
The Fibonacci sequence modulo p2 –
An investigation by computer for p < 1014

Andreas-Stephan Elsenhans1,2 and Jörg Jahnel2

Abstract

We show that for primes p < 1014 the period length κ(p2) of the Fibonacci
sequence modulo p2 is never equal to its period length modulo p. The in-
vestigation involves an extensive search by computer. As an application, we
establish the general formula κ(pn) = κ(p) · pn−1 for all primes less than 1014.

1 Introduction

1.1. –––– The Fibonacci sequence {Fk}k≥0 is defined recursively by F0 = 0,
F1 = 1, and Fk = Fk−1 + Fk−2 for k ≥ 2. Modulo some integer l ≥ 2, it
must ultimately become periodic as there are only l2 different pairs of residues
modulo l. Further, there will be no pre-period as the recursion may be reversed
to Fk−2 = Fk − Fk−1. The minimal period κ(l) of the Fibonacci sequence
modulo l is often called the Wall number as its main properties were discovered
by D. D. Wall [Wa].

Wall’s results may be summarized by the theorem below. It shows, in particular,
that κ(l) is in general a lot smaller than l2. In fact, one always has κ(l) ≤ 6l
whereas equality holds if and only if l = 2 · 5n for some n ≥ 1.

1.2. Theorem (Wall). —–

a) If gcd(l1, l2) = 1 then κ(l1l2) = lcm(κ(l1), κ(l2)).

In particular, if l =
∏N

i=1 p
ni
i where the pi are pairwise different prime numbers

then κ(l) = lcm(κ(pn1
1), . . . , κ(pnNN)).

It is therefore sufficient to understand κ on prime powers.

1While this work was done the first author was supported in part by a Doctoral Fellowship of
the Deutsche Forschungsgemeinschaft (DFG).

2The computer part of this work was executed on the Linux PCs of the Gauß Laboratory
for Scientific Computing at the Göttingen Mathematical Institute. Both authors are grateful to
Prof. Y. Tschinkel for the permission to use these machines as well as to the system administrators
for their support.

2 Elsenhans and Jahnel

b) κ(2) = 3 and κ(5) = 20. Otherwise,

• if p is a prime such that p ≡ ±1 (mod 5) then κ(p)|(p− 1).

• If p is a prime such that p ≡ ±2 (mod 5) then κ(p)|(2p+ 2) but κ(p)-(p+ 1).

c) If l ≥ 3 then κ(l) is even.

d) If p is prime, e ≥ 1, and pe|Fκ(p) but pe+1-Fκ(p) then

κ(pn) =

{
κ(p) for n ≤ e,
κ(p)·pn−e for n > e.

(1)

2 Background

2.1. –––– Part a) is trivial.

For the proof of b), the formula

Fk =
rk − sk√

5
, (2)

where r = 1+
√

5
2

and s = 1−
√

5
2

, is of fundamental importance. It is easily established
by induction. If p ≡ ±1 (mod 5) then 5 is a quadratic residue modulo p and,
therefore, 1±

√
5

2
∈ p. Fermat states their order is a divisor of p− 1.

Otherwise, 1±
√

5
2
∈ p2 are elements of norm (−1). As the norm map N : ∗

p2 → ∗
p

is surjective, its kernel is a group of order p2−1
p−1

= p+1 and #N−1({ 1,−1 }) = 2p+2.

As ∗
p2 is cyclic, we see that N−1({ 1,−1 }) is even a cyclic group of order 2p + 2.

N(r) = N(s) = −1 implies that both r and s are not contained in its subgroup of
index two. Therefore,

rp+1 ≡ sp+1 ≡ −1 (mod p). (3)

From this, we find Fp+2 ≡ rp+2−sp+2
√

5
≡ −r+s√

5
≡ −F1 ≡ −1 (mod p) which shows p+1

is not a period of {Fk}k≥0 modulo p.

c) In the case p ≡ ±2 (mod 5) this follows from b). It is, however, true in general.

Indeed, for every k ∈ , one has

Fk+1Fk−1 − F 2
k = r2k+s2k−rk+1sk−1−rk−1sk+1

5
− r2k+s2k−2rksk

5

=
−(−1)k−1(r2 + s2) + 2(−1)k

5
(4)

= (−1)k

as rs = −1 and r2 + s2 = 3. On the other hand,

Fκ(l)+1Fκ(l)−1 − F 2
κ(l) ≡ 1 · 1− 02 ≡ 1 (mod l).

As l ≥ 3 this implies κ(l) is even.

For d), it is best to establish the following p-uplication formula first.

2. Background 3

2.2. Lemma (Wall). —– One has

Fpk =
1

2p−1

p∑
j=1
j odd

(
p

j

)
5
j−1

2 F j
kV

p−j
k . (5)

Here, {Vk}k≥0 is the Lucas sequence given by V0 = 2, V1 = 1, and Vk = Vk−1 + Vk−2

for k ≥ 2.

Proof. Induction shows Vk = rk + sk. Having that in mind, it is easy to calculate
as follows.

Fpk =
(rk)p − (sk)p√

5
=

(Vk+
√

5Fk
2

)p − (Vk−
√

5Fk
2

)p√
5

.

The assertion follows from the Binomial Theorem. �

2.3. Lemma. –––– Assume p 6= 2 and l to be a multiple of κ(p). Then, pe|Fl is
sufficient for l being a period of {Fk mod pe}k≥0, i.e. for κ(pe)|l.
Proof. The claim is that, in our situation, Fl+1 ≡ 1 (mod pe) is automatic.

For that, we note Fl+1Fl−1 − F 2
l = 1 where Fl ≡ 0 (mod pe) and, by virtue of the

recursion, Fl−1 ≡ Fl+1 (mod pe). Therefore, F 2
l+1 ≡ 1 (mod pe). The assumption

κ(p)|l implies Fl+1 ≡ 1 (mod p).

As p 6= 2, Hensel’s lemma says the lift is unique, i.e. Fl+1 ≡ 1 (mod pe). �

2.4. –––– Lemma 2.3 allows us to prove d) for p 6= 2 in a somewhat simpler
manner than D. D. Wall did it in [Wa].

First, we note that for n ≤ e, Lemma 2.3 implies κ(pn)|κ(p). However, the divisi-
bility the other way round is obvious.

For n ≥ e, by Lemma 2.3, it is sufficient to prove νp(Fκ(p)·pn−e) = n, i.e. that
pn|Fκ(p)·pn−e but pn+1-Fκ(p)·pn−e . Indeed, the first divisibility implies κ(pn)|κ(p) · pn−e
while the second, applied for n−1 instead of n, yields κ(pn)-κ(p) ·pn−e−1. The result
follows as κ(p)|κ(pn).

For νp(Fκ(p)·pn−e) = n, we proceed by induction, the case n = e being known by
assumption. One has

Fκ(p)·pn−e+1 = 1
2p−1pFκ(p)·pn−eV

p−1
κ(p)·pn−e + 1

2p−1

p∑
j=3
j odd

(
p
j

)
5
j−1

2 F j
κ(p)·pn−eV

p−j
κ(p)·pn−e.

In the second term, every summand is divisible by F 3
κ(p)·pn−e, i.e. by p3n. The claim

would follow if we knew p -Vκ(p)·pn−e. This, however, is easy as there is the formula

Vl = Fl−1 + Fl+1 (6)

which implies Vl ≡ 2 (mod p) for l any multiple of κ(p).

4 Elsenhans and Jahnel

2.5. –––– For p = 2, as always, things are a bit more complicated. We still have
κ(2n) = 3 · 2n−1. However, for n ≥ 2, one has 2n+1|F3·2n−1 for which there is no
analogue in the p 6= 2 case. On the other hand, ν2(F3·2n−1+1 − 1) = n which is
sufficient for our assertion.

The duplication formula provided by Lemma 2.2 is

F2k = FkVk = Fk(Fk−1 + Fk+1) = F 2
k + 2FkFk−1. (7)

As F6 = 8, a repeated application of this formula shows 2n+1|F3·2n−1 for every n ≥ 2.

We further claim F2k+1 = F 2
k + F 2

k+1. Indeed, this is true for k = 0 as 1 = 02 + 12

and we proceed by induction as follows:

F2k+3 = F2k+1 + F2k+2 = F 2
k + F 2

k+1 + F 2
k+1 + 2F k+1Fk =

= F 2
k+1 + (Fk + Fk+1)2 = F 2

k+1 + F 2
k+2.

(8)

The assertion ν2(F3·2n−1+1 − 1) = n is now easily established by induction. We note
that F7 = 13 ≡ 1 (mod 4) but the same is no more true modulo 8. Furthermore,
F3·2n+1 = F 2

3·2n−1 + F 2
3·2n−1+1 where the first summand is even divisible by 22n+2.

The second one is congruent to 1 modulo 2n+1, but not modulo 2n+2, by consequence
of the induction hypothesis.

3 The Open Problems

3.1 The Period Length Modulo a Prime

3.1.1. –––– It is quite surprising that the Fibonacci sequence still keeps secrets.
But there are at least two of them.

3.1.2. Problem. –––– The first open problem is “What the exact value of κ(p)?”.
Equivalently, one should understand what is the precise behaviour of the quotient Q
given by Q(p) := p−1

κ(p)
for p ≡ ±1 (mod 5) and Q(p) := 2(p+1)

κ(p)
for p ≡ ±2 (mod 5).

One might hope for a formula expressing Q(p) in terms of p but, may be, that is
too optimistic.

3.1.3. –––– It is known that Q is unbounded. This is an elementary result due
to D. Jarden [Ja, Theorem 3].

On the other hand, Q does not at all tend to infinity. If fact, in his unpublished
Ph.D. thesis [Gö], G. Göttsch computes a certain average value of 1

Q
. To be more

precise, under the assumption of the Generalized Riemann Hypothesis, he proves∑
p≡±1 (mod 5)
p≤x, p prime

1

Q(p)
= C1

x

log x
+O

(x log log x

log2 x

)

3. The Open Problems 5

where C1 = 342
595

∏
p prime(1−

p
p3−1

) ≈ 0.331 055 98. The proof shows as well that the
density of {p prime | Q(p) = 1, p ≡ ±1 (mod 5)} within the set of all primes is
equal to C2 = 27

38

∏
p prime(1− 1

p(p−1)
) ≈ 0.265 705 4.

Not assuming any hypothesis, it is still possible to verify that the right hand
side constitutes an upper bound. For that, the error term needs to be weakened
to O(x log log log x

log x log log x
).

For the case p ≡ ±2 (mod 5), G. Göttsch’s results are less strong. Under the
assumption of the Generalized Riemann Hypothesis, he establishes the estimate∑

p≡±2 (mod 5)
p≡3 (mod 4)
p≤x, p prime

1

Q(p)
≤ C2

x

log x
+O

(x log log log x

log x · log log x

)

where C3 = 1
4

∏
p prime,p 6=2,5(1−

p
p3−1

) ≈ 0.210 055 99. The density of the set
{p prime | Q(p) = 1, p ≡ ±2 (mod 5), p ≡ 3 (mod 4)} within the set of all primes
is at most C4 = 1

4

∏
p prime,p 6=2,5(1− 1

p(p−1)
) ≈ 0.196 818 8.

3.1.4. –––– It seems, however, that the inequalities could well be equalities.
In addition, the restriction to primes satisfying p ≡ 3 (mod 4) might be irrelevant.

In fact, we performed a count for small primes p < 2 · 107 by computer. Up to
that bound, there are 317 687 prime numbers such that p ≡ ±2 (mod 5) and
p ≡ 3 (mod 4). At them, we find Q(p) = 1 exactly 250 246 times which is a relative
frequency of 0.787 712 434 . . . = 4 · 0.196 928 108

On the other hand, there are 317 747 primes p satisfying p ≡ ±2 (mod 5) and
p ≡ 1 (mod 4). Among them, Q(p) = 1 occurs 250 353 times which is basically the
same frequency as in the case p ≡ 3 (mod 4).

3.2 The Period Length Modulo a Prime Power

3.2.1. Problem. –––– There is another open problem. In fact, one question was
left open in the formulation of Theorem 1.2: What is the exact value of e in de-
pendence of p? Experiments for small p show that e = 1. Is this always the case?
In other words, does one always have

κ(pn) = κ(p) · pn−1 (9)

similarly to the famous formula for Euler’s ϕ function? This is the most perplexing
point in D. D. Wall’s whole study of the Fibonacci sequence modulo m. For p < 104,
it was investigated by help of an electronic computer by Wall in 1960, already.

3.2.2. Definition. –––– We call a prime number p exceptional if equation (9) is
wrong for some n ≥ 2.

6 Elsenhans and Jahnel

3.2.3. Proposition. –––– Let p be a prime number. Then, the following asser-
tions are equivalent.

i) p is exceptional,

ii) Fκ(p) is divisible by p2.

Proof. “ i) =⇒ ii)” Assume, to the contrary, that p2-Fκ(p). By definition of κ(p),
we know for sure that nevertheless p|Fκ(p). Together, these statements mean, The-
orem 1.2.d) may be applied for e = 1 showing κ(pn) = κ(p) · pn−1 for every n ∈ .
This contradicts i).

“ ii) =⇒ i)” We choose the maximal e ∈ such that pe|Fκ(p). By assumption, e ≥ 2.
Then, Theorem 1.2.d) implies κ(p2) = κ(p) which shows equation (9) to be wrong
for n = 2. p is exceptional. �

3.2.4. Proposition. –––– Let p 6= 2, 5 be a prime number.

I. If p ≡ ±1 (mod 5) then the following assertions are equivalent.

i) p is exceptional,

ii) Fp−1 is divisible by p2,

iii) rp−1 ≡ 1 (mod p2).

II. If p ≡ ±2 (mod 5) then the following assertions are equivalent.

i) p is exceptional,

ii) F2p+2 is divisible by p2,

iii) Fp+1 is divisible by p2.

Proof. I. “ ii) =⇒ i)” As (p− 1) is a multiple of κ(p), Lemma 2.3 may be applied.
It shows κ(p2)|(p− 1). This contradicts equation (9) for n = 2. p is exceptional.

“ iii) =⇒ ii)” We have rp−1sp−1 = (−1)p−1 = 1. Thus, rp−1 ≡ 1 (mod p2) implies
sp−1 ≡ 1 (mod p2). Consequently, Fp−1 = rp−1−sp−1

√
5

is divisible by p2.

“ i) =⇒ iii)” By Proposition 3.2.3, Fκ(p) is divisible by p2. Therefore,

rκ(p) = sκ(p) = (rκ(p))−1 ∈ (/p2)∗,

i.e. (rκ(p))2 ≡ 1 (mod p2). Since κ(p)|(p−1), we may conclude (rp−1)2 ≡ 1 (mod p2)
from this. As we know rp−1 ≡ 1 (mod p) by Fermat’s Theorem uniqueness of
Hensel’s lift implies rp−1 ≡ 1 (mod p2).

II. “ ii) =⇒ i)” As (2p + 2) is a multiple of κ(p), Lemma 2.3 may be applied. It
shows κ(p2)|(2p+ 2). This contradicts equation (9) for n = 2. p is exceptional.

“ iii) =⇒ ii)” Note that F2p+2 = Fp+1Vp+1.

“ i) =⇒ iii)” By Proposition 3.2.3, Fκ(p) is divisible by p2. In that situation,
Lemma 2.3 implies that κ(p) is actually a period of {Fk mod p2}k≥0. By conse-
quence, (2p+ 2) is a period, too. This shows p2|F2p+2.

4. A heuristic argument 7

Since F2p+2 = Fp+1Vp+1, all we still need is p -Vp+1. This, however, is clear as
Vp+1 = rp+1 + sp+1 ≡ −2 (mod p). �

4 A heuristic argument

4.1. –––– By Proposition 3.2.4, the problem of finding exceptional primes is in
perfect analogy to the problem of finding Wieferich primes.

In the Wieferich case, one knows 2p−1 ≡ 1 (mod p) and is interested to find
the particular primes such that even 2p−1 ≡ 1 (mod p2). Here, one knows
Fκ(p) ≡ 0 (mod p) and is interested in the particular primes that fulfill even
Fκ(p) ≡ 0 (mod p2).

In the case p ≡ ±1 (mod 5), this is no more just an analogy. In fact, we deal with
a special case of the generalized Wieferich problem with 2 being replaced by r.

4.2. –––– We expect that there are infinitely many exceptional primes.

Our reasoning for this is as follows. p|Fκ(p) is known by definition of κ(p). Thus,
for any individual prime p, (Fκ(p) mod p2) is one residue out of p possibilities. If it
we were allowed to assume equidistribution, we could conclude that p2|Fκ(p) should
occur with a “probability” of 1

p
. Further, by [RS, Theorem 5],

log logN + A− 1

2 log2N
≤
∑
p prime
p≤N

1

p
≤ log logN + A +

1

2 log2N
,

at least for N ≥ 286. Here, A ∈ is Mertens’ constant which is given by

A = γ +
∑
p prime

[
1

p
+ log

(
1− 1

p

)]
= 0.261 497 212 847 642 783 755 . . .

whereas γ denotes the Euler-Mascheroni constant.

This means that one should expect around log logN + A exceptional primes less
than N .

4.3. –––– On the other hand, p3|Fκ(p) should occur only a few times or even not
at all. Indeed, if we assume equidistribution again, then for any individual prime p,
p3|Fκ(p) should happen with a “probability” of 1

p2 . However,

∞∑
p=2

p prime

1

p2
= 0.452 247 420 041 065 498 506

is a convergent series.

8 Elsenhans and Jahnel

4.4. Remark. –––– It is, may be, of interest that, for any exponent n ≥ 2, one has
the equality

∑
p prime

1
pn

=
∑∞

k=1
µ(k)
k

log ζ(nk) where the right hand converges a lot
faster and may be used for evaluation. This equation results from the Moebius inver-
sion formula and Euler’s formula log ζ(nk) =

∑
p prime

− log(1− 1
pnk

) =
∑∞

j=1
1
j

∑
p prime

1
pjnk

.

4.5. –––– We carried out an extensive search for exceptional primes but, unfor-
tunately, we had no success and our result is negative.

Theorem. There are no exceptional primes p < 1014.

Down the earth, this means that one has κ(pn) = κ(p) · pn−1 for every n ∈ and
all primes p < 1014.

5 Algorithms

5.0.1. –––– We worked with two principally different types of algorithms. First,
in the p ≡ ±1 (mod 5) case, it is possible to compute (rp−1 mod p2). A second and
more complete approach is to compute (Fp−1 mod p2) in the p ≡ ±1 (mod 5) case
and (F2p+2 mod p2) or (Fp+1 mod p2) in the case p ≡ ±2 (mod 5).

5.0.2. Remark. –––– It is not difficult to prove that in the case p ≡ ±2 (mod 5)
exceptionality is equivalent to r2p+2 ≡ 1 (mod p2). Unfortunately, an approach
based on that observation turned out to be impractical as it involves the calcula-
tion of a modular power in Rp := /p2 [

√
5] = [

√
5]/(p2) in a situation where√

5 6∈ /p2 . In comparison with /p2 , multiplication in Rp is a lot slower, at
least in our (naive) implementations. This puts a modular powering operation in Rp

out of competition with a direct approach to compute F2p+2 (or Fp+1) modulo p2.

5.1 Algorithms based on the computation of
√

5

5.1.1. –––– If p ≡ ±1 (mod 5) then one may routinely compute (rp−1 mod p2).
The algorithm should consist of four steps.

i) Compute the square root of 5 in /p .

ii) Take the Hensel’s lift of this root to /p2 .

iii) Calculate the golden ratio r := 1+
√

5
2
∈ /p2 .

iv) Use a modular powering operation to find (rp−1 mod p2).

We call algorithms which follow this strategy algorithms powering the golden ratio.

Here, the final steps iii) and iv) are not critical at all. For iii), it is obvious that
this is a simple calculation while for iv), carefully optimized modular powering op-
erations are available. Further, ii) can be effectively done as r2 ≡ 5 (mod p) implies

5. Algorithms 9

w := r − r2−5
p
· (1

2r
mod p) · p is a square root of 5 modulo p2. The most expensive

operation here is a run of Euclid’s extended algorithm in order to find (1
2r

mod p).

5.1.2. –––– Thus, the most interesting point is i), the computation of
√

5 ∈ p.
In general, there is a beautiful algorithm to find square roots modulo a prime number
due to Shanks [Co, Algorithm 1.5.1]. We implemented this algorithm but let it finally
run only in the p ≡ 1 (mod 8) case. If p 6≡ 1 (mod 8) then there are direct formulae
to compute the square root of 5 which turn out to work faster.

If p ≡ 3 (mod 4) then one may simply put w := (5
p+1

4 mod p) to find a square root
of 5 by one modular powering operation.

If p ≡ 5 (mod 8) then one may put

w := (5
p+3

8 mod p) (10)

as long as 5
p−1

4 ≡ 1 (mod p) and

w := (10 · 20
p−5

8 mod p) (11)

if 5
p−1

4 ≡ −1 (mod p). Note that 5 is a quadratic residue modulo p. Hence, we
always have 5

p−1
4 ≡ ±1 (mod p).

For sure, (5
p−1

4 mod p) can be computed using a modular powering operation.
In fact, we implemented an algorithm doing that and let it run through the in-
terval [1012, 5 · 1012].

However, (5
p−1

4 mod p) is nothing but a quartic residue symbol. For that reason,
there is an actually faster algorithm which we obtained by an approach using the
law of biquadratic reciprocity.

5.1.3. Theorem. –––– Let p be a prime number such that p ≡ 5 (mod 8) and
p ≡ ±1 (mod 5) and let p = a2 + b2 be its (essentially unique) decomposition into
a sum of two squares.

a) Then, a and b may be normalized such that a ≡ 3 (mod 4) and b is even.

b) Assume a and b are normalized as described in a). Then, there are only the
following eight possibilities.

i) a ≡ 3, 7, 11, or 19 (mod 20) and b ≡ 10 (mod 20).
In this case, 5

p−1
4 ≡ 1 (mod p), i.e. 5 is a quartic residue modulo p.

ii) a ≡ 15 (mod 20) and b ≡ 2, 6, 14, or 18 (mod 20).
Here, 5

p−1
4 ≡ −1 (mod p), i.e. 5 is a quadratic but not a quartic residue modulo p.

Proof. a) As p is odd, among the integers a and b there must be an even and an
odd one. We choose b to be even and force a ≡ 3 (mod 4) by replacing a by (−a),
if necessary.

10 Elsenhans and Jahnel

b) We first observe that a2 ≡ 1 (mod 8) forces b2 ≡ 4 (mod 8) and b ≡ 2 (mod 4).
Then, we realize that one of the two numbers a and b must be divisible by 5. Indeed,
otherwise we had a2, b2 ≡ ±1 (mod 5) which does not allow a2 + b2 ≡ ±1 (mod 5).
Clearly, a and b cannot be both divisible by 5.

If a is divisible by 5 then a ≡ 3 (mod 4) implies a ≡ 15 (mod 20). b ≡ 2 (mod 4)
and b not divisible by 5 yield the four possibilities stated. On the other hand, if b is
divisible by 5 then b ≡ 2 (mod 4) implies b ≡ 10 (mod 20). a ≡ 3 (mod 4) and
a not divisible by 5 show there are precisely the four possibilities listed.

For the remaining assertions, we first note that (5
p−1

4 mod p) tests whether
x4 ≡ 5 (mod p) has a solution x ∈ , i.e. whether 5 is a quartic residue modulo p.
By [IR, Lemma 9.10.1], we know

(5
p−1

4 mod p) = χa+bi(5)

where χ denotes the quartic residue symbol. The law of biquadratic reciprocity
[IR, Theorem 9.2] asserts

χa+bi(5) = χ5(a + bi).

For that, we note explicitly that a + bi ≡ 3 + 2i (mod 4), 5 ≡ 1 (mod 4), and
N(5)−1

4
= 6 is even. Let us now compute χ5(a+ bi):

χ5(a + bi) = χ−1+2i(a + bi) · χ−1−2i(a+ bi)

= χ−1−2i(a− bi) · χ−1−2i(a + bi)

=
(a+ b

2

5

)
· χ−1−2i(a− bi) · χ−1−2i(a+ bi)

=
(a+ b

2

5

)
· χ−1−2i(p).

Here, the first equation is the definition of the quartic residue symbol for composite
elements while the second is [IR, Proposition 9.8.3.c)].

For the third equation, we observe that χ−1−2i(a − bi) is either ±1 or ±i. By sim-
ply omitting the complex conjugation, we would make a sign error if and only
if χ−1−2i(a − bi) = ±i. By [IR, Lemma 9.10.1], this means exactly that a − bi
defines, under the identification 2i = −1, not even a quadratic residue modulo 5.
Therefore, the correction factor is (

a+ b
2

5
). The final equation follows from [IR, Propo-

sition 9.8.3.b)].

We note that, by virtue of [IR, Lemma 9.10.1], χ−1−2i(p) tests whether p is a quartic
residue modulo 5 or not. As p is for sure a quadratic residue, we may write

χ−1−2i(p) =

{
1 if p ≡ 1 (mod 5),
−1 if p ≡ −1 (mod 5)

or, if we want, χ−1−2i(p) = (p mod 5).

5. Algorithms 11

The eight possibilities could now be inspected one after the other. A more conceptual
argument works as follows. In case i), we have(a+ b

2

5

)
=
(a

5

)
= (a2 mod 5) = (a2 + b2 mod 5) = (p mod 5).

Therefore, (5
p−1

4 mod p) = 1. On the other hand, in case ii),(a + b
2

5

)
=
(b

2

5

)
=
(b2

4
mod 5

)
= (−b2 mod 5) = (−a2 − b2 mod 5) =

= −(p mod 5).

Hence, (5
p−1

4 mod p) = −1. �

5.1.4. –––– What we use in the actual application is merely the corollary below.

Corollary. Let p be a prime number such that p ≡ 5 (mod 8) and p ≡ ±1 (mod 5)
and let p = a2 + b2 be its decomposition into a sum of two squares.

a) Then, a and b may be normalized such that a ≡ 3 (mod 4) and b is even.

b) In that situation, the following three statements are equivalent.

i) 5 is a quartic residue modulo p.

ii) b is divisible by 5.

iii) a is not divisible by 5.

5.1.5. Algorithm. –––– The square sum sieve algorithm for prime numbers p
such that p ≡ 21, 29 (mod 40) runs as follows.

We investigate a rectangle [N1, N2]× [M1,M2] of numbers. We will go through the
rectangle row-by-row in the same way as the electron beam goes through a screen.

a) We add 0, 1, 2, or 3 to M1 to make sure M1 ≡ 2 (mod 4). Then, we let b go from
M1 to M2 in steps of length four.

b) For a fixed b we sieve the odd numbers in the interval [N1, N2].

Except for the odd case that l|a, b which we decided to ignore as the density of these
pairs is not too high, l|a2 + b2 implies that (−1) is a quadratic residue modulo l,
i.e. we need to sieve only by the primes l ≡ 1 (mod 4).

For each such l which is below a certain limit we cross out all those a such that
a ≡ ±vlb (mod l). Here, vl is a square root of (−1) modulo l, i.e. v2

l ≡ −1 (mod l).
For practical application, this requires that the square roots of (−1) modulo the
relevant primes have to be pre-computed and stored in an array once and for all.

c) For the remaining pairs (a, b), we compute p = a2 + b2 and do steps i) through iv)
from 5.1.1. In step i), if b is divisible by 5 then we use formula (10) to compute the
square root of 5 modulo p. Otherwise, we use formula (11).

12 Elsenhans and Jahnel

5.1.6. –––– In practice, we ran the square sum sieve algorithm on the rectangles
[0, 4 000 000]× [1 580 000, 4 000 000] and [1 580 000, 4 000 000]× [0, 1 580 000], thereby
capturing every prime p ∈ [5 · 1012, 1.6 · 1013] such that p ≡ 21, 29 (mod 40) plus
several others.

In fact, on the second rectangle we ran a modified version, the inverted square sum
sieve, where the two outer loops are reversed. That means, we let a go through the
odd numbers in [N1, N2] in the very outer loop. This has some advantage in speed
as longer intervals are sieved at once. In other words, we go through the rectangle
column-by-column.

We implemented the square sum sieve algorithms in C using the mpz functions of
GNU’s GMP package for arithmetic on long integers. On a single 1211 MHz Athlon
processor, the computations for the first rectangle took around 22 days of CPU time.
The computations for the smaller second rectangle were finished after nine days.

5.1.7. –––– For primes p such that p ≡ 3 (mod 4) and p ≡ ±1 (mod 5), the for-
mula w := (5

p+1
4 mod p) for the square root of 5 makes things a lot easier. Instead

of the square sum sieve we implemented the sieve of Eratosthenes. Caused by the
limitations of main memory in today’s PCs, we could actually sieve intervals of only
about 250 000 000 numbers at once. For each such interval the remainders of its
starting point have to be computed (painfully) by explicit divisions.

5.1.8. Algorithm. –––– More precisely, the algorithm powering the golden ratio
for primes p ≡ 11, 19 (mod 20) runs as follows.

We investigate an interval [N1, N2]. We assume that N2 −N1 is divisible by 5 · 109

and that N1 is divisible by 20.

a) We let an integer variable i count from 0 to N2−N1

5·109 − 1.

b) For fixed i we work on the interval I = [N1 + 5 · 109 · i, N1 + 5 · 109 · (i + 1)].
For each prime l which is below a certain limit, we compute (N1 + 5 · 109 · i mod l).
Then, we cross out all p ∈ I, p ≡ 11 (or 19) mod 20 which are divisible by l.

c) For the remaining p ∈ I, p ≡ 11 (or 19) mod 20 we do steps i) through iv)
from 5.1.1. In step i), we use the formula w := (5

p+1
4 mod p) to compute the square

root of 5 modulo p.

5.1.9. –––– In practice, we ran this algorithm in order to test all prime numbers
p ∈ [1012, 4 · 1013] such that p ≡ 11 (mod 20) or p ≡ 19 (mod 20). It was imple-
mented in C using the mpz functions of the GMP package. Later, when testing
primes above 1013, we used the low level mpn functions for long natural numbers.

In particular, we implemented a modular powering function which is hand-tailored
for numbers of the considered size. It uses the left-right base 23 powering algo-
rithm [Co, Algorithm 1.2.3] and the sliding window improvement from mpz powm.

5. Algorithms 13

Having done all these optimizations, work on the test interval [4·1013, 4·1013+5·109]
of 250 000 000 numbers p such that p ≡ 11 (mod 20), among them 19 955 067 primes,
lasted 7:50 Minutes CPU time on a 1211 MHz Athlon processor. Sieving through
the interval was done within the first 24 seconds.

5.1.10. –––– Similarly, for prime numbers p satisfying the simultaneous congru-
ences p ≡ 1 (mod 8) and p ≡ ±1 (mod 5), we implemented Shanks’ algorithm [Co,
Algorithm 1.5.1] to compute the square root of 5 modulo p.

5.1.11. Algorithm. –––– More precisely, the algorithm powering the golden ratio
for primes p ≡ 1, 9 (mod 40) runs as follows.

We investigate an interval [N1, N2]. We assume that N2 − N1 is divisible by 1010

and that N1 is divisible by 40.

a) We let an integer variable i count from 0 to N2−N1

1010 − 1.

b) For fixed i we work on the interval I = [N1 + 1010 · i, N1 + 1010 · (i+ 1)]. For each
prime l which is below a certain limit, we compute ((N1 + 1010 · i) mod l). Then,
we cross out all p ∈ I, p ≡ 1 (or 9) (mod 40) which are divisible by l.

c) For the remaining p ∈ I, p ≡ 1 (or 9) (mod 40) we do steps i) through iv)
from 5.1.1. In step i), we use Shanks’ algorithm to compute the square root of 5
modulo p.

5.1.12. –––– We ran this algorithm on the interval [1012, 4 · 1013]. After all op-
timizations, the test interval [4 · 1013, 4 · 1013 + 1010] of 250 000 000 numbers p such
that p ≡ 1 (mod 40), among them 19 954 152 primes, could be searched through on
a 1211 MHz Athlon processor in 10:30 Minutes CPU time.

This is quite a lot more in comparison with the algorithm for p ≡ 11 (mod 20)
or p ≡ 19 (mod 20). The difference comes entirely from the more complicated
procedure to compute

√
5 ∈ p.

5.1.13. Remark. –––– At a certain moment, such a running time was no longer
found reasonable. A direct computation of the Fibonacci numbers could be done
as well. After several optimizations of the code of the direct methods, it turned
out that only the 3 mod 4 case could still compete with them. We discuss the
direct methods in the subsection below.

14 Elsenhans and Jahnel

5.2 Algorithms for a direct computation of

Fibonacci numbers

5.2.1. Algorithm. –––– A nice algorithm for the fast computation of a Fibonacci
number is presented in O. Forster’s book [Fo]. It is based on the formulae

F2k−1 = F 2
k + F 2

k−1,

F2k = F 2
k + 2FkFk−1.

(12)

and works in the spirit of the left-right binary powering algorithm using bits.

Our adaption uses modular operations modulo p2 instead of integer operations.
An implementation in O. Forster’s Pascal-style multi precision interpreter language
ARIBAS looks like this.

(*--*)

(*

** Schnelle Berechnung der Fibonacci-Zahlen mittels der Formeln

** fib(2*k-1) = fib(k)**2 + fib(k-1)**2

** fib(2*k) = fib(k)**2 + 2*fib(k)*fib(k-1)

**

** Dabei werden alle Berechnungen mod m durchgeführt

*)

function fib(k,m : integer): integer;

var

b, x, y, xx, temp: integer;

begin

if k <= 1 then return k end;

x := 1; y := 0;

for b := bit_length(k)-2 to 0 by -1 do
xx := x*x mod m;

x := (xx + 2*x*y) mod m;

y := (xx + y*y) mod m;

if bit_test(k,b) then

temp := x;

x := (x + y) mod m;

y := temp;

end;

end;

return x;

end.

(*--*)

(** ein systematischer Versuch**)

function test() : integer

var

p,r,r1 : integer;

ptest : boolean;

begin

for p := 90000000001 to 95000000001 by 2 do

if (p mod 10000) = 1 then

writeln("getestete Zahl: ", p);

end;

ptest := rab_primetest(p);

if (ptest = true) then

if ((p mod 5 = 2) or (p mod 5 = 3)) then

r := fib(2*p+2,p*p);
else

r := fib(p-1,p*p);

end;

if (r <= 30000000000000000) then

r1 := r div p;

writeln(p," ist eine interessante Primzahl. Quotient ", r1);

end;

end;

end;

return(0);

end;

A call to fib(k,m) computes (Fk mod m). test is the main function. test()

executes an outer loop which contains a Rabin-Miller composedness test. For a

6. Optimizations 15

pseudo prime p, it uses the function fib to compute (Fp−1 mod p2) or (F2p+2 mod p2).
As these are divisible by p we output the quotient instead. Note that in order to limit
the output size we actually write an output only when the quotient is rather small.

5.2.2. –––– ARIBAS is fast enough to ensure that this algorithm could be run
from p = 7 up to 1011. We worked on ten PCs in parallel for five days. That was
our first bigger computing project concerning this problem. It showed that no
exceptional primes p < 1011 do exist, thereby a establishing a lightweight version of
Theorem 4.5.

5.2.3. –––– The running time made it clear that we had approached to the lim-
its of an interpreter language. For a systematic test of larger prime numbers, the
algorithm was ported to C. For the arithmetic on long integers we used the mpz func-
tions of GMP. After only one further optimization, the integration of a version of
the sieve of Eratosthenes, the interval [1011, 1012] could be attacked. A test interval
of 250 000 000 numbers was dealt with on a 1211 MHz Athlon processor in around
40 Minutes CPU time. Again, we did parallel computing on ten PCs. The search
through [1011, 1012] was finished in less than five days.

5.2.4. –––– For the interval [1012, 1013], the methods which compute
√

5 ∈ p and
square the golden ratio were introduced as they were faster than our implementation
of O. Forster’s algorithm at that time. For this reason, only the case p ≡ ±2 (mod 5)
was done by Forster’s algorithm. It took us around 20 days on ten PCs.

6 Optimizations

6.1 Sieving

6.1.1. –––– Near 1014, one of about 32 numbers is prime. We work in a fixed
prime residue class modulo 10, 20, or 40 but still, only one of about 13 numbers
is prime. We feel that the computations of (Fp±1 mod p2) should take the main
part of the running time of our programs. Our goal is, therefore, to rapidly exclude
(most of) the non-primes from the list and then to spend most of the time on the
remaining numbers.

There are various methods to generate the list of all primes within an interval. Un-
fortunately, this section of our code is not as harmless as one could hope for. In fact,
for an individual number p, one might have the idea to decide whether it is prob-
ably prime by computing (Fp±1 mod p). That is the Fibonacci composedness test.
It would, unfortunately, not reduce our computational load a lot as it is almost
as complex as the main computation. This clearly indicates the problem that the
standard “pseudo primality tests” which are designed to test individual numbers

16 Elsenhans and Jahnel

are not well suited for our purposes. In this subsection, we will explain what we did
instead in order to speed up this part of the program.

6.1.2. –––– Our first programs in ARIBAS in fact used the internal primality test
to check each number in the interval individually. At the ARIBAS level, this is
optimal because it involves only one instruction for the interpreter.

When we migrated our programs to C, using the GMP library, we first tried the same.
We used the function mpz probab prime with one repetition for every number to
be tested. It turned out that this program was enormously inefficient. It took
about 50 per cent of the running time for primality testing and 50 per cent for the
computation of Fibonacci numbers. However, it could easily be tuned by a naive
implementation of the sieve of Eratosthenes in intervals of length 1 000 000.

We first combined sieving by small primes and the mpz probab prime function
because sieving by huge primes is slow. This made sure that the computa-
tion of Fibonacci numbers took the major part of the running time. However,
mpz probab prime is not at all intended to be combined with a sieve. In fact, it
checks divisibility by small primes once more. Thus, an optimization of the code for
the Fibonacci numbers reversed the relation again. It became necessary to carry out
a further optimization of the generation of the list of primes. We decided to aban-
don all pseudo primality tests. Further, we enlarged the length of the array of up to
250 000 000 numbers to minimize the number of initializations.

In principle, the sieve works as follows. Recall that we used different algorithms
for the computation of the Fibonacci numbers, depending on the residue class of p
modulo 10, 20, or 40. This leads to a sieve in which the number

S(i) := starting point + residue + modulus · i

is represented by array position i. Since all our moduli are divisible by 2 and 5 we
do no longer sieve by these two numbers.

Such a sieve is still easy to use. Given a prime p 6= 2, 5, one has to compute the
array index i0 of the first number which is divisible by p. Then, one can cross out
the numbers at the indices i0, i0 +p, i0 +2p, . . . until the end of the sieve is reached.

6.1.3. Optimization for the Cache Memory. –––– An array of the size above
fits into the memory of today’s PCs but it does not fit into the cache. Thus, the
speed-limiting part is the transfer between CPU and memory. Sieving by big primes
is like a random access to single bytes. The memory manager has to transfer one
block to the cache memory, change one byte, and then transfer the whole block back
to the memory. This is the limiting bottleneck.

To avoid this problem as far as possible, we built a two stage sieve.

6. Optimizations 17

In the first stage, we sieve by the first 25 000, the “small”, primes. For that, we divide
the sieve further into segments of length 30 000. These two constants were found to
be optimal in practical tests. They are heavily machine dependent.

The first stage is now easily explained. In a first step, we sieve the first segment by all
small primes. Then, we sieve the second segment by all small primes. We continue
in that way until the end of the sieve is reached.

In the second stage, we work with all relevant “big” primes on the complete sieve,
as usual.

The result of this strategy is a sieve whose segments fit into the machine’s cache.
Thus, the speed of the first sieve stage is the speed of the cache, not the speed of
the memory. The speed of the second stage is limited by the initialization.

On our machines the two stage sieve is twice as fast as the ordinary sieve.

6.1.4. –––– The choice of the prime limit for sieving is a point of interest, too.
As we search for one very particular example, it would do no harm if, from to
time, we test a composite number p for p2|Fp±1. When the computer would tell us
p2 divides Fp±1 which, in fact, it never did then it would be easy to do a reliable
primality test.

As long as we sieve by small primes, it is clear that lots of numbers will be crossed
out in a short time and this will reduce the running time as it reduces the number
of times the actual computation of (Fp±1 mod p2) is called. Afterwards, when we
sieve by larger primes, the situation is no more that clear. We will often cross out a
number repeatedly which was crossed out already before. This means, it can happen
that further sieving costs actually more time than it saves.

Our tests show nevertheless that it is best to sieve almost till to the square root
of the numbers to be tested. We introduced an automatic choice of the variable
prime limit as

√
p

log
√
p

which means we sieve by the first [
√
p

log
√
p
] primes. Here, p means

the first prime of the interval we want to go through.

6.1.5. –––– Another optimization was done by looking at the prime three. Ev-
ery third number is crossed out when sieving by this prime and, when sieving by a
bigger prime, every third step hits a number which is divisible by three and already
crossed out.

Thus, we can work more efficiently as follows. Let p be a prime bigger than three and
coprime to the modulus. We compute i0, the first index of a number divisible by p.
Then, we calculate the remainder of the corresponding number modulo three. If it
is zero then we skip i0 and continue with i0 := i0 +p. Now, i0 corresponds to the first
number in the sieve which is divisible by p but not by three. Thus, we must cross out
i0, i0 + p, i0 + 3p, i0 + 4p, i0 + 6p, . . . or i0, i0 + 2p, i0 + 3p, i0 + 5p, i0 + 6p, . . .
depending on whether i0 + 2p corresponds to a number which is divisible by three
or not.

18 Elsenhans and Jahnel

6.2 The Montgomery Representation

6.2.1. –––– The algorithms for the computation of Fibonacci numbers mod-
ulo m explained so far spend the lion’s share of their running time on the
divisions by m which occur as the final steps of modular operations such as
x := (xx + 2*x*y) mod m. Unfortunately, on today’s PC processors, divisions are
by far slower than multiplications or even additions.

An ingenious method to avoid most of the divisions in a modular powering operation
is due to P. L. Montgomery [Mo]. We use an adaption of Montgomery’s method to
O. Forster’s algorithm which works as follows.

Let R be the smallest positive integer which does no more fit into one machine word.
That will normally be a power of two. On our machines, R = 232. Recall that all op-
erations on unsigned integers in C are automatically modular operations modulo R.
We choose some exponent n such that the modulus m = p2 fulfills m ≤ Rn

5
. In our

situation p < 1014, therefore m = p2 < 1028 < 296

5
, such that n = 3 will be sufficient.

Instead of the variables x, y, . . . ∈ /m , we work with their Montgomery rep-
resentations xM , yM , . . . ∈ . These numbers are not entirely unique but bound
to be integers from the interval [0, R

n

5
) fulfilling xM ≡ Rnx (mod m). This means

that modular divisions still have to be done in some initialization step, one for each
variable that is initially there, but these turn out to be the only divisions we are
going to execute!

A modular operation, for example x := ((x2 + 2xy) mod m), is translated into its
Montgomery counterpart. In the example this is

xM :=
(x2

M + 2xMyM
Rn

mod m
)
.

We see here that xM , yM < Rn

5
implies x2

M + 2xMyM < 3 · R2n

25
. An inspection of

O. Forster’s algorithm shows that we always have to compute (A
Rn

mod m) for
some A < 5 · R2n

25
= R2n

5
.

A 7→
(A
Rn

mod m
)

is Montgomery’s REDC function. It occurs everywhere in the algorithm where
normally a reduction modulo m, i.e. A 7→ (A mod m), would be done.

This looks as if we had not won anything. But, in fact, we won a lot as for computer
hardware it is much easier to compute (A

Rn
mod m), which is a “reduction from

below”, than (A mod m) which is a “reduction from above” and usually involves
trial divisions.

Indeed, A fits into 2n machine words. It has 2n so-called limbs. The rightmost,
i.e. the least significant, n of those have to be transformed into zero by adding some
suitable multiple of m. Then, these n limbs may simply be omitted.

6. Optimizations 19

Which multiple of m is the suitable one that erases the rightmost limb A0 of A?
Well, q · m for q := (−A0 · m−1 mod R) will do. This operation is in fact an
ordinary multiplication of unsigned integers in C as (−A0) on unsigned integers
means (R−A0) and multiplication is automatically modulo R. We add q·m to A and
remove the last limb. This procedure of transforming the rightmost machine word
of A into zero and removing it has to be repeated n times.

Still, m needs to be inverted modulo R = 232. The naive approach for this would be
to use Euclid’s extended algorithm which, unfortunately, involves quite a number
of divisions. At least, we observe that it is necessary to do this only once, not
n times although there are n iterations. However, for the purpose of inverting an
odd number modulo 232, there exists a very elegant and highly efficient C macro
in GMP, named modlimb invert. It uses a table of the modular inverses of all odd
integers modulo 28 and then executes two Hensel’s lifts in a row. Note that, if
i · n ≡ 1 (mod N) then (2i − i2 · n) · n ≡ 1 (mod N2). We observe that, in this
particular case, we need no division for the Hensel’s lift.

What is the size of the representative of (A
Rn

mod m) found? We have A < R2n

5
.

We add to that less than Rnm and divide by Rn. Thus, the representative is less than

R2n

5
+Rnm

Rn
=
Rn

5
+m.

We want REDC(A) < Rn

5
, the same inequality we have for all variables in Mont-

gomery representation. To reach that, we may now simply subtract m in the case
we found an outcome ≥ Rn

5
. (This is the point where we use m ≤ Rn

5
.)

Our version of REDC looks as follows. In order to optimize for speed, we designed
it as a C macro, not as a function.

#define REDC(mp, n, Nprim, tp) \

do { \

mp_limb_t cy; \

mp_limb_t qu; \

mp_size_t j; \

\

for (j = 0; j < n; j++) { \

qu = tp[0] * Nprim; \

/* q = tp[0]*invm mod 2^32. Reduktion mod 2^32 von selber! */ \

cy = mpn_addmul_1 (tp, mp, n, qu); \

mpn_incr_u (tp + n, cy); \

tp++; \

} \

\

if (tp[n - 1] >= 0x33333333) /* 2^32 / 5. */ \

mpn_sub_n (tp, tp, mp, n); \

} while(0);

It is typically called as REDC (m, REDC BREITE, invm, ?);, with various variables
in the place of the ?, after invm is set by modlimb invert (invm, m[0]); and
invm = -invm;. Up to now, we always had REDC BREITE = 3.

At the very end of our algorithm we find (Fk)M , the desired Fibonacci number in its
Montgomery representation. To convert back, we just need one more call to REDC.

20 Elsenhans and Jahnel

Indeed,

(Fk mod m) =

(
FkR

n

Rn
mod m

)
=

(
(Fk)M
Rn

mod m

)
= REDC((Fk)M).

Further, (Fk)M < Rn

5
implies

REDC((Fk)M) <
Rn

5
+Rn ·m
Rn

=
1

5
+m,

i.e. REDC((Fk)M) ≤ m.

We note explicitly that there is quite a dangerous trap at this point. The residue 0,
the one we are in fact looking for, will not be reported as 0 but as m. We work
around this by outputting residues of small absolute value. If (r mod m) is found
and r is not below a certain output limit then m − r is computed and compared
with that limit.

6.2.2. Remark. –––– The integration of the Montgomery representation into our
algorithm allowed us to avoid practically all the divisions. This caused a stunning
reduction of the running time to about one third of its original value.

6.3 Other Optimizations

6.3.1. –––– We introduced several other optimizations. One, which is worth a
mention, is the integration of a pre-computation for the first seven binary digits
of p. Note, if we let p go linearly through a large interval then its first seven digits
will change very slowly. This means, as a study of our algorithm for the computation
of (Fp mod p2) shows, that the same first seven steps will be done again and again.
We avoid this and do these steps once, as a pre-computation. As 1014 consists
of 47 binary digits this saves about 14 per cent of the running time.

Of course, p is not a constant for the outer loop of our program and its first seven
binary digits are only almost constant. One needs to watch out for the moment
when the seventh digit of p changes.

6.3.2. –––– Another improvement by a few per cent was obtained through the
switch to a different algorithm for the computation of the Fibonacci numbers.
Our hand-tailored approach computes the k-th Fibonacci number Fk simultaneously
with the k-th Lucas number Vk. It is based on the formulae

F2k = FkVk,

V2k = V 2
k + 2(−1)k+1,

F2k+1 =
FkVk + V 2

k

2
+ (−1)k+1,

V2k+1 = F2k+1 + 2FkVk.

(13)

6. Optimizations 21

This is faster than the algorithm explained above as it involves only one multipli-
cation and one squaring operation instead of one multiplication and two squaring
operations. It seems here that the number of multiplications and the number of
squaring operations determine the running time. Multiplications by two are not
counted as multiplications as they are simple bit shifts. Bit shifts and additions are
a lot faster than multiplications while a squaring operation costs about two thirds
of what a multiplication costs.

From that point of view there should exist an even better algorithm. One can make
use of the formulae

F2k+1 = 4F 2
k − F 2

k−1 + 2(−1)k,

F2k−1 = F 2
k + F 2

k−1,

F2k = F2k+1 − F2k−1

(14)

which we found in the GMP source code. If we meet a bit which is set then we
continue with F2k+1 and F2k. Otherwise, with F2k and F2k−1.

Here, there are only two squaring operations involved and no multiplications, at all.
This should be very hard to beat. Our tests, however, unearthed that the program
made from (14) ran approximately ten per cent slower than the program made
from (13). For that reason, we worked finally with (13). Nevertheless, we expect
that for larger numbers p, in a situation where additions and bit shifts contribute
even less proportion to the running time, an algorithm using (14) should actually
run faster. It is possible that this is the case from the moment on that p2 > 296 does
no longer fit into three limbs but occupies four.

6.3.3. –––– Some other optimizations are of a more practical nature. For ex-
ample, instead of GMP’s mpz functions we used the low level mpn functions for
long natural numbers. Further, we employed some internal GMP low level functions
although this is not recommended by the GMP documentation.

The point is that the size of the numbers appearing in our calculations is a-priori
known to us and basically always the same. When, for example, we multiply two
numbers, then it does not make sense always to check whether the base case multi-
plication, the Karatsuba scheme, or the FFT algorithm will be fastest. In our case,
mpn mul basecase is always the fastest of the three, therefore we call it directly.

6.4 The Performance Finally Achieved

6.4.1. –––– As a consequence of all the optimizations described, the CPU time it
took our program to test the interval [4 · 1013, 4 · 1013 + 2.5 · 109] of 250 000 000 num-
bers p such that p ≡ 3 (mod 10), among them 19 955 355 primes, was reduced
to 8:08 Minutes. Sieving is done in the first 24 seconds.

22 Elsenhans and Jahnel

The tests were made on a 1211 MHz Athlon processor. For comparison, on
a 1673 MHz Athlon processor we test the same interval in around 6:30 Minutes
and on a 3 GHz Pentium 4 processor in around 5:30 Minutes. (This relatively poor
running time might partially be due to the fact that we carried out our trial runs
on Athlon processors.)

6.4.2. The Main Computational Undertaking. –––– In a project of some-
what larger scale, we ran the optimized algorithm on all primes p in the inter-
val [1013, 1014] such that p ≡ ±2 (mod 5). Further, as the methods which start with
the computation of

√
5 ∈ p are no longer faster, we ran it, too, on all prime numbers

p ∈ [4 ·1013, 1014] such that p ≡ ±1 (mod 5) and on all primes p ∈ [1.6 ·1013, 4 ·1013]
such that p ≡ 5 (mod 8) and p ≡ ±1 (mod 5).

Altogether, this means that we fully tested the whole interval [1013, 1014]. To do
this took us around 820 days of CPU time. The computational work was done in
parallel on up to 14 PCs from July till October 2004.

7 Output Data

7.1. A Computer Proof. –––– Neither our earlier computations for p < 1013 nor
the more recent ones for the interval [1013, 1014] detected any exceptional primes.
As we covered the intervals systematically and tested each individual prime, this
establishes the fact that for all prime numbers p < 1014 one has p2-Fκ(p). There are
no exceptional primes below that limit. Theorem 4.5 is verified.

7.2. Statistical Observations. –––– We do never find (Fp±1 mod p2) = 0.
Does that mean, we have found some evidence that our assumption, the residues
(Fp±1 mod p2) should be equidistributed in { 0, p, 2p, . . . , p2 − p }, is wrong?
Actually, it does not. Besides the fact that the value zero does not occur, all other
reasonable statistical quantities seem to be well within the expected range.

Indeed, a typical piece of our output data looks as follows.

Durchsuche Fenster mit Nummer 34304.

Beginne sieben.

Restklassen berechnet.

Beginne sieben mit kleinen Primzahlen.

Sieben mit kleinen Primzahlen fertig.

Fertig mit sieben.

Initialisiere

x mit 110560307156090817237632754212345,

y mit 247220362414275519277277821571239

und vorz mit 1.

10786 Quotient 1912354 mit p := 85760594147971.

10787 Quotient 1072750 mit p := 85760627258851.

10788 Quotient -1617348 mit p := 85760847493241.

10789 Quotient -3142103 mit p := 85761104075891.

Initialisiere

x mit 178890334785183168257455287891792,

y mit 400010949097364802732720796316482

und vorz mit -1.

10790 Quotient -9341211 mit p := 85761921174961.

Fertig mit Fenster mit Nummer 34304.

7. Output Data 23

Durchsuche Fenster mit Nummer 34305.

Beginne sieben.

Restklassen berechnet.

Beginne sieben mit kleinen Primzahlen.

Sieben mit kleinen Primzahlen fertig.

Fertig mit sieben.

Initialisiere

x mit 178890334785183168257455287891792,

y mit 400010949097364802732720796316482

und vorz mit -1.

10791 Quotient 3971074 mit p := 85763512710481.

10792 Quotient 2441663 mit p := 85764391244491.
Fertig mit Fenster mit Nummer 34305.

To make the output easier to understand we do not print (Fp±1 mod p2) which is
automatically divisible by p but R(p) := (Fp±1 mod p2)/p ∈ /p . Such a quotient
may be as large as p. We output only those which fall into (−107, 107) which is very
small in comparison to p.

The data above were generated by a process which had started at 8 ·1013 and worked
on the primes p ≡ 1 (mod 10). Till 8.5765 · 1013 it found 10 792 primes p such that
R(p) = (Fp−1 mod p2)/p ∈ (−107, 107).

On the other hand, assuming equidistribution we would have predicted to find such
a particularly small quotient for around

8.5765·1013∑
p=8·1013

p≡1 (mod 10)
p prime

2·107 − 1

p
≈ (2·107 − 1)· 1

ϕ(10)
·(log(log(8.5765·1013))− log(log(8·1013)))

=
2·107 − 1

4
· (log(log(8.5765 · 1013))− log(log(8 · 1013)))

≈ 10 856.330

primes which is astonishingly close to the reality.

Among the 10 792 small quotients found within this interval, the absolutely smallest
one is R(82 789 107 950 701) = −42. We find 1 074 quotients of absolute value less
than 1 000 000, 98 quotients of absolute value less than 100 000, and 10 of absolute
value less than 10 000. These are, besides the one above,

R(80 114 543 961 461) = −2437,

R(80 607 583 847 341) = −6949,

R(80 870 523 194 401) = −5751,

R(81 232 564 906 631) = 3579,

R(81 916 669 933 751) = −2397,

R(83 575 544 636 251) = −1884,

R(84 688 857 018 011) = −1183,

R(84 771 692 838 421) = 2281,

R(85 325 902 236 661) = −4473.

There have been 5 235 positive and 5 557 negative quotients detected.

24 Elsenhans and Jahnel

7.3. Remarks. –––– a) We note explicitly that this is not at all a constructed
example. One may basically consider every interval which is not too small and will
observe the same phenomena.

b) Being very sceptical one might raise the objection that the computations done
in our program do not really prove that the 10 792 numbers p which appear in the
data are indeed prime.

It is, however, very unlikely that one of them is composite as they all passed two tests.
First, they passed the sieve which in this case makes sure they have no prime divi-
sor ≤ 8 302 871. This means, if one is composite then it decomposes into the product
of two almost equally large primes. Furthermore, they were all found probably prime
by the Fibonacci composedness test p|Fp−1.

It is easy to check primality for all of them by a separate program.

7.4. Statistical Observations. –––– A more spectacular interval is [0, 1012].
One may expect a lot more small quotients as all small prime numbers are taken
into consideration.

Here, we may do some statistical analysis on the small positive values of the quo-
tient R′ which is given by R′(p) := (Fp−1 mod p2)/p for p ≡ ±1 (mod 5) and by
R′(p) := (F2p+2 mod p2)/p for p ≡ ±2 (mod 5).

Our computations show that there exist 96 909 quotients less than 100 000,
12 162 quotients less than 10 000, 1 580 quotients less than 1 000, 216 quotients
less than 100, and 30 quotients less than 10. The latter ones are

3 ist eine interessante Primzahl. Quotient 1

7 ist eine interessante Primzahl. Quotient 1

11 ist eine interessante Primzahl. Quotient 5

13 ist eine interessante Primzahl. Quotient 7

17 ist eine interessante Primzahl. Quotient 2

19 ist eine interessante Primzahl. Quotient 3

43 ist eine interessante Primzahl. Quotient 8

89 ist eine interessante Primzahl. Quotient 5

163 ist eine interessante Primzahl. Quotient 6

199 ist eine interessante Primzahl. Quotient 5

239 ist eine interessante Primzahl. Quotient 5

701 ist eine interessante Primzahl. Quotient 5

941 ist eine interessante Primzahl. Quotient 6

997 ist eine interessante Primzahl. Quotient 3

1063 ist eine interessante Primzahl. Quotient 2

1621 ist eine interessante Primzahl. Quotient 2

2003 ist eine interessante Primzahl. Quotient 1

27191 ist eine interessante Primzahl. Quotient 8

86813 ist eine interessante Primzahl. Quotient 6

123863 ist eine interessante Primzahl. Quotient 2

199457 ist eine interessante Primzahl. Quotient 7

508771 ist eine interessante Primzahl. Quotient 2

956569 ist eine interessante Primzahl. Quotient 4

1395263 ist eine interessante Primzahl. Quotient 3

1677209 ist eine interessante Primzahl. Quotient 1

3194629 ist eine interessante Primzahl. Quotient 5

11634179 ist eine interessante Primzahl. Quotient 2

467335159 ist eine interessante Primzahl. Quotient 4

1041968177 ist eine interessante Primzahl. Quotient 6

6_71661_90593 ist eine interessante Primzahl. Quotient 1

Except for 0 and 9, all one-digit numbers do appear.

References 25

Further, the counts are again well within the expected range. For example, con-
sider one-digit numbers. R(3) and R(7) are automatically one-digit. Therefore, the
expected count is

2 +

1012∑
p=10
p prime

10

p
≈ 2 + 10 · (log(log 1012)− log(log 10)) ≈ 26.849 066

which is surprisingly close the 30 one-digit quotients which were actually found.

We note that already for two-digit quotients, it is no longer true that they ap-
pear only within the subinterval [0, 1011]. In fact, there are twelve prime num-
bers p ∈ [1011, 1012] such that R′(p) < 100. These are the following.

101876918491 liefert 87

115301883659 liefert 60

129316722167 liefert 44

147486235177 liefert 59

170273590301 liefert 78

233642484991 liefert 89

261836442223 liefert 45

277764184829 liefert 64

283750593739 liefert 37

305128713503 liefert 93

334015396151 liefert 79

442650398821 liefert 74

Once again, we may compare this to the expected count which is here

1012∑
p=1011

p prime

100

p
≈ 100 · (log(log 1012)− log(log 1011)) ≈ 8.701 137 73.

References

[Co] Cohen, H.: A course in computational algebraic number theory, Springer,
Graduate Texts Math. 138, Berlin 1993

[Fo] Forster, O.: Algorithmische Zahlentheorie (Algorithmic number theory), Vie-
weg, Braunschweig 1996

[Gö] Göttsch, G.: Über die mittlere Periodenlänge der Fibonacci-Folgen modulo p
(On the average period length of the Fibonacci sequences modulo p), Disser-
tation, Fakultät für Math. und Nat.-Wiss., Hannover 1982

[IR] Ireland, K., Rosen, M.: A classical introduction to modern number theory,
Second edition, Springer, Graduate Texts Math. 84, New York 1990

[Ja] Jarden, D.: Two theorems on Fibonacci’s sequence, Amer. Math. Monthly 53
(1946)425–427

26 Elsenhans and Jahnel

[Mo] Montgomery, P. L.: Modular multiplication without trial division, Math.
Comp. 44(1985)519–521

[RS] Rosser, J. B., Schoenfeld, L.: Approximate formulas for some functions of
prime numbers, Illinois J. Math. 6(1962)64–94

[Wa] Wall, D. D.: Fibonacci series modulo m, Amer. Math. Monthly 67(1960)525–
532

