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1. Recursive Definitions

A definition such that the object defined occurs in the definition is
called a recursive definition. For instance the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .

is defined as a sequence whose two first terms are F0 = 0, F1 = 1
and each subsequent term is the sum of the two previous ones: Fn =
Fn−1 + Fn−2 (for n ≥ 2).

Other examples:

• Recursive definition of factorial :
(1) 0! = 1
(2) n! = n · (n− 1)! (n ≥ 1)

• Recursive definition of power :
(1) a0 = 1
(2) an = an−1 a (n ≥ 1)

In all these examples we have:

(1) A Basis, where the function is explicitly evaluated for one or
more values of its argument.

(2) A Recursive Step, stating how to compute the function from its
previous values.

2. Recurrence Relations

When we considerer a recursive definition as an equation to be solved
we call it recurrence relation. Here we will focus on kth-order linear
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recurrence relations, which are of the form

C0 xn + C1 xn−1 + C2 xn−2 + · · ·+ Ck xn−k = bn ,

where C0 6= 0. If bn = 0 the recurrence relation is called homogeneous.
Otherwise it is called non-homogeneous. The coefficients Ci may de-
pend on n, but here we will assume that they are constant unless stated
otherwise.

The basis of the recursive definition is also called initial conditions
of the recurrence. So, for instance, in the recursive definition of the
Fibonacci sequence, the recurrence is

Fn = Fn−1 + Fn−2

or

Fn − Fn−1 − Fn−2 = 0 ,

and the initial conditions are

F0 = 0, F1 = 1 .

1. Solving Recurrence Relations. A solution of a recurrence rela-
tion is a sequence xn that verifies the recurrence.

An important property of homogeneous linear recurrences (bn = 0)
is that given two solutions xn and yn of the recurrence, any linear
combination of them zn = rxn + syn, where r, s are constant, is also a
solution of the same recurrence, because

k∑
i=0

Ci(rxn−i + syn−i) = r

k∑
i=0

Cixn−i + s

k∑
i=0

Ciyn−i = r · 0 + s · 0 = 0 .

For instance, the Fibonacci sequence Fn = 0, 1, 1, 2, 3, 5, 8, 13, . . . and
the Lucas sequence Ln = 2, 1, 3, 4, 7, 11, . . . verify the same recurrence
xn = xn−1 + xn−2, so any linear combination of them aFn + bLn, for
instance their sum Fn + Ln = 2, 2, 4, 6, 10, 16, . . . , is also a solution of
the same recurrence.

If the recurrence is non-homogeneous then we have that the difference
of any two solutions is a solution of the homogeneous version of the re-
currence, i.e., if

∑k
i=0 Cixn−i = bn and

∑k
i=0 Ciyn−i = bn then obviously

zn = xn − yn verifies:

k∑
i=0

Cizn−i =
k∑

i=0

Cixn−i −
k∑

i=0

Ciyn−i = bn − bn = 0 .
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Some recurrence relations can be solved by iteration, i.e., by using the
recurrence repeatedly until obtaining a explicit close-form formula. For
instance consider the following recurrence relation:

xn = r xn−1 (n > 0) ; x0 = A .

By using the recurrence repeatedly we get:

xn = r xn−1 = r2 xn−2 = r3 xn−3 = · · · = rn x0 = Arn ,

hence the solution is xn = Arn.

Next we look at two particular cases of recurrence relations, namely
first and second order recurrence relations, and their solutions.

2. First Order Recurrence Relations. The homogeneous case can
be written in the following way:

xn = r xn−1 (n > 0) ; x0 = A .

Its general solution is
xn = Arn ,

which is a geometric sequence with ratio r.

The non-homogeneous case can be written in the following way:

xn = r xn−1 + cn (n > 0) ; x0 = A .

Using the summation notation, its solution can be expressed like this:

xn = Arn +
n∑

k=1

ck rn−k .

We examine two particular cases. The first one is

xn = r xn−1 + c (n > 0); x0 = A .

where c is a constant. The solution is

xn = Arn + c
n∑

k=1

rn−k = Arn + c
rn − 1

r − 1
if r 6= 1 ,

and

xn = A + c n if r = 1 .

The second particular case is for r = 1 and cn = c + d n, where c and
d are constant (so cn is an arithmetic sequence):

xn = xn−1 + c + d n (n > 0) ; x0 = A .
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The solution is now

xn = A +
n∑

k=1

(c + d k) = A + c n +
d n (n + 1)

2
.

3. Second Order Recurrence Relations. Now we look at the re-
currence relation

C0 xn + C1 xn−1 + C2 xn−2 = 0 .

First we will look for solutions of the form xn = c rn. By plugging in
the equation we get:

C0 c rn + C1 c rn−1 + C2 c rn−2 = 0 ,

hence r must be a solution of the following equation, called the char-
acteristic equation of the recurrence:

C0 r2 + C1 r + C2 = 0 .

Let r1, r2 be the two (in general complex) roots of the above equation.
They are called characteristic roots. We distinguish three cases:

(1) Distinct Real Roots. In this case the general solution of the
recurrence relation is

xn = c1 rn
1 + c2 rn

2 ,

where c1, c2 are arbitrary constants.

(2) Double Real Root. If r1 = r2 = r, the general solution of the
recurrence relation is

xn = c1 rn + c2 n rn ,

where c1, c2 are arbitrary constants.

(3) Complex Roots. In this case the solution could be expressed
in the same way as in the case of distinct real roots, but in
order to avoid the use of complex numbers we write r1 = r eαi,
r2 = r e−αi, k1 = c1 + c2, k2 = (c1 − c2) i, which yields:1

xn = k1 rn cos nα + k2 rn sin nα .

Example: Find a closed-form formula for the Fibonacci sequence defined
by:

Fn+1 = Fn + Fn−1 (n > 0) ; F0 = 0, F1 = 1 .

1Reminder: eαi = cos α + i sin α.
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Answer : The recurrence relation can be written

Fn − Fn−1 − Fn−2 = 0 .

The characteristic equation is

r2 − r − 1 = 0 .

Its roots are:2

r1 = φ =
1 +

√
5

2
; r2 = −φ−1 =

1−√5

2
.

They are distinct real roots, so the general solution for the recurrence
is:

Fn = c1 φn + c2 (−φ−1)n .

Using the initial conditions we get the value of the constants:{
(n = 0) c1 + c2 = 0

(n = 1) c1 φ + c2 (−φ−1) = 1
⇒

{
c1 = 1/

√
5

c2 = −1/
√

5

Hence:

Fn =
1√
5

{
φn − (−φ)−n

}
.

2φ = 1+
√

5
2 is the Golden Ratio.


