 0. Clearly the result is true for n = 0,1. Now suppose
n > 2 and the result is true for all positive integers less than n. From (3.2) we see that
Fy, = LkF(n—l)k + (—1)k_1F(n_2)k. Since Li = 5F]3 —|—4(—1)k = 4(—1)k (mod 5F,€2) by
(3.1), using the inductive hypothesis we obtain

Fip, F._ Fo,_
k (n—1)k + (_1)k—1 (n—2)k

Thn _ 1
Fy, "R Fy,

Ly, - (—1)Fm=Dm L, + (—1)k=1 . (=1)k(m=D) (2 — 1)
(=1)*(2m +1) (mod 5F2)  ifn=2m+1,
DR (2m - 1) + (SO (DR - 1)
(=1)km=Ym Ly (mod 5F2) if n =2m.

Ly, -

—~

This shows that the result is true for n. So the theorem is proved by induction.
Clearly Theorem 3.1 is much better than (1.12).

Corollary 3.1. Let k # 0 be an integer, and let p be an odd prime divisor of Fy.. Then

F
M = p (mod 5p?).
k

Proof. Since p | Fy, we see that 5p? | 5F72. So, by Theorem 3.1 we get
—r = (—1)%1]‘319 (mod 5p?).

Since L2 = 5F2 4+ 4(—1)* = 4(—1)* (mod p) we see that 2 | k if p = 3 (mod 4). So
pT_lk =0 (mod 2) and hence Fy,/F) = p (mod 5p?).

For prime p and integer n # 0 let ord,n be the order of n at p. That is, p®* %™ | n
but p°*d»n+1 4 n. From Corollary 3.1 we have

Theorem 3.2 (Lucas’ law of repetition ([D],[R2])). Let k and m be nonzero
integers. If p is an odd prime divisor of F}, then

ordy, Fi, = ord, F}, 4+ ord,m.

Proof. Write m = p®mg with p { mg. Then ord,m = a. Since p | F}, we have p { L,
by (3.1). Thus using Theorem 3.1 we see that F,,/Fr #Z 0 (mod p). Observing that

«

ka o kag . Fpsmok:
I Fe I Fpin

and ordy (Fpsmok/Fps—1mqr) = p by Corollary 3.1, we then get ord,(Fim/F)) = a. This
yields the result.
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Definition 3.1. For positive integer m let r(m) denote the least positive integer n such
that m | F,,. We call r(m) the rank of appearance of m in the Fibonacci sequence.

From Theorem 1.2 we have the following well-known result (see [D],[R1],[R2]).
Lemma 3.1. Let m and n be positive integers. Then m | Fy, if and only if r(m) | n.

Proof. From Theorem 1.2 and the definition of r(m) we see that

m | F, < m | (FnaFr(m)) = m | F(n,r(m))
< (n,r(m)) =r(m) <= r(m) |n.

This proves the lemma.
If p # 2,5 is a prime, p? | F,.(p) and pftl t Fr(p), then clearly r(p®) = r(p) for a < 3.
When « > 3, from Theorem 3.2 and Lemma 3.1 we see that 7(p®) = p*~Br(p). This is

the original form of Lucas’ law of repetition given by Lucas ([D]).

Theorem 3.3. Let m be a positive integer. If p # 2,5 is a prime such that p | Fy,,
then ord, Fy, = ordpr_(g) + ord,m.

Proof. Since p | Fj,_(z) by Corollary 2.1, using Lemma 3.1 we see that r(p) | p— (%)
and r(p) | m. From Theorem 3.2 we know that

p— (%)
7(p)

Since p{p — (£) and so p { r(p) we obtain the desired result.

m

> and ordyF,, = ord,F,,) +ord, <—> .

ordprf(g) = OrdpFr(p) + ordy, ( 7(p)

Corollary 3.2. Let m be a positive integer. If p # 2,5 is a prime such that p | Ly,
then ordy,L,, = ordpr,(%) + ord,m.

Proof. Since Fy,,, = F,, Ly, and (F,,,, L,,) | 2 we see that p t Fy,, and p | Fy,,. Thus
applying Theorem 3.3 we have
ord, Ly, = ordyFyy, = ordpF,_(z) + ord,(2m) = ord, F},_(z) + ord,m.

This is the result.
Theorem 3.4. Let {S,} be given by S; = 3 and Sp11 = S2—2(n > 1). If p is a prime
divisor of Sy, then p® | Sy, if and only if p* | F),_ ().

Proof. Clearly 215, and 51 .5,,. Thus p # 2,5. From (1.9) we see that S,, = Lan.
Thus by Corollary 3.2 we have

ord,S, = ord,Lon = ordpr_(g) +ord,2" = ordpr_(%).

This yields the result.
We note that if p is a prime divisor of Sy, then p = (£) (mod 2"!). This is because

r(p) = 2" and r(p) [ p — ().
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4. Congruences for the Fibonacci quotient Fp_(%)/p (mod p).

From now on let [z] be the greatest integer not exceeding = and ¢,(a) = (a?~1 —1)/p.
For prime p > 5, it follows from Corollary 2.1 that Fp(z) /p € Z. So the next natural
problem is to determine the so-called Fibonacci quotient Fj, () /p (mod p).

Theorem 4.1. Let p be a prime greater than 5. Then
F 5 p—1
(2)

(1) (Z.H.Sun and Z.W.Sun[SS],1992) p_p = -2 Py + (mod p).
k=2p(mod 5)
F,_s
(2) (H.C.Williams[W2], 1991) 2" = 2 ¢ (mod p).
E<k<E
(3) (Z.H.Sun[S2],1995) e D™ (1nod p)
o , poo® <k<?2 g i
1<k< =2
(4) (H.C.Williams[W1], 1982 T 2 (D" (mod
.C.Williams[W1], ) =—: >, —— (mod p).
1<k< £
(5) (Z.H.Sun[S2],1995) oy =2 (1" (mod p)
H. : - 2 - :
E<k<t
Fp,<§) p_]' (71)}6—1 p_l (71)1{5—1
(6) (Z.H.Sun[S2],1995) — = =6 > ——6 > — (mod p) .
h=dp(mad 15) k=5plmad 15)
7) (ZHSw[S21005) B =4 Y 1_2 1 (mod
()(..un[ ]7 ) p =3 Z E — 15 k(mo p)'
k=1 L<k<3

k=2p,3p(mod 10)

p—5—2r
F s 10 Sk+r
r—(3) _ 2 (-1)
S = 5qP(2)+2 Sy (mod p)
k=0
Do=® a1/l (-1
(9) (Z.H.Sun($2).1995) 5 = & (=1 (21) 1) /p - ,(5) (mod p).
F _s (p—1)/2

(10) (Z.H.Sun[S4],2001) ——2 = g, (5) = 24,(2) — > i (mod p).

Fp_(i) (p—l)/2 k
(11) (Z.H.Sun[S4],2001) —*= = —£(2¢,(2) + >
k=1

(9}

) (mod p).

=

We remark that Theorem 4.1(11) can also be deduced from P.Bruckman’s result

([Br]).

Theorem 4.2 (A.Granville,Z.W.Sun[GS],1996). Let{B,(x)} be the Bernoulli poly-
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nomaals. If p is a prime greater than 5, then

Bpi(3) = By = 2an) + 30 (mod p),
Bpr(3) = By = 2a5) — 3 (mod p),
Byr(o) = Byor = 20,5) + 202) + (D)8 (mod ),
Bya() = Byr = 20+ 205(2) — (D) (o )

5. Wall-Sun-Sun prime.
Using Theorem 4.1(1) and H.S.Vandiver’s result in 1914, Z.H.Sun and Z.W.Sun|SS]
revealed the connection between Fibonacci numbers and Fermat’s last theorem.

Theorem 5.1(Z.H.Sun, Z.W.Sun([SS],1992). Let p > 5 be a prime. If there are
integers x,y, z such that P + yP = 2P and p{ xryz, then p? | F, (2.

On the basis of this result, mathematicians introduced the so-called Wall-Sun-Sun
primes ([CDP]).

Definition 5.1. If p is a prime such that p? | Fp_(zy, then p is called a Wall-Sun-Sun
prime.

Up to now, no Wall-Sun-Sun primes are known. R. McIntosh showed that any Wall-
Sun-Sun prime should be greater than 10'4. See the web pages:

http : / /primes.utm.edu/glossary/page.php?sort = WallSunSunPrime,

http : //en2.wikipedia.org/wiki/Wall — Sun — Sun_prime.

Theorem 5.2. Let p > 5 be a prime. Then p is a Wall-Sun-Sun prime if and only if
L, 2y =2(§) (mod ).

Proof. From (1.2), Theorems 2.1 and 2.2 we see that

(5.1) L, (2)=2F, - (g) F, (zy=2 (g) (mod p)

and so that L, (z) # —2 (£) (mod p). Since L2 — 5F7 = 4(—1)" by (3.1), we have

p? | Fy, 2y <~ Pt F;_(g) — I? 2y =4 (mod p*)

p—(%)
4 p b
= 1 (1 -2(2) (2 (2)
Y
<~ p4 | Lp_(%) —2 <S> .

This is the result.
From Theorem 3.3 we have



Theorem 5.3. Let m be a positive integer. If p # 2,5 is a prime such that p | Fy,,
then p is a Wall-Sun-Sun prime if and only if ord, F,, > ord,m + 2.

From Theorem 3.4 we have

Theorem 5.4. Let {S,,} be given by S; = 3 and S,1 = S2—2(n > 1). If p is a prime
divisor of Sy, then p? | Sy, if and only if p is a Wall-Sun-Sun prime.

According to Theorem 5.4 and R. MclIntosh’s search result we see that any square
prime factor of S,, should be greater than 104

6. Congruences for Fprl and FFTH modulo p.
For prime p > 5, it looks very difficult to determine Fp—: and Fp+1 (mod p). Anyway,
2 2

the congruences were established by Z.H.Sun and Z.W.Sun[SS] in 1992. They deduced
the desired congruences from the following interesting formulas.

Lemma 6.1 (Z.H.Sun and Z.W.Sun[SS],1992). Let p > 0 be odd, and r € Z.
(1) If p=1 (mod 4), then

([ 5(2° + Ly +5pT3FpTl) if r = 251 (mod 10),
zp: (p) ) 15(2P — Ly 1 5" Fua) if r =252 42 (mod 10),
p=r=D 10 ’ 16(2" = Lyt =5 Foa) if r = 231 + 4 (mod 10),
| (2P + Lpp1 —5"F For) if r = 251 +6 (mod 10).

(2) If p =3 (mod 4), then

($5(27 + Lpi1 + 5" Lon)  if r = 25% (mod 10),
pt+1 _
z”: (p) ) B Ly 5 L) r =251 42 (mod 10),
k=0 i 16(2F = Lp—1 — 5PT1LP%1) ifr= pg;l +4 (mod 10),
k=r(mod 10) .
| (22 4+ Lyp1 —5"5 Lyss)  if r =251 +6 (mod 10).

k=r(mod 10)

Lemma 6.1 was rediscovered by F.T.Howard and R.Witt[HW] in 1998.
If p is an odd prime, then p | (i) for k=1,2,... ,p—1. So, using Lemma 6.1 we can
determine Fp—1 and Fp+1 (mod p).
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Theorem 6.1(Z.H.Sun,Z.W.Sun[SS],1992). Let p # 2,5 be a prime. Then

P = { 0 <m0dp£) » z:fp = 1(mod 4),
7 2(—D)51(2)5%F (mod p) if p = 3(mod 4)
and s -
Fooepy = { (—1)[105](§)§4(m0d p) if p=1(mod 4),
7 (-5 15%T (mod p) if p = 3(mod 4).

In 2003, Z.H.Sun ([S6]) gave another proof of Theorem 6.1. Since L,, = 2F,, 11 —F,, =
2F,_1 + F,,, by Theorem 6.1 one may deduce the congruences for Ly+: (mod p).

Theorem 6.2(Z.H.Sun [S8, Corollary 4.7]). Let p = 3,7 (mod 20) be a prime and
hence 2p = x2 + 5y? for some integers x and y. Suppose 4 | x —y. Then

Fpa = Yy (mod p) and Lp-1 = d (mod p).
2 T Pl Y
7. Congruences for F, (z))/3 (mod p).
Let p > 5 be a prime. It is clear that
—15 -3.,5 D.p 1 ifp=1,2,4,8 (mod 15),
(—)=())=3F)E) = o
D pp 35 -1 ifp=7,11,13,14 (mod 15).

Using the theory of cubic residues, Z.H.Sun[S3| proved the following result.
Theorem 7.1 (Z.H.Sun[S3],1998). Let p be an odd prime.
(1) If p=1,4 (mod 15) and so p = x? + 15y* for some integers x,y. Then

0 (mod p) if y =0 (mod 3),
{ F5,; (mod p) ify =tz (mod 3)

and
I = { 2 (mod p)  ify=0 (mod 3),
R (mod p) ify # 0 (mod 3).

(2) If p=2,8 (mod 15) and so p = 5x2 + 3y* for some integers x,y. Then

P = 0 (mod p)  ify =0 (mod 3),
‘“:{i% (mod p) if y =a (mod 3).

and

h
S
Il

—2 (mod p) if y =0 (mod 3),
{ 1 (mod p) if y # 0 (mod 3).
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Theorem 7.2. Let p be an odd prime such that p = 7,11,13,14 (mod 15). Then
r=Fy(z)ys (mod p) is the unique solution of the cubic congruence 5x® + 3z — 1 =
0 (mod p), and x = L, (2));3 (mod p) is the unique solution of the cubic congruence
z® — 3z +3(%) =0 (mod p).

Proof. Since (_715) =1 and (—1)P—(5))/6 = (%) , by taking a = —1 and b =1 in [S7,
Corollary 2.1] we find

¢ p
Fop(zyys = G (mod p) and L, (2))3 = —(g)y (mod p),

where t is the unique solution of the congruence 3 + 15t +25 = 0 (mod p), and y is the
unique solution of the congruence y® — 3y — 3 = 0 (mod p). Now setting t = —5x and
y = —(%)x yields the result.

Using Theorem 7.1 Z.H.Sun proved

Theorem 7.3 (Z.H.Sun[S3],1998). Let p > 5 be a prime.
(1) If p=1 (mod 3), then

plFo < p= 22 + 135y%(z,y € Z),
D | Fpo = p= x? + 540y*(z,y € 7).
(2) If p=2 (mod 3),
D F%l = p=>5z>+27y*(z,y € Z),
Pl Fos = p= 522 4+ 108y>(x,y € Z).
In 1974, using cyclotomic numbers E.Lehmer[L2] proved that if p =1 (mod 12) is a
prime, then p | F et if and only if p is represented by z? + 135y2.
8. Congruences for F(p_(%l))/4 modulo p.

Theorem 8.1 (E.Lehmer[L1],1966). Let p = 1,9 (mod 20) be a prime, and p =
a? + b% with a,b € Z and 2 | b.

(i) If p=1,29 (mod 40), then p | Fpoa <=5 | b;

(i) If p=9,21 (mod 40), then p | Fpoa <=5 | a.

Theorem 8.2. Let p be a prime greater than 5.
(i) (E.Lehmer[L2],1974) If p=1 (mod 8), then

D | Fp%l — p=2x*+80y* (z,y€7Z).
(ii) (Z.H.Sun,Z.W.Sun[SS],1992) If p =5 (mod 8), then

p‘Fp%l & p=162>+5y° (v,y € 7).

12



Theorem 8.3 ([S9, Corollary 6.4]). Let p = 1,9 (mod 20) be a prime and hence
p=c®+d*> = 2%+ 5y% for some c,d, v,y € Z. Suppose ¢ = 1 (mod 4), x = 2%z,
y = 2Pyo and o = yo = 1 (mod 4). Then

0 (mod p) if 4| wy,
Foor ={ F2(=1)E(2/y)"7 (mod p)  if4}zy and z = +c (mod 5),
:|:2(—1)[§](a:/y)p7%% (mod p) if41ay and x = +d (mod 5)

4

and

0 (mod p) if 41 zy,
Ly = :|:2(—1)[138%5](ac/y)pi1 (mod p) if4|zy and x = +c (mod 5),

5

:l:2(—1)[p%](x/y)prl‘—i (mod p) if4|zy and x = £d (mod 5).

C

'b‘

Theorem 8.4 ([S9, Theorem 6.5]). Let p = 1,9 (mod 40) be a prime and hence
p=C?+2D? = 22 + 5y for some C,D,z,y € Z. Suppose C =1 (mod 4), x = 2%x,
y =28y and 29 = yo = 1 (mod 4).

(i) If 2|z and x = £C,£3C (mod 5), then

— TN\Y
p’LpTﬂ and Fp%l::l:2(g)5 (mod p).

(ii) If 24 x and x = £C,£3C (mod 5), then

xT

p|FpT—1 and LpT—l Eﬂ:2<5

> (mod p).

For m € Z with m = 2%m(2 t mg) we say that 2% || m and mg is the odd part of m.

Conjecture 8.1 ([S9, Conjecture 9.4 (with b = 1)]). Let p = 1,9 (mod 20) be a
prime and p = ¢ + d? = 22 + 5y? with ¢,d,x,y € Z, c = 1 (mod 4) and all the odd
parts of d,x,y are of the form 4k + 1. If 4 { zy, then

o { (-1)3% (mod p) if2 | =,

! 4 (mod p) if2 |y
If 4 | zy, then
o { 2(-1)1+% (mod p) 4|y,
p—1 —= x
N 2(—1)75 (mod p) if4|=x.

Conjecture 8.1 has been checked for all primes p < 20, 000.
13



Conjecture 8.2 (Z.H.Sun[S6]). Let p = 3,7 (mod 20) be a prime, and hence 2p =
22 + 592 for some integers x and y. Then

2(—1)[%1 1057 (mod p) if y = j:p%l (mod 8),

Fpia p—5 p—3 1
—2(-DIw 10" (mod p)  ify # £E5+ (mod 8).

4

Il
—N—

Since F' el L phL = F I from Theorem 6.1 we see that Conjecture 8.2 is equivalent
to

(8.1) Ly

4

o

1

{ (=2)" T (mod p) ify= +2-1 (mod 8),
—(—2)"F (mod p) ify# £ (mod 8).

Z.H.Sun has checked (8.1) for all primes p < 3000.
As

) ( 1++5 ) =
5 =
by the conjecture we have

(1+V5)"%* =25 (Loss + Fusa VB)
= <p ) (=25 2107 V)
= <p - >< %2%1 + (—1)l'o lo%5+ 5’%3\/3>

= <p2iy> (1 4 (—1)] (%)513\/5) (mod p).

From this we deduce the following conjecture equivalent to Conjecture 8.2.
Conjecture 8.2°. Let p = 3,7 (mod 20) be a prime and so 2p = x% + 5y? for some
integers x and y. Then
1+5%5 (mod p)  if p=3,47 (mod 80),
p=3 .
y2— P —1-5"7 v/5 (mod if p="7,43 (mod 80),
(_1) 81(1—}—\/3)%5 L \/_( p) fp ( )
1 —5"7 /5 (mod p) if p= 63,67 (mod 80),
145" /5 (mod p) if p= 23,27 (mod 80).

Remark 8.1 In 2009 Constantin-Nicolae Beli[B] proved Conjecture 8.2 using class field
theory. Thus Conjecture 8.2’ is also true. According to [S8, Corollary 4.7], if 4 | x — v,
we have

£ 252 _{ 4 (mod p)  if p=3 (mod 20),
|l =% (mod p) if p=7 (mod 20).
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9. Criteria for p | Fp-1.
8

Theorem 9.1 ([S9, Corollary 6.6]). Let p = 1,9 (mod 40) be a prime and hence
p=c®+d? =22+ 5y? for some c,d,x,y € Z. Suppose c =1 (mod 4). Then

p—1 j:l d ) = :i: d 5 9
plFp1 <= 21z and(—5)sE{ d(mo p) fo ¢ (mod 5)
) +¢ (mod p) if 2 ==£d (mod 5),

where x is chosen so that x =1 (mod 4).

Theorem 9.2 ([S9, Corollary 6.9]). Let p = 1 (mod 8) be a prime and hence p =

C? +2D? with C,D € Z and C =1 (mod 4). Then p | Fp—1 if and only if p = x2 + 5y
8

with v,y € Z, x =1 (mod 4) and

{ C,3C (mod 5) if p=1,9 (mod 80),
=
—C,—=3C (mod 5) if p=41,49 (mod &80).

Conjecture 9.1 (E.Lehmer[L2],1974). Let p = 1 (mod 16) be a prime, and p =
2% 4 80y? = a? + 16b2 for some integers x,y,a,b. Then

p|FpT_1 <= y=0b (mod 2).
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