He was born in 1898 in Kiev, the Ukraine, Russian Empire. His father and both grandfathers were important cantors with Chassidic backgrounds. Leibele, as he was fondly nicknamed, was eight years old when he first appeared as a cantor in Kiev. Word spread swiftly about the child prodigy, and he was engaged to appear in concerts all over Europe. In his teens he organized and conducted a large choir in his father’s Talner Chassidic synagogue, a choir that sang highly complex choral compositions by Baruch Schor, Solomon Sultzer, Louis Lewandowsky, Avraham Berkovitz Kalechnik, Joseph Goldstein, Nissan Belzer, David Novakowsky and Eliezer Mordechai Gerovitsch.
Glantz studied piano with the noted Ukrainian pianist and composer, Nikolai Tutkovski, and later graduated in piano and composition under the famous composer Reinhold Gliere at the Kiev Music Conservatory. In those years Glantz traveled numerous times as a delegate to congresses of the He’Chalutz movement and to World Zionist Congresses. He also assumed the position of chief editor of the Labor Zionist newspaper Ard Un Arbeit.
In July 1926, due to his intensive Zionist activism, and the growing antagonism towards the Jews by the Romanian regime in Besarabia, Glantz left Eastern Europe. His plan was to immigrate to Palestine, which was then governed by the British, in order to join those of his Zionist friends who had already immigrated to Israel. However, he first traveled to the United States to record with RCA his famous compositions Shema Yisrael and Tal. He was invited to appear in New York, made a great impression and was offered a prestigious position as chief cantor of the famous Ohev Shalom synagogue in New York.
In America Glantz continued to develop his musical education, under the guidance of professor Aspinol, the vocal teacher of the opera singers Enrico Caruso and Benjamino Gigli.In 1929, as a recording artist with RCA, a series of LP recordings included Shema Yisrael, Tefilat Tal, Shomer Yisrael, Kol Adoshem, Lechu Neranena, Birkat Kohanim, Ki Ke’Shimcha, Ki Hineh Ka’Chomer and Ein Ke’Erkecha.
Glantz’s appeared in concert tours all over the United States, Canada, Mexico, South America, Western and Eastern Europe, South Africa, and Palestine.
In 1936 Glantz married Miriam Lipton. They had two sons, Kalman and Ezra [Jerry].
In 1941, the family moved to Los Angeles, California, where Glantz served as Chief Cantor of Sinai Temple, and from 1949 to 1954 at the Sha’arei Te’filah synagogue. He was also professor of Jewish Music at the University of Judaism in Los Angeles.
In 1948 he lectured before the delegates of the First Annual Conference of the Cantors Assembly of America on the subject: How the different Jewish Nuschaot (Prayer modes) were created.
He articulated his musical theories in a famous lecture to the delegates of the 5th Convention of the Cantors Assembly in 1952—a lecture that created serious debate, as his ideas were considered a new path toward the analysis of the ancient Jewish prayer modes, the Nusach.
Leib Glantz was one of the most important scholars researching the origins of Jewish music. His research and the theories he developed established a historical continuity of Jewish music from its beginnings in the Holy Temples of Jerusalem. Glantz theorized that many centuries ago the Jewish people transformed certain Greek scales and modes, in the process creating original Jewish combinations. These became the foundations for the Cantillation of the Torah (Ta’ameiHa’Mikrah) and the Jewish prayer modes (Nusach Ha’Tefila).
Glantz continued to be active in the Zionist movement as one of its outstanding leaders. He was nominated to be a delegate at no less than eleven World Zionist Congresses from 1921 till 1961—the last two as a delegate representing Israel.
Glantz lived in Israel for the last ten years of his life (1954–1964). In Israel he enjoyed a unique interaction with the members of his congregation, at the Tif'eret Zvi Synagogue in Tel Aviv, who clearly understood the language of the prayers, were able to appreciate his unique interpretations of the texts, his adherence to the ancient prayer modes and his authentic musical innovations. He was immensely popular in Israel – a household name. Many of his most important compositions were composed in this period of his life.Midnight Selichot Service, composed by Leib Glantz, is considered by many cantors and scholars as one of the greatest cantorial works ever published. It was recorded live annually by Kol Yisrael radio directly from the Tiferet Zvi synagogue. In total, Leib Glantz composed 215 compositions of Cantorial, Chassidic and Israeli music.
In addition to his cantorial career, Glantz appeared in leading tenor roles in, among others, Alan Hovhaness’ “Shepherd of Israel”, Jacques Halevy’s “La Juive”, and Joseph Tal’s “Saul at Ein Dor”.
In 1959 Glantz founded the Tel Aviv Institute for Jewish Liturgical Music, and an academic level conservatory for training cantors—the Cantors Academy (Ha’Akademia Le’Chazanut). With Glantz at the helm, many important Israeli scholars, composers and musicians proudly joined the academic faculty.
Leib Glantz was a founding member of AKUM, The Israel Music Institute, The Israeli Composers League, and was a member of the editorial board of "Bat Kol." He functioned as one of the judges of the prestigious Engel Prize.
Following Glantz’s sudden passing on January 27, 1964, while in concert in Tel Aviv, the Tel Aviv Institute for Jewish Liturgical Music was transformed into the publishing organ of Leib Glantz’s musical compositions, as well as his research and literary work. This body, in conjunction with the Israel Music Institute, has published seven books of Glantz’s musical compositions, as well as the Hebrew book "Zeharim – In Memory of Leib Glantz."
In 2008, his son, Dr. Jerry Glantz, published a new book (in English): Leib Glantz -- "The Man Who Spoke To God." This book includes two compact discs with Leib Glantz singing 30 of his most important compositions.
Category:1898 births Category:1964 deaths Category:Educators Category:Hazzans Category:Musicologists Category:People from Kiev Category:Ukrainian Jews Category:Zionists
he:לייב גלנץ ru:Гланц, Лейб yi:לייב גלאנץThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Gottfried Wilhelm Leibniz (sometimes von Leibniz) ( or ) (July 1, 1646 – November 14, 1716) was a German philosopher and mathematician. He wrote in multiple languages, primarily in Latin (~40%), French (~30%) and German (~15%).
Leibniz occupies a prominent place in the history of mathematics and the history of philosophy. He developed the infinitesimal calculus independently of Isaac Newton, and Leibniz's mathematical notation has been widely used ever since it was published. He became one of the most prolific inventors in the field of mechanical calculators. While working on adding automatic multiplication and division to Pascal's calculator, he was the first to describe a pinwheel calculator in 1685 and invented the Leibniz wheel, used in the arithmometer, the first mass-produced mechanical calculator. He also refined the binary number system, which is at the foundation of virtually all digital computers. In philosophy, Leibniz is mostly noted for his optimism, e.g. his conclusion that our Universe is, in a restricted sense, the best possible one that God could have created. Leibniz, along with René Descartes and Baruch Spinoza, was one of the three great 17th century advocates of rationalism. The work of Leibniz anticipated modern logic and analytic philosophy, but his philosophy also looks back to the scholastic tradition, in which conclusions are produced by applying reason to first principles or a priori definitions rather than to empirical evidence. Leibniz made major contributions to physics and technology, and anticipated notions that surfaced much later in biology, medicine, geology, probability theory, psychology, linguistics, and information science. He wrote works on politics, law, ethics, theology, history, philosophy, and philology. Leibniz's contributions to this vast array of subjects were scattered in various learned journals, in tens of thousands of letters, and in unpublished manuscripts. As of 2011, there is no complete gathering of the writings of Leibniz.
Leibniz's father, Friedrich Leibniz, had been a Professor of Moral Philosophy at the University of Leipzig, so Leibniz inherited his father's personal library. He was given free access to this from the age of seven and thereafter. While Leibniz's schoolwork focused on a small canon of authorities, his father's library enabled him to study a wide variety of advanced philosophical and theological works – ones that he would not have otherwise been able to read until his college years. Access to his father's library, largely written in Latin, also led to his proficiency in the Latin language. Leibniz was proficient in Latin by the age of 12, and he composed three hundred hexameters of Latin verse in a single morning for a special event at school at the age of 13.
He enrolled in his father's former university at age 14, and he completed his bachelor's degree in philosophy in December of 1662. He defended his Disputatio Metaphysica de Principio Individui, which addressed the Principle of individuation, on June 9, 1663. Leibniz earned his master's degree in philosophy on February 7, 1664. He published and defended a dissertation Specimen Quaestionum Philosophicarum ex Jure collectarum, arguing for both a theoretical and a pedagogical relationship between philosophy and law, in December 1664. After one year of legal studies, he was awarded his bachelor's degree in Law on September 28, 1665.
In 1666, (at age 20), Leibniz published his first book, On the Art of Combinations, the first part of which was also his habilitation thesis in philosophy. His next goal was to earn his license and doctorate in Law, which normally required three years of study then. Older students in the law school blocked his early graduation plans, prompting Leibniz to leave Leipzig in disgust in September of 1666.
Leibniz then enrolled in the University of Altdorf, and almost immediately he submitted a thesis, which he had probably been working on earlier in Leipzig. The title of his thesis was Disputatio de Casibus perplexis in Jure. Leibniz earned his license to practice law and his Doctorate in Law in November of 1666. He next declined the offer of an academic appointment at Altdorf, and he spent the rest of his life in the paid service of two main German noble families.
As an adult, Leibniz often introduced himself as "Gottfried von Leibniz". Also many posthumously-published editions of his writings presented his name on the title page as "Freiherr G. W. von Leibniz." However, no document has ever been found from any contemporary government that stated his appointment to any form of nobility.
Von Boineburg did much to promote Leibniz's reputation, and the latter's memoranda and letters began to attract favorable notice. Leibniz's service to the Elector soon followed a diplomatic role. He published an essay, under the pseudonym of a fictitious Polish nobleman, arguing (unsuccessfully) for the German candidate for the Polish crown. The main European geopolitical reality during Leibniz's adult life was the ambition of Louis XIV of France, backed by French military and economic might. Meanwhile, the Thirty Years' War had left German-speaking Europe exhausted, fragmented, and economically backward. Leibniz proposed to protect German-speaking Europe by distracting Louis as follows. France would be invited to take Egypt as a stepping stone towards an eventual conquest of the Dutch East Indies. In return, France would agree to leave Germany and the Netherlands undisturbed. This plan obtained the Elector's cautious support. In 1672, the French government invited Leibniz to Paris for discussion, but the plan was soon overtaken by the outbreak of the Franco-Dutch War and became irrelevant. Napoleon's failed invasion of Egypt in 1798 can be seen as an unwitting implementation of Leibniz's plan.
Thus Leibniz began several years in Paris. Soon after arriving, he met Dutch physicist and mathematician Christiaan Huygens and realised that his own knowledge of mathematics and physics was patchy. With Huygens as mentor, he began a program of self-study that soon pushed him to making major contributions to both subjects, including inventing his version of the differential and integral calculus. He met Nicolas Malebranche and Antoine Arnauld, the leading French philosophers of the day, and studied the writings of Descartes and Pascal, unpublished as well as published. He befriended a German mathematician, Ehrenfried Walther von Tschirnhaus; they corresponded for the rest of their lives. In 1675 he was admitted as a foreign honorary member of the French Academy of Sciences, which he continued to follow mostly by correspondence.
When it became clear that France would not implement its part of Leibniz's Egyptian plan, the Elector sent his nephew, escorted by Leibniz, on a related mission to the English government in London, early in 1673. There Leibniz came into acquaintance of Henry Oldenburg and John Collins. After demonstrating a calculating machine he had been designing and building since 1670 to the Royal Society, the first such machine that could execute all four basic arithmetical operations, the Society made him an external member. The mission ended abruptly when news reached it of the Elector's death, whereupon Leibniz promptly returned to Paris and not, as had been planned, to Mainz.
The sudden deaths of Leibniz's two patrons in the same winter meant that Leibniz had to find a new basis for his career. In this regard, a 1669 invitation from the Duke of Brunswick to visit Hanover proved fateful. Leibniz declined the invitation, but began corresponding with the Duke in 1671. In 1673, the Duke offered him the post of Counsellor which Leibniz very reluctantly accepted two years later, only after it became clear that no employment in Paris, whose intellectual stimulation he relished, or with the Habsburg imperial court was forthcoming.
In 1677, he was promoted, at his request, to Privy Counselor of Justice, a post he held for the rest of his life. Leibniz served three consecutive rulers of the House of Brunswick as historian, political adviser, and most consequentially, as librarian of the ducal library. He thenceforth employed his pen on all the various political, historical, and theological matters involving the House of Brunswick; the resulting documents form a valuable part of the historical record for the period.
Among the few people in north Germany to accept Leibniz were the Electress Sophia of Hanover (1630–1714), her daughter Sophia Charlotte of Hanover (1668–1705), the Queen of Prussia and his avowed disciple, and Caroline of Ansbach, the consort of her grandson, the future George II. To each of these women he was correspondent, adviser, and friend. In turn, they all approved of Leibniz more than did their spouses and the future king George I of Great Britain.
The population of Hanover was only about 10,000, and its provinciality eventually grated on Leibniz. Nevertheless, to be a major courtier to the House of Brunswick was quite an honor, especially in light of the meteoric rise in the prestige of that House during Leibniz's association with it. In 1692, the Duke of Brunswick became a hereditary Elector of the Holy Roman Empire. The British Act of Settlement 1701 designated the Electress Sophia and her descent as the royal family of England, once both King William III and his sister-in-law and successor, Queen Anne, were dead. Leibniz played a role in the initiatives and negotiations leading up to that Act, but not always an effective one. For example, something he published anonymously in England, thinking to promote the Brunswick cause, was formally censured by the British Parliament.
The Brunswicks tolerated the enormous effort Leibniz devoted to intellectual pursuits unrelated to his duties as a courtier, pursuits such as perfecting the calculus, writing about other mathematics, logic, physics, and philosophy, and keeping up a vast correspondence. He began working on the calculus in 1674; the earliest evidence of its use in his surviving notebooks is 1675. By 1677 he had a coherent system in hand, but did not publish it until 1684. Leibniz's most important mathematical papers were published between 1682 and 1692, usually in a journal which he and Otto Mencke founded in 1682, the Acta Eruditorum. That journal played a key role in advancing his mathematical and scientific reputation, which in turn enhanced his eminence in diplomacy, history, theology, and philosophy.
The Elector Ernest Augustus commissioned Leibniz to write a history of the House of Brunswick, going back to the time of Charlemagne or earlier, hoping that the resulting book would advance his dynastic ambitions. From 1687 to 1690, Leibniz traveled extensively in Germany, Austria, and Italy, seeking and finding archival materials bearing on this project. Decades went by but no history appeared; the next Elector became quite annoyed at Leibniz's apparent dilatoriness. Leibniz never finished the project, in part because of his huge output on many other fronts, but also because he insisted on writing a meticulously researched and erudite book based on archival sources, when his patrons would have been quite happy with a short popular book, one perhaps little more than a genealogy with commentary, to be completed in three years or less. They never knew that he had in fact carried out a fair part of his assigned task: when the material Leibniz had written and collected for his history of the House of Brunswick was finally published in the 19th century, it filled three volumes.
In 1711, John Keill, writing in the journal of the Royal Society and with Newton's presumed blessing, accused Leibniz of having plagiarized Newton's calculus. Thus began the calculus priority dispute which darkened the remainder of Leibniz's life. A formal investigation by the Royal Society (in which Newton was an unacknowledged participant), undertaken in response to Leibniz's demand for a retraction, upheld Keill's charge. Historians of mathematics writing since 1900 or so have tended to acquit Leibniz, pointing to important differences between Leibniz's and Newton's versions of the calculus.
In 1711, while traveling in northern Europe, the Russian Tsar Peter the Great stopped in Hanover and met Leibniz, who then took some interest in Russian matters for the rest of his life. In 1712, Leibniz began a two-year residence in Vienna, where he was appointed Imperial Court Councillor to the Habsburgs. On the death of Queen Anne in 1714, Elector George Louis became King George I of Great Britain, under the terms of the 1701 Act of Settlement. Even though Leibniz had done much to bring about this happy event, it was not to be his hour of glory. Despite the intercession of the Princess of Wales, Caroline of Ansbach, George I forbade Leibniz to join him in London until he completed at least one volume of the history of the Brunswick family his father had commissioned nearly 30 years earlier. Moreover, for George I to include Leibniz in his London court would have been deemed insulting to Newton, who was seen as having won the calculus priority dispute and whose standing in British official circles could not have been higher. Finally, his dear friend and defender, the Dowager Electress Sophia, died in 1714.
Leibniz dated his beginning as a philosopher to his Discourse on Metaphysics, which he composed in 1686 as a commentary on a running dispute between Nicolas Malebranche and Antoine Arnauld. This led to an extensive and valuable correspondence with Arnauld; it and the Discourse were not published until the 19th century. In 1695, Leibniz made his public entrée into European philosophy with a journal article titled "New System of the Nature and Communication of Substances". Between 1695 and 1705, he composed his New Essays on Human Understanding, a lengthy commentary on John Locke's 1690 An Essay Concerning Human Understanding, but upon learning of Locke's 1704 death, lost the desire to publish it, so that the New Essays were not published until 1765. The Monadologie, composed in 1714 and published posthumously, consists of 90 aphorisms.
Leibniz met Spinoza in 1676, read some of his unpublished writings, and has since been suspected of appropriating some of Spinoza's ideas. While Leibniz admired Spinoza's powerful intellect, he was also forthrightly dismayed by Spinoza's conclusions, especially when these were inconsistent with Christian orthodoxy.
Unlike Descartes and Spinoza, Leibniz had a thorough university education in philosophy. His lifelong scholastic and Aristotelian turn of mind betrayed the strong influence of one of his Leipzig professors, Jakob Thomasius, who also supervised his BA thesis in philosophy. Leibniz also eagerly read Francisco Suárez, a Spanish Jesuit respected even in Lutheran universities. Leibniz was deeply interested in the new methods and conclusions of Descartes, Huygens, Newton, and Boyle, but viewed their work through a lens heavily tinted by scholastic notions. Yet it remains the case that Leibniz's methods and concerns often anticipate the logic, and analytic and linguistic philosophy of the 20th century.
Leibniz would on occasion give a speech for a specific principle, but more often took them for granted.
The ontological essence of a monad is its irreducible simplicity. Unlike atoms, monads possess no material or spatial character. They also differ from atoms by their complete mutual independence, so that interactions among monads are only apparent. Instead, by virtue of the principle of pre-established harmony, each monad follows a preprogrammed set of "instructions" peculiar to itself, so that a monad "knows" what to do at each moment. (These "instructions" may be seen as analogs of the scientific laws governing subatomic particles.) By virtue of these intrinsic instructions, each monad is like a little mirror of the universe. Monads need not be "small"; e.g., each human being constitutes a monad, in which case free will is problematic. God, too, is a monad, and the existence of God can be inferred from the harmony prevailing among all other monads; God wills the pre-established harmony.
Monads are purported to having gotten rid of the problematic:
The Theodicy tries to justify the apparent imperfections of the world by claiming that it is optimal among all possible worlds. It must be the best possible and most balanced world, because it was created by an all powerful and all knowing God, who would not choose to create an imperfect world if a better world could be known to him or possible to exist. In effect, apparent flaws that can be identified in this world must exist in every possible world, because otherwise God would have chosen to create the world that excluded those flaws.
Leibniz asserted that the truths of theology (religion) and philosophy cannot contradict each other, since reason and faith are both "gifts of God" so that their conflict would imply God contending against himself. The Theodicy is Leibniz's attempt to reconcile his personal philosophical system with his interpretation of the tenets of Christianity. This project was motivated in part by Leibniz's belief, shared by many conservative philosophers and theologians during the Enlightenment, in the rational and enlightened nature of the Christian religion, at least as this was defined in tendentious comparisons between Christian and non Western or "primitive" religious practices and beliefs. It was also shaped by Leibniz's belief in the perfectibility of human nature (if humanity relied on correct philosophy and religion as a guide), and by his belief that metaphysical necessity must have a rational or logical foundation, even if this metaphysical causality seemed inexplicable in terms of physical necessity (the natural laws identified by science).
Because reason and faith must be entirely reconciled, any tenet of faith which could not be defended by reason must be rejected. Leibniz then approached one of the central criticisms of Christian theism: if God is all good, all wise and all powerful, how did evil come into the world? The answer (according to Leibniz) is that, while God is indeed unlimited in wisdom and power, his human creations, as creations, are limited both in their wisdom and in their will (power to act). This predisposes humans to false beliefs, wrong decisions and ineffective actions in the exercise of their free will. God does not arbitrarily inflict pain and suffering on humans; rather he permits both moral evil (sin) and physical evil (pain and suffering) as the necessary consequences of metaphysical evil (imperfection), as a means by which humans can identify and correct their erroneous decisions, and as a contrast to true good.
Further, although human actions flow from prior causes that ultimately arise in God, and therefore are known as a metaphysical certainty to God, an individual's free will is exercised within natural laws, where choices are merely contingently necessary, to be decided in the event by a "wonderful spontaneity" that provides individuals an escape from rigorous predestination.
The Theodicy was deemed illogical by the philosopher Bertrand Russell. Russell points out that moral and physical evil must result from metaphysical evil (imperfection). But imperfection is merely finitude or limitation; if existence is good, as Leibniz maintains, then the mere existence of evil requires that evil also be good. In addition, Christian theology defines sin as not necessary but contingent, the result of free will. Russell maintains that Leibniz failed logically to show that metaphysical necessity (divine will) and human free will are not incompatible or contradictory.
The mathematician Paul du Bois-Reymond, in his "Leibnizian Thoughts in Modern Science", wrote that Leibniz thought of God as a mathematician:
As is well known, the theory of the maxima and minima of functions was indebted to him for the greatest progress through the discovery of the method of tangents. Well, he conceives God in the creation of the world like a mathematician who is solving a minimum problem, or rather, in our modern phraseology, a problem in the calculus of variations the question being to determine among an infinite number of possible worlds, that for which the sum of necessary evil is a minimum.
The statement that "we live in the best of all possible worlds" drew scorn, most notably from Voltaire, who lampooned it in his comic novella Candide by having the character Dr. Pangloss (a parody of Leibniz and Maupertuis) repeat it like a mantra. From this, the adjective "Panglossian" describes a person who believes that the world about us is the best possible one.
The only way to rectify our reasonings is to make them as tangible as those of the Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right.
Leibniz's calculus ratiocinator, which resembles symbolic logic, can be viewed as a way of making such calculations feasible. Leibniz wrote memoranda that can now be read as groping attempts to get symbolic logic—and thus his calculus—off the ground. But Gerhard and Couturat did not publish these writings until modern formal logic had emerged in Frege's Begriffsschrift and in writings by Charles Sanders Peirce and his students in the 1880s, and hence well after Boole and De Morgan began that logic in 1847.
Leibniz thought symbols were important for human understanding. He attached so much importance to the invention of good notations that he attributed all his discoveries in mathematics to this. His notation for the infinitesimal calculus is an example of his skill in this regard. C.S. Peirce, a 19th-century pioneer of semiotics, shared Leibniz's passion for symbols and notation, and his belief that these are essential to a well-running logic and mathematics.
But Leibniz took his speculations much further. Defining a character as any written sign, he then defined a "real" character as one that represents an idea directly and not simply as the word embodying the idea. Some real characters, such as the notation of logic, serve only to facilitate reasoning. Many characters well known in his day, including Egyptian hieroglyphics, Chinese characters, and the symbols of astronomy and chemistry, he deemed not real. Instead, he proposed the creation of a characteristica universalis or "universal characteristic", built on an alphabet of human thought in which each fundamental concept would be represented by a unique "real" character:
It is obvious that if we could find characters or signs suited for expressing all our thoughts as clearly and as exactly as arithmetic expresses numbers or geometry expresses lines, we could do in all matters insofar as they are subject to reasoning all that we can do in arithmetic and geometry. For all investigations which depend on reasoning would be carried out by transposing these characters and by a species of calculus.
Complex thoughts would be represented by combining characters for simpler thoughts. Leibniz saw that the uniqueness of prime factorization suggests a central role for prime numbers in the universal characteristic, a striking anticipation of Gödel numbering. Granted, there is no intuitive or mnemonic way to number any set of elementary concepts using the prime numbers. Leibniz's idea of reasoning through a universal language of symbols and calculations however remarkably foreshadows great 20th century developments in formal systems, such as Turing completeness, where computation was used to define equivalent universal languages (see Turing degree).
Because Leibniz was a mathematical novice when he first wrote about the characteristic, at first he did not conceive it as an algebra but rather as a universal language or script. Only in 1676 did he conceive of a kind of "algebra of thought", modeled on and including conventional algebra and its notation. The resulting characteristic included a logical calculus, some combinatorics, algebra, his analysis situs (geometry of situation), a universal concept language, and more.
What Leibniz actually intended by his characteristica universalis and calculus ratiocinator, and the extent to which modern formal logic does justice to the calculus, may never be established.
#All our ideas are compounded from a very small number of simple ideas, which form the alphabet of human thought. #Complex ideas proceed from these simple ideas by a uniform and symmetrical combination, analogous to arithmetical multiplication.
With regard to the first point, the number of simple ideas is much greater than Leibniz thought. As for the second, logic can indeed be grounded in a symmetrical combining operation, but that operation is analogous to either of addition or multiplication. The formal logic that emerged early in the 20th century also requires, at minimum, unary negation and quantified variables ranging over some universe of discourse.
Leibniz published nothing on formal logic in his lifetime; most of what he wrote on the subject consists of working drafts. In his book History of Western Philosophy, Bertrand Russell went so far as to claim that Leibniz had developed logic in his unpublished writings to a level which was reached only 200 years later.
Leibniz was the first to see that the coefficients of a system of linear equations could be arranged into an array, now called a matrix, which can be manipulated to find the solution of the system, if any. This method was later called Gaussian elimination. Leibniz's discoveries of Boolean algebra and of symbolic logic, also relevant to mathematics, are discussed in the preceding section. A detailed treatment of Leibniz's writings on the calculus may be found in Bos (1974).
Leibniz's approach to the calculus fell well short of later standards of rigor (the same can be said of Newton's). We now see a Leibniz proof as being in truth mostly a heuristic argument mainly grounded in geometric intuition. Leibniz also freely invoked mathematical entities he called infinitesimals, manipulating them in ways suggesting that they had paradoxical algebraic properties. George Berkeley, in a tract called The Analyst and elsewhere, ridiculed this and other aspects of the early calculus, pointing out that natural science grounded in the calculus required just as big of a leap of faith as theology grounded in Christian revelation.
From 1711 until his death, Leibniz's life was envenomed by a long dispute with John Keill, Newton, and others, over whether Leibniz had invented the calculus independently of Newton, or whether he had merely invented another notation for ideas that were fundamentally Newton's.
Modern, rigorous calculus emerged in the 19th century, thanks to the efforts of Augustin Louis Cauchy, Bernhard Riemann, Karl Weierstrass, and others, who based their work on the definition of a limit and on a precise understanding of real numbers. While Cauchy still used infinitesimals as a foundational concept for the calculus, following Weierstrass they were gradually eliminated from calculus, though continued to be studied outside of analysis. Infinitesimals survived in science and engineering, and even in rigorous mathematics, via the fundamental computational device known as the differential. Beginning in 1960, Abraham Robinson worked out a rigorous foundation for Leibniz's infinitesimals, using model theory. The resulting non-standard analysis can be seen as a belated vindication of Leibniz's mathematical reasoning.
Although for Leibniz the situs of a sequence of points is completely determined by the distance between them and is altered if those distances are altered, his admirer Euler, in the famous 1736 paper solving the Königsberg Bridge Problem and its generalizations, used the term geometria situs in such a sense that the situs remains unchanged under topological deformations. He mistakenly credits Leibniz with originating this concept. ...it is sometimes not realized that Leibniz used the term in an entirely different sense and hence can hardly be considered the founder of that part of mathematics.
But Hideaki Hirano argues differently, quoting Mandelbrot:
To sample Leibniz' scientific works is a sobering experience. Next to calculus, and to other thoughts that have been carried out to completion, the number and variety of premonitory thrusts is overwhelming. We saw examples in 'packing,'... My Leibniz mania is further reinforced by finding that for one moment its hero attached importance to geometric scaling. In "Euclidis Prota"..., which is an attempt to tighten Euclid's axioms, he states,...: 'I have diverse definitions for the straight line. The straight line is a curve, any part of which is similar to the whole, and it alone has this property, not only among curves but among sets.' This claim can be proved today.
Thus the fractal geometry promoted by Mandelbrot drew on Leibniz's notions of self-similarity and the principle of continuity: natura non facit saltus. We also see that when Leibniz wrote, in a metaphysical vein, that "the straight line is a curve, any part of which is similar to the whole", he was anticipating topology by more than two centuries. As for "packing", Leibniz told to his friend and correspondent Des Bosses to imagine a circle, then to inscribe within it three congruent circles with maximum radius; the latter smaller circles could be filled with three even smaller circles by the same procedure. This process can be continued infinitely, from which arises a good idea of self-similarity. Leibniz's improvement of Euclid's axiom contains the same concept.
Until the discovery of subatomic particles and the quantum mechanics governing them, many of Leibniz's speculative ideas about aspects of nature not reducible to statics and dynamics made little sense. For instance, he anticipated Albert Einstein by arguing, against Newton, that space, time and motion are relative, not absolute. Leibniz's rule is an important, if often overlooked, step in many proofs in diverse fields of physics. The principle of sufficient reason has been invoked in recent cosmology, and his identity of indiscernibles in quantum mechanics, a field some even credit him with having anticipated in some sense. Those who advocate digital philosophy, a recent direction in cosmology, claim Leibniz as a precursor.
In 1671, Leibniz began to invent a machine that could execute all four arithmetical operations, gradually improving it over a number of years. This "Stepped Reckoner" attracted fair attention and was the basis of his election to the Royal Society in 1673. A number of such machines were made during his years in Hanover, by a craftsman working under Leibniz's supervision. It was not an unambiguous success because it did not fully mechanize the operation of carrying. Couturat reported finding an unpublished note by Leibniz, dated 1674, describing a machine capable of performing some algebraic operations.
Leibniz was groping towards hardware and software concepts worked out much later by Charles Babbage and Ada Lovelace. In 1679, while mulling over his binary arithmetic, Leibniz imagined a machine in which binary numbers were represented by marbles, governed by a rudimentary sort of punched cards. Modern electronic digital computers replace Leibniz's marbles moving by gravity with shift registers, voltage gradients, and pulses of electrons, but otherwise they run roughly as Leibniz envisioned in 1679.
He called for the creation of an empirical database as a way to further all sciences. His characteristica universalis, calculus ratiocinator, and a "community of minds"—intended, among other things, to bring political and religious unity to Europe—can be seen as distant unwitting anticipations of artificial languages (e.g., Esperanto and its rivals), symbolic logic, even the World Wide Web.
While Leibniz was no apologist for absolute monarchy like Hobbes, or for tyranny in any form, neither did he echo the political and constitutional views of his contemporary John Locke, views invoked in support of democracy, in 18th-century America and later elsewhere. The following excerpt from a 1695 letter to Baron J. C. Boineburg's son Philipp is very revealing of Leibniz's political sentiments:
As for.. the great question of the power of sovereigns and the obedience their peoples owe them, I usually say that it would be good for princes to be persuaded that their people have the right to resist them, and for the people, on the other hand, to be persuaded to obey them passively. I am, however, quite of the opinion of Grotius, that one ought to obey as a rule, the evil of revolution being greater beyond comparison than the evils causing it. Yet I recognize that a prince can go to such excess, and place the well-being of the state in such danger, that the obligation to endure ceases. This is most rare, however, and the theologian who authorizes violence under this pretext should take care against excess; excess being infinitely more dangerous than deficiency.
In 1677, Leibniz called for a European confederation, governed by a council or senate, whose members would represent entire nations and would be free to vote their consciences; in doing so, he anticipated the European Union. He believed that Europe would adopt a uniform religion. He reiterated these proposals in 1715.
He published the princeps editio (first modern edition) of the late medieval Chronicon Holtzatiae, a Latin chronicle of the County of Holstein.
Leibniz also wrote a short paper, first published by Louis Couturat in 1903, summarizing his views on metaphysics. The paper is undated; that he wrote it while in Vienna was determined only in 1999, when the ongoing critical edition finally published Leibniz's philosophical writings for the period 1677–90. Couturat's reading of this paper was the launching point for much 20th-century thinking about Leibniz, especially among analytic philosophers. But after a meticulous study of all of Leibniz's philosophical writings up to 1688—a study the 1999 additions to the critical edition made possible—Mercer (2001) begged to differ with Couturat's reading; the jury is still out.
Much of Europe came to doubt that Leibniz had discovered the calculus independently of Newton, and hence his whole work in mathematics and physics was neglected. Voltaire, an admirer of Newton, also wrote Candide at least in part to discredit Leibniz's claim to having discovered the calculus and Leibniz's charge that Newton's theory of universal gravitation was incorrect. The rise of relativity and subsequent work in the history of mathematics has put Leibniz's stance in a more favorable light.
Leibniz's long march to his present glory began with the 1765 publication of the Nouveaux Essais, which Kant read closely. In 1768, Dutens edited the first multi-volume edition of Leibniz's writings, followed in the 19th century by a number of editions, including those edited by Erdmann, Foucher de Careil, Gerhardt, Gerland, Klopp, and Mollat. Publication of Leibniz's correspondence with notables such as Antoine Arnauld, Samuel Clarke, Sophia of Hanover, and her daughter Sophia Charlotte of Hanover, began.
In 1900, Bertrand Russell published a critical study of Leibniz's metaphysics. Shortly thereafter, Louis Couturat published an important study of Leibniz, and edited a volume of Leibniz's heretofore unpublished writings, mainly on logic. They made Leibniz somewhat respectable among 20th-century analytical and linguistic philosophers in the English-speaking world (Leibniz had already been of great influence to many Germans such as Bernhard Riemann). For example, Leibniz's phrase salva veritate, meaning interchangeability without loss of or compromising the truth, recurs in Willard Quine's writings. Nevertheless, the secondary English-language literature on Leibniz did not really blossom until after World War II. This is especially true of English speaking countries; in Gregory Brown's bibliography fewer than 30 of the English language entries were published before 1946. American Leibniz studies owe much to Leroy Loemker (1904–85) through his translations and his interpretive essays in LeClerc (1973).
Nicholas Jolley has surmised that Leibniz's reputation as a philosopher is now perhaps higher than at any time since he was alive. Analytic and contemporary philosophy continue to invoke his notions of identity, individuation, and possible worlds, while the doctrinaire contempt for metaphysics, characteristic of analytic and linguistic philosophy, has faded. Work in the history of 17th- and 18th-century ideas has revealed more clearly the 17th-century "Intellectual Revolution" that preceded the better-known Industrial and commercial revolutions of the 18th and 19th centuries. The 17th- and 18th-century belief that natural science, especially physics, differs from philosophy mainly in degree and not in kind, is no longer dismissed out of hand. That modern science includes a "scholastic" as well as a "radical empiricist" element is more accepted now than in the early 20th century. Leibniz's thought is now seen as a major prolongation of the mighty endeavor begun by Plato and Aristotle: the universe and man's place in it are amenable to human reason.
In 1985, the German government created the Leibniz Prize, offering an annual award of 1.55 million euros for experimental results and 770,000 euros for theoretical ones. It is the world's largest prize for scientific achievement.
The collection of manuscript papers of Leibniz at the Gottfried Wilhelm Leibniz Bibliothek – Niedersächische Landesbibliothek were inscribed on UNESCO’s Memory of the World Register in 2007.
I cannot tell you how extraordinarily distracted and spread out I am. I am trying to find various things in the archives; I look at old papers and hunt up unpublished documents. From these I hope to shed some light on the history of the [House of] Brunswick. I receive and answer a huge number of letters. At the same time, I have so many mathematical results, philosophical thoughts, and other literary innovations that should not be allowed to vanish that I often do not know where to begin.
The extant parts of the critical edition of Leibniz's writings are organized as follows:
The systematic cataloguing of all of Leibniz's Nachlass began in 1901. It was hampered by two world wars, the Nazi dictatorship (with the Holocaust, which affected a Jewish employee of the project, and other personal consequences), and decades of German division (two states with the cold war's "iron curtain" in between, separating scholars and also scattering portions of his literary estates). The ambitious project has had to deal with seven languages contained in some 200,000 pages of written and printed paper. In 1985 it was reorganized and included in a joint program of German federal and state (Länder) academies. Since then the branches in Potsdam, Münster, Hannover and Berlin have jointly published 25 volumes of the critical edition, with an average of 870 pages, and prepared index and concordance works.
Category:1646 births Category:1716 deaths Category:17th-century Latin-language writers Category:17th-century mathematicians Category:18th-century Latin-language writers Category:18th-century mathematicians Category:18th-century philosophers Category:17th-century philosophers Category:Christian philosophers Category:Early modern philosophers Category:Enlightenment philosophers Category:German Christians Category:German librarians Category:German logicians Category:German mathematicians Category:German philosophers Category:German physicists Category:German scientists Category:History of calculus Category:Idealists Category:Language creators Category:Mathematical analysts Category:Members of the Prussian Academy of Sciences Category:Ontologists Category:Rationalists Category:People from Leipzig Category:People from the Electorate of Saxony Category:Philosophers of law Category:Philosophers of mind Category:Political theorists Category:University of Altdorf alumni Category:University of Leipzig alumni Category:Fellows of the Royal Society Category:Plagiarism controversies Category:German music theorists
af:Gottfried Wilhelm Leibniz am:ሌብኒትዝ ar:غوتفريد لايبنتز an:Gottfried Leibniz az:Qotfrid Leybnits bn:গটফ্রিড লাইবনিৎস zh-min-nan:Gottfried Leibniz be:Готфрыд Лейбніц be-x-old:Готфрыд Ляйбніц bs:Gottfried Wilhelm Leibniz br:Gottfried Leibniz bg:Готфрид Лайбниц ca:Gottfried Wilhelm Leibniz cs:Gottfried Wilhelm Leibniz cy:Gottfried Wilhelm von Leibniz da:Gottfried Wilhelm Leibniz de:Gottfried Wilhelm Leibniz dsb:Gottfried Wilhelm Leibniz et:Gottfried Wilhelm Leibniz el:Γκότφριντ Βίλχελμ Λάιμπνιτς es:Gottfried Leibniz eo:Gottfried Wilhelm Leibniz eu:Gottfried Wilhelm Leibniz fa:گوتفرید لایبنیتس hif:Gottfried Leibniz fr:Gottfried Wilhelm Leibniz fy:Gottfried Wilhelm Leibniz fur:Gottfried Leibniz ga:Gottfried Leibniz gl:Gottfried Wilhelm Leibniz gan:臘尼茲 ko:고트프리트 빌헬름 라이프니츠 hy:Լայբնից Գոթֆրիդ Վիլհելմ hi:गाटफ्रीड लैबनिट्ज़ hsb:Gottfried Wilhelm Leibniz hr:Gottfried Leibniz io:Gottfried Wilhelm Leibniz id:Gottfried Leibniz ia:Gottfried Wilhelm von Leibniz is:Gottfried Wilhelm von Leibniz it:Gottfried Wilhelm von Leibniz he:גוטפריד וילהלם לייבניץ jv:Gottfried Leibniz ka:გოტფრიდ ლაიბნიცი kk:Готфрид Вильгельм Лейбниц sw:Gottfried Leibniz ht:Gottfried Leibniz ku:Gottfried Wilhelm Leibniz la:Godefridus Guilielmus Leibnitius lv:Gotfrīds Leibnics lb:Gottfried Wilhelm Leibniz lt:Gottfried Leibniz lij:Gottfried Wilhelm Leibniz lmo:Gottfried Leibniz hu:Gottfried Wilhelm Leibniz mk:Готфрид Вилхелм Лајбниц ml:ഗോട്ട്ഫ്രൈഡ് ലെയ്ബ്നിസ് mr:गॉटफ्रीड लाइब्नित्स mn:Готфрид Вильгельм Лейбниц mrj:Лейбниц, Готфрид Вильгельм nl:Gottfried Wilhelm Leibniz ja:ゴットフリート・ライプニッツ no:Gottfried Leibniz nn:Gottfried Leibniz oc:Gottfried Leibniz pnb:گوٹفرائیڈ لیبنز pms:Gottfried Leibniz nds:Gottfried Wilhelm Leibniz pl:Gottfried Wilhelm Leibniz pt:Gottfried Leibniz ro:Gottfried Wilhelm von Leibniz rue:Ґотфрід Вільгельм Лейбніц ru:Лейбниц, Готфрид Вильгельм sc:Gottfried Leibniz sco:Gottfried Leibniz sq:Gotfried Leibniz scn:Gottfried Leibniz si:ගොට්ෆ්රයිඩ් ලෙයිබ්නිස් simple:Gottfried Leibniz sk:Gottfried Wilhelm Leibniz sl:Gottfried Wilhelm Leibniz sr:Готфрид Вилхелм Лајбниц sh:Gottfried Leibniz fi:Gottfried Leibniz sv:Gottfried Wilhelm von Leibniz tl:Gottfried Leibniz ta:கோட்பிரீட் லைப்னிட்ஸ் th:กอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ tr:Gottfried Leibniz uk:Ґотфрід Вільгельм Лейбніц vi:Gottfried Leibniz vo:Gottfried Leibniz war:Gottfried Leibniz yo:Gottfried Leibniz bat-smg:Guotfrīds Leibnėcos zh:戈特弗里德·莱布尼茨This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.