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Abstract

In a previous paper we have presented a partition formula for the
even-index Fibonacci numbers using the preprojective representations
of the 3-Kronecker quiver and its universal cover, the 3-regular star.
Now we deal in a similar way with the odd-index Fibonacci numbers.
The Fibonacci modules introduced here provide a convenient categori-
fication of the Fibonacci numbers.

1 Introduction

We consider the Fibonacci numbers with fy = 0, fi = 1 and the recursion
rule f;11 = fi + fi_1 for © > 1. As suggested by many authors, one may
use this recursion rule also for ¢ < 0 and one obtains in this way Fibonacci



numbers f; for all integral indices ¢ (Knuth [10] calls this extended set the
negaFibonacci numbers); the sequence f; with —10 < ¢ < 10 looks as follows:

—55,34,-21,13,-8,5,—-3,2,-1,1,0,1,1,2,3,5,8,13, 21, 34, 55;

in general, f_; = (—1)"*1 f;. This rule, but also many other observations, show
that Fibonacci numbers have quite different properties depending whether
the index is even or odd, and the present report will strongly support this
evidence.

Our aim is to outline a categorification of the Fibonacci numbers, or better
of Fibonacci pairs, using the representation theory of quivers. By definition,
Fibonacci pairs are the pairs of the form [f;, fi1o] or [fi, fi—2]; such a pair will
be called even or odd provided the index t of f; is even or odd, respectively.

It is well-known that the dimension vectors of some indecomposable rep-
resentations of the 3-Kronecker quiver () are Fibonacci pairs. In the previous
note [6], preprojective and preinjective representations were used in order to
derive a partition formula for the even-index Fibonacci numbers fs,. In the
present paper we will exhibit a corresponding partition formula for the odd-
index Fibonacci numbers f5,.1. Now regular representations of ) play a
role (see also [3] and [11]). Actually, we will be dealing directly with the
universal cover of (), thus with graded representations of (). The universal
cover of @ is the quiver (T, E, 2), where (T, E) is the 3-regular tree and € is
a bipartite orientation. In section 4 we will introduce some representations
P,(x) and R:(z,y) of the quiver (T, E, ) which we label Fibonacci modules.
The Fibonacci modules will be used in section 4 and 6 in order to categorify
the Fibonacci pairs (and hence the Fibonacci numbers). The dimension vec-
tors of the Fibonacci modules are called Fibonacci vectors, they are studied
already in secton 2 and 3 and provide the partition formula.

Categorification of a set of numbers means to consider instead of these
numbers suitable objects in a category (here representations of quivers), so
that the numbers in question occur as invariants of the objects (see for exam-
ple [4]). Equality of numbers may be visualized by isomorphisms of objects,
functional relations by functorial ties. We will see that certain addition
formulas for Fibonacci numbers can be interpreted very well by displaying
filtrations of Fibonocci modules.

The partition formula for the odd-index Fibonacci numbers presented
here is due to Fahr, see [5], the remaining considerations are based on dis-
cussions of the authors during the time when Fahr was a PhD student at
Bielefeld, the final version was written by Ringel.



2 Fibonacci Vectors

Let us start with the 3-regular tree (7, E') with vertex set 7" and edge set E.
In case there is a sequence xg, z1, ..., x; of elements x; of T such that all the
sets {x;_1,2;} belong to E, where 1 < i <t and ;41 # x;_1 for 0 < i < t,
then we say that xy and z; have distance ¢ and write d(xg, z;) = t. As usual,
vertices with distance 1 are said to be neighbors.

Let Ko(T') be the free abelian group generated by the vertex set T, or
better by elements s(z) corresponding bijectively to the vertices z € T. The
elements of Ko(T) can be written as finite sums a = ) a,s(x) with a, € Z
(and almost all a, = 0), or just as a = (ay)er; the set of vertices z with
a; # 0 will be called the support of a.

We are going to single out suitable elements of Ky(7') which we will
call Fibonacci vectors: For every pair (z,y) with {z,y} € E, let r(z,y) =
s(x) + s(y). The Fibonacci vectors will be obtained from the elements s(x)
and r(x,y) by applying sequences of reflections. For y € T the reflection
¥ : Ko(T) — Ko(T) is defined as follows: For a € Ky(T'), its image o¥a is
given by (0%a), = a, for x # y, and (0%a), = —ay + >, 1cp @z Observe
that the reflections 0¥, 0¥ commute provided 7,1’ are not neighbors.

We denote by X% the composition of all the reflections o¥ with d(zx,y)
being even (note that this composition is defined: first of all, since any
element a € Ky(T') has finite support, the number of vertices y with o¥a #
a is finite; second, given two different vertices y, 3y’ such that the distance
between = and y, as well as between x and 3’ is even, then y, vy’ cannot be
neighbors, thus 0¥, 0¥ commute). Similarly, we denote by ¥* the composition
of all the reflections 0¥ with d(x,y) being odd (again, this is well-defined).

We define s;(z) for all ¢ > 0, using induction: First of all, so(z) = s(z).
If s¢(x) is already defined for some t > 0, let s;41(x) = X%s¢(x) in case t is
even, and s;y1(x) = X¥s;(x) in case t is odd, thus

so(z) = s(2),

si(z) = L'si(x),
so(z) = X*E"s(z),
sg(x) = X"3"N%s(x),

Similarly, we define ry(x,y) for all ¢ > 0: First of all, ro(x,y) = r(x,y). If
ri(z,y) is already defined for some ¢ > 0, let riy1(x,y) = X% (z,y) in case t
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is even, and .1 (x,y) = X%ry(x,y) in case t is odd. The elements s;(x) with
t > 0 as well as the elements r,(z,y) with ¢t € Z will be called the Fibonacci
vectors.

Define

si(z)- = si(x),, and s (z)y = s¢(x).,
d(z,z)#t d(z,z)=t

where = means equivalence modulo 2, and similarly,

rt(x,y)_ = Z Tt(xay)za and Tt(l‘,y)—f— = Tt(xvy)z-
d(z,z)#t d(z,z)=t

Proposition 2.1. The Fibonacci vectors have non-negative coordinates and

se(x)= = for, 5¢(2)4 = forgo, (@, Y)= = fau—1, Te(@,Y)+ = forsa-

Proof. The proof for s; has been given in the previous paper [6]. In the same
way, one deals with r;(x,y). But note that in [6] we have fixed some base
point zy, and we wrote @y, ®; instead of %0, ¥ resepctively. Also, there,
we have denoted the function sg(xg) by a;, and the functions sg;y1(xg) by
<I>1at. ]

The functions s,(xy) have been exhibited in [6], for 0 < ¢ < 5. At the end
of the present paper we present the functions r(z,y) for 0 < ¢ < 5.

3 The Partition Formula

In the previous paper [6] the functions s;(z) were used in order to provide a
partition formula for the even-index Fibonacci numbers (see also [8]). We now
consider the functions r(z,y) in order to obtain a corresponding partition
formula for the odd-index Fibonacci numbers. In order to get all odd-index
Fibonacci numbers, it is sufficient to look at the functions ro(z,y), since

far—1 = 7’2t(~”€7y)—, faer1 = 7’2t(~”67y)+-

For any t, the numbers s,;(z), only depend on the distance d(zx,z). In
contrast, for r;(x,y) and d(z, z) > 0, there are now two values which occur
as r¢(z,y) depending on whether the path connecting x and z runs through
y or not. Let us denote by Ty(x,y) the set of vertices z of T with d(z, z) =

4



s and such that the path connecting z,z does not involve y, and T.(x,y)
shall denote the set of vertices z of T" with d(x, z) = s, such that the path
connecting x, z does involve y. Clearly, we have for s > 1

To(z,y)l = 2% [Ti,y)| =27 (1)

The proof of (1) is by induction: Of course, Tj(z,y) = {y} whereas
Ti(x,y) consists of the two remaining neighbors of x. For any vertex z with
d(x,z) = s > 0, there are precisely two neighbors 2/, 2” such that d(zx, ') =
d(z, 2") = s+1, therefore | T, 1(x, y)| = 2|Ts(x,y)| and |12, (z,y)| = 2|T.(x, y)|.

Thus, let us look at the function u; : Z — N defined for s > 0 by
wls] = ros(x,y), with z € Ty(z,y), and for s < —1 by w[s] = ro(z, y), with

zeT’ (x,y).

Using the equality (1), we see:

fa

f4t+1

T2t(xay)— = Z TZt(xvy)z
d(

z,z) odd

Yo L y)lwls] + D T y)lul—]

s>0 odd s>0 odd
Z 2%u]s] + Z 25 Ly, [— ]

s>0 odd s>0 odd

ror(®,y) 4+ = T2:(2,Y)-

Yo L@ y)lulsl+ Y T, y) ud—s]

s>0 even s>0 even
s s—1
g 2%u,[s] + E 25" uy[—$]
s>0 even s>0 even

Without reference to ro;, we can define the functions u,; directly as follows:
We start with ug[0] = up[—1] = 1 and ug[s] = 0 for all other s. If u, is already
defined for some ¢t > 0, then we define first u; 1[s| for odd integers s by the

rule

Up11[8]

~J2wfs — 1] —wfs] +w[s+1] for s<O
s — 1] — wyfs] + 2uy[s + 1] for s>0



and in a second step for even integers s by

g [s] = 2ui[s — 1] — wyls] + ugsq[s + 1] for s<0
T wgga [s — 1] — wefs] 4+ 2ugpa[s + 1] for s>0

Here is the table of the numbers u,[s], for ¢ < 4; in addition, we list the

corresponding Fibonacci numbers f_q, f1, f3,..., fi7.

N6 -5 —4-3-2-10 1 2 3 4 5 6 7 8 ifuifun
0 ! 11 o1
1! 1 1 1 2 5
2 | 11 4 2 3 1 1 13 34
3 1 1 6 517 813 4 5 1 1 89 233
40 1 1 8 73224 773560192 6 7 1 1 16101597

Remark. We can reformulate the recursion rules using the generalized
Cartan matrix A = (a;j);; (indexed over the integers) with Dynkin diagram
-3 -2 —1 0 1 2 3
O >— 0 —=— 0 o o o o
One pair of vertices is simply laced, for the remaining laced pairs, one of the
numbers a;;, a;; is equal to —1, the other to —2 (as in the case of the Cartan
matrix of type By). In order to obtain u,,; from u,, apply first the reflections

o; with 7 odd, then the reflections o; with 7 even.

4 Fibonacci Modules

We now endow (7', E') with a bipartite orientation €2; in this way, we deal with
a quiver (7, E,Q) and we consider its representations. Note that there are
just two bipartite orientations for (T, ). Given a vertex z of T', let us denote
by €2} the bipartite orientation such that x is a sink in case ¢ is even, and a
source, in case t is odd. Let P;(x) be the indecomposable representation of
(T, E,QF) with dimension vector s;(z). If there is an edge between x and v,
let R(z,y) be the indecomposable representation of (T, E, 2f) with dimen-
sion vector r4(x,y); it is well-known that these modules exist and are unique
up to isomorphism: for ¢ = 0 this assertion is trivial, and the Bernstein-
Gelfand-Ponomarev reflection functors [2] can be used in order to construct
P,y1(x) from Py(z), as well as Ryyq(z,y) from Ry(z,y).
We call the modules P;(z) and Ry(z,y) Fibonacci modules.
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Proposition 4.1. Let x be a vertex of T with neighbors y,y',y" and t > 1
an integer. Assume that for even t, the verter x is a sink, and if t is odd, x
is a source. Then there are exact sequences

0= P1(y) = Pix) = Ry(x,y) = 0,

0= Pa(y) = Ri(z,y) = Ria(y”,z) = 0,
and they are unique up to ismomorphism.

Proof. This is clear for ¢ = 1 and follows by induction using the Bernstein-
Gelfand-Ponomarev reflection functors. 0

Corollary 4.2. Let xg, 1, ...,x; be a path with xo a sink. Then Py(z;) has
a filtration
Po(.ro) C Pl(xl) c---C Pt<.§lft)

with factors
Pi($i)/Pi—1($i—1) = Rz(ffz)
for1 <i<t.

Proof. Since xg is a sink, we see that x; is a sink for ¢ even and a source for
1 odd. Thus, the proposition provides exact sequences

0— Pl',l(.ri,1> — PZ(.TZ> — Rt(azi,xi,l) — 0,
for 1 <34 <t. OJ

Corollary 4.3. Let x_1,x9,x1,...,%, 411 be a path with xy a source. For
0 <1 <t let z; be the neighbor of x; different from x; 1 and x;11. Then
there 1s an exact sequence

0— PQ(Z()) DD Pt(Zt) — Rt+1(l‘t, :L‘t—l—l) — Ro(ZL'_l, IL‘Q) — 0.

Proof. Here, z( is a source, thus we see that x; is a source for ¢ even and
a sink for ¢ odd. The proof is by induction on ¢, the case t = 0 should be
clear. Assume that ¢ > 1. We consider the vertices zg, ..., i1, 21, - - - 2,
but deal with the opposite orientation €2’ (so that now x; is a source); the
corresponding respresentations will be distinguished by a dash, thus P/(z;) is
the indecomposable representation of (7', F,€)") with dimension vector s;(z;),
and so on. By induction, there is an exact sequence

0— Pi(z1) @ ® P_1(2) = Ry(xy, x41) = Ry(wo, 21) — 0.
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Applying reflection functors (at all sinks), we obtain the exact sequence
0= Pi(21) @+ @ Fi(z) = Reya (@, p41) — R0, 21) — 0.

Note that Py(zp) is a subrepresentation of Rj(z1,x¢), thus we obtain the
induced exact sequence

O—>P1<Zl)@"'@Pt(Zt)—>W—>P(](Z())—>O,

where W is a subrepresentation of Ry (x¢, £411) with Ryyq (24, 2411)/W being
isomorphic to Ry(z1,x0)/Po(20) = Ro(z_1, o).

On the other hand, the induced sequence has to split, since Py(zp) is
projective, thus W is the direct sum of the representations P;(z;) with 0 <
1 < t. This completes the proof. O

Of course, proposition 4.1 should be seen as a categorification of the
defining equation

Jer1 = fia + fi

for the Fibonacci numbers. Corollaries 4.2 and 4.3 are categorifications of
the equalities

t t
for = Zf%fla fory1 =1+ Zfzz-
i=1 i=1

Remark. The representations Ry(z_1,%¢), Po(20), - - ., Pi(2) are pairwise
orthogonal bricks, the corresponding Ext-quiver is

Ro(ﬂffl, 370)

PO(ZO) P1(Z1) Pt(Zt)

Let F denote the full subcategory of of all representations of (T, F,Q)) with a
filtration with factors of the form Ry(x_1, o), Po(20),- - ., Pi(2:), then corol-
lary 4.3 shows that Ry q(x¢, 441) is indecomposable projective in F.

5 Fibonacci Pairs

The Fibonacci pairs are related to the integral quadratic form ¢(z,y) =
22 + y? — 3zy as follows:



Proposition 5.1. A pair [z,y] € Z* is a Fibonacci pair if and only if
gz, y)| = 1.

The pairs [z, y] with |¢(z,y)| = 1 form two hyperbolas. The hyperbola of
all pairs [z, y] with ¢(z,y) = 1 yields the even Fibonacci pairs, these are the

black dots on the following picture. The hyperbola ¢(x,y) = —1 yields the
odd Fibonacci pairs, they are indicated by small circles.

Y

S e
&
The quadratic form ¢ on Z? defines the Kac-Moody root system [9] for
the Cartan matrix [ _23 _23 ] (see [6], section 6). The pairs [x,y] with

q(z,y) = 1 are the real roots, those with ¢(x,y) < 0 the imaginary roots.
We identify Z? with the Grothendieck group of the 3-Kronecker modules,
and ¢ is the Euler form. Given a 3-Kronecker module M, the corresponding
element in the Grothendieck group is its dimension vector dim M.

6 Recursion formula for Fibonacci numbers
with index of the same parity.

This is the recursion formula:
Jiv2 =3[t — fi—a. (1)

Proof. The term f;1o — 3f; + fi—o is just the sum of fi,o — fiy1 — fi, of
fern = fe — fion and of —(f; — fi-1 — fi—2), thus equal to zero. O



Note that the recursion formula can also be rewritten as

ft72:3ft_ft+27 <2>

thus the same recurrence formula works both for going up and for going
down. Also, we can write it in the form

fi—2 + fig2 = 3f¢. (3)

The formulae (1) and (2) are categorified by looking at the reflection
functors o, and o_ for 3-Kronecker modules. Given a 3-Kronecker module
M = (M, My, «, 3,7), we obtain (6. M)y = M; and (o, M); as the kernel
of the map (a, 3,7) : M} — My; note that if M is indecomposable and not
the simple projective module Fy, then this kernel has dimension 3 dim M; —
dim M,. Similarly, we obtain (o_M); = M, and (04 M)y as the cokernel of
the map (a, 3,7)! : My — M3; here, if M is indecomposable and not the
simple projective module (g, then this cokernel has dimension 3dim M; —
dim M1 .

The formula (3) is categorified by the Auslander-Reiten sequences (see
for example [1])

0—=P,_, =P =P, —0

O_>Qn+1_>Q?;L—>Qn—1_)O

forn > 1 and
0— Ry-10— E(n,A\) = Ryp10— 0

with an indecomposable module E(n, \) having dimension vector 3 dim R(n, \).

References

[1] M. Auslander, I. Reiten, S. Smalo, Representation theory of artin alge-
bras. Cambridge Studies in Advanced Mathematics (1994).

[2] I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Cozxeter functors
and Gabriel’s theorem. Uspechi Mat. Nauk. 28 (1973), 19-33; Russian
Math. Surveys 29 (1973), 17-32.

[3] B. Chen, Regular modules and quasi-lengths over 3-Kronecker quiver;
using Fibonacci numbers. Arch. Math. 95 (2010), 105-113.

10



[4]

[11]

[12]

L. Crane, D. N. Yetter, Fxamples of categorification, Cahiers de Topolo-
gie et Geometrie Differentielle Categoriques 39 (1): 3.25, (1998).

Ph. Fahr, Infinite Gabriel-Roiter measures for the 3-Kronecker quiver.
Dissertation Bielefeld (2008).

Ph. Fahr, C. M. Ringel, A partition formula for Fibonacci numbers, J.
Integer Sequences, 11 (2008), Paper 08.1.4.

P. Gabriel, The universal cover of a representation-finite algebra. In
Representations of Algebras, Puebla (1980), Springer Lecture Notes in
Math. 903 (1981), 68-105.

M. D. Hirschhorn, On Recurrences of Fahr and Ringel Arising in Graph
Theory. J. Integer Sequences, 12 (2009), Paper 09.6.8

V. G. Kac, Infinite-Dimensional Lie Algebras. 3rd edition, Cambridge
University Press, 1990.

D. Knuth, Negafibonacci Numbers and the Hyperbolic Plane. San
Jose-Meeting of the Mathematical Association of America (2008),
http://www.allacademic.com/meta/p206842_index.html

C. M. Ringel, Indecomposable representations of the Kronecker quivers.
Proc. Amer. Math. Soc. (to appear).

N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences.
http://www.research.att.com/~njas/sequences/

201

0 Mathematics Subject Classification: Primary 11B39, Secondary 16G20.

Keywords:  Fibonacci numbers, Quiver representations, Universal cover, 3-
regular tree, 3-Kronecker quiver.
(Concerned with sequences A000045, A132262, A147316 of [12])

Ilustrations. The following illustrations show the functions r;(x,y) for

t =0,..,5, with  the center and y above x. The dotted circles indicate a
fixed distance to x. We show (7', E') with bipartite orientation such that z is
a sink (thus z is a sink if d(z,y) is even, and a source if d(z, z) is odd). The
region containing the arrow y — x has been dotted. For the convenience of

the

reader we have indicated the corresponding Fibonacci pair [fo_1, fari1]-
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