login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000290 The squares: a(n) = n^2.
(Formerly M3356 N1350)
2941
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

To test if a number is a square, see Cohen, p. 40. - N. J. A. Sloane, Jun 19 2011

Zero followed by partial sums of A005408 (odd numbers). - Jeremy Gardiner, Aug 13 2002

Begin with n, add the next number, subtract the previous number and so on ending with subtracting a 1: a(n) = n + (n+1) - (n-1) + (n+2) - (n-2) + (n+3) - (n-3) + ... + (2n-1) - 1 = n^2. - Amarnath Murthy, Mar 24 2004

Sum of two consecutive triangular numbers A000217. - Lekraj Beedassy, May 14 2004

Numbers with an odd number of divisors: {d(n^2) = A048691(n); for the first occurrence of 2n + 1 divisors, see A071571(n)}. - Lekraj Beedassy, Jun 30 2004

See also A000037.

First sequence ever computed by electronic computer, on EDSAC, May 06 1949 (see Renwick link). - Russ Cox, Apr 20 2006

Numbers k such that the imaginary quadratic field Q(sqrt(-k)) has four units. - Marc LeBrun, Apr 12 2006

For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A006881(k)^(n-1)); a(n) = A000005(A000400(n-1)) = A000005(A011557(n-1)) = A000005(A001023(n-1)) = A000005(A001024(n-1)). - Reinhard Zumkeller, Mar 04 2007

If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007

Numbers a such that a^1/2 + b^1/2 = c^1/2 and a^2 + b = c. - Cino Hilliard, Feb 07 2008 (this comment needs clarification, Joerg Arndt, Sep 12 2013)

Numbers k such that the geometric mean of the divisors of k is an integer. - Ctibor O. Zizka, Jun 26 2008

Equals row sums of triangle A143470. Example: 36 = sum of row 6 terms: (23 + 7 + 3 + 1 + 1 + 1). - Gary W. Adamson, Aug 17 2008

Equals row sums of triangles A143595 and A056944. - Gary W. Adamson, Aug 26 2008

Number of divisors of 6^(n-1) for n > 0. - J. Lowell, Aug 30 2008

Denominators of Lyman spectrum of hydrogen atom. Numerators are A005563. A000290-A005563 = A000012. - Paul Curtz, Nov 06 2008

a(n) is the number of all partitions of the sum 2^2 + 2^2 + ... + 2^2, (n-1) times, into powers of 2. - Valentin Bakoev, Mar 03 2009

a(n) is the maximal number of squares that can be 'on' in an n X n board so that all the squares turn 'off' after applying the operation: in any 2 X 2 sub-board, a square turns from 'on' to 'off' if the other three are off. - Srikanth K S, Jun 25 2009

Zero together with the numbers k such that 2 is the number of perfect partitions of k. - Juri-Stepan Gerasimov, Sep 26 2009

Totally multiplicative sequence with a(p) = p^2 for prime p. - Jaroslav Krizek, Nov 01 2009

Satisfies A(x)/A(x^2), A(x) = A173277: (1, 4, 13, 32, 74, ...). - Gary W. Adamson, Feb 14 2010

Positive members are the integers with an odd number of odd divisors and an even number of even divisors. See also A120349, A120359, A181792, A181793, A181795. - Matthew Vandermast, Nov 14 2010

Besides the first term, this sequence is the denominator of Pi^2/6 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + ... . - Mohammad K. Azarian, Nov 01 2011

Partial sums give A000330. - Omar E. Pol, Jan 12 2013

Drmota, Mauduit, and Rivat proved that the Thue-Morse sequence along the squares is normal; see A228039. - Jonathan Sondow, Sep 03 2013

a(n) can be decomposed into the sum of the four numbers [binomial(n, 1) + binomial(n, 2) + binomial(n-1, 1) + binomial(n-2, 2)] which form a "square" in Pascal's Triangle A007318, or the sum of the two numbers [binomial(n, 2) + binomial(n+1, 2)], or the difference of the two numbers [binomial(n+2, 3) - (binomial(n, 3)]. - John Molokach, Sep 26 2013

In terms of triangular tiling, the number of equilateral triangles with side length 1 inside an equilateral triangle with side length n. - K. G. Stier, Oct 30 2013

Number of positive roots in the root systems of type B_n and C_n (when n > 1). - Tom Edgar, Nov 05 2013

Squares of squares (fourth powers) are also called biquadratic numbers: A000583. - M. F. Hasler, Dec 29 2013

For n > 0, a(n) is the largest integer k such that k^2 + n is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n is a multiple of k + n is given by k = n^(2*m). - Derek Orr, Sep 03 2014

For n > 0, a(n) is the number of compositions of n + 5 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016

a(n), for n >= 3, is also the number of all connected subtrees of a cycle graph, having n vertices. - Viktar Karatchenia, Mar 02 2016

On every sequence of natural continuous numbers with an even number of elements, the summatory of the second half of the sequence minus the summatory of the first half of the sequence is always a square. Example: Sequence from 61 to 70 has an even number of elements (10). Then 61 + 62 + 63 + 64 + 65 = 315; 66 + 67 + 68 + 69 + 70 = 340; 340 - 315 = 25. (n/2)^2 for n = number of elements. - César Aguilera, Jun 20 2016

On every sequence of natural continuous numbers from n^2 to (n+1)^2, the sum of the differences of pairs of elements of the two halves in every combination possible is always (n+1)^2. - César Aguilera, Jun 24 2016

Suppose two circles with radius 1 are tangent to each other as well as to a line not passing through the point of tangency. Create a third circle tangent to both circles as well as the line. If this process is continued, a(n) for n > 0 is the reciprocals of the radii of the circles, beginning with the largest circle. - Melvin Peralta, Aug 18 2016

Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017

Numerators of the solution to the generalization of the Feynman triangle problem, with an offset of 2. If each vertex of a triangle is joined to the point (1/p) along the opposite side (measured say clockwise), then the area of the inner triangle formed by these lines is equal to (p - 2)^2/(p^2 - p + 1) times the area of the original triangle, p > 2. For example, when p = 3, the ratio of the areas is 1/7. The denominators of the ratio of the areas is given by A002061. [Cook & Wood, 2004] - Joe Marasco, Feb 20 2017

Equals row sums of triangle A004737, n >= 1. - Martin Michael Musatov, Nov 07 2017

Right-hand side of the binomial coefficient identity Sum_{k = 0..n} (-1)^(n+k+1)*binomial(n,k)*binomial(n + k,k)*(n - k) = n^2. - Peter Bala, Jan 12 2022

Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)-1} such that |A|=|B|=k and A+B contains {0,1,2,...,a(n)-1}} = n. - Michael Chu, Mar 09 2022

Number of 3-permutations of n elements avoiding the patterns 132, 213, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022

REFERENCES

G. L. Alexanderson et al., The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965-1984, "December 1967 Problem B4(a)", pp. 8(157) MAA Washington DC 1985.

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.

R. P. Burn & A. Chetwynd, A Cascade Of Numbers, "The prison door problem" Problem 4 pp. 5-7; 79-80 Arnold London 1996.

H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1996, p. 40.

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), p. 6.

M. Gardner, Time Travel and Other Mathematical Bewilderments, Chapter 6 pp. 71-2, W. H. Freeman NY 1988.

L. B. W. Jolley, Summation of Series, Dover (1961).

Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.

Alfred S. Posamentier, The Art of Problem Solving, Section 2.4 "The Long Cell Block" pp. 10-1; 12; 156-7 Corwin Press Thousand Oaks CA 1996.

Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

J. K. Strayer, Elementary Number Theory, Exercise Set 3.3 Problems 32, 33, p. 88, PWS Publishing Co. Boston MA 1996.

C. W. Trigg, Mathematical Quickies, "The Lucky Prisoners" Problem 141 pp. 40, 141, Dover NY 1985.

R. Vakil, A Mathematical Mosaic, "The Painted Lockers" pp. 127;134 Brendan Kelly Burlington Ontario 1996.

LINKS

Franklin T. Adams-Watters, The first 10000 squares: Table of n, n^2 for n = 0..10000

Valentin P. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp. 17-41.

Stefano Barbero, Umberto Cerruti, and Nadir Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, section 4.4.

Anicius Manlius Severinus Boethius, De institutione arithmetica libri duo, Book 2, sections 10-12.

Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.

Henry Bottomley, Some Smarandache-type multiplicative sequences

R. J. Cook and G. V. Wood, Feynman's Triangle, Mathematical Gazette, 88:299-302 (2004).

John Derbyshire, Monkeys and Doors

Michael Drmota, Christian Mauduit, and Joël Rivat, The Thue-Morse Sequence Along The Squares is Normal, Abstract, ÖMG-DMV Congress, 2013.

Ralph Greenberg, Math for Poets

Guo-Niu Han, Enumeration of Standard Puzzles

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

Vi Hart, Doodling in Math Class: Connecting Dots (2012) [Video].

Nick Hobson, Python program to determine whether an integer is in sequence A000290

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 338

Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets

Milan Janjic, Two Enumerative Functions

Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.

Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.

Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.

Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.

J. H. McKay, The William Lowell Putnam Mathematical Competition, Problem B4(a), The American Mathematical Monthly, vol. 75, no. 7, 1968, pp. 732-739.

Matthew Parker, The first million squares (7-Zip compressed file)

Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.

Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992; arXiv:0911.4975 [math.NT], 2009.

Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567

Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.

William S. Renwick, EDSAC log.

Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.

Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.

John Scholes, 28th Putnam 1967 Prob.B4(a)

James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.

N. J. A. Sloane, Illustration of initial terms of A000217, A000290, A000326

Michael Somos, Rational Function Multiplicative Coefficients

Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.

Dinoj Surendran, Chimbumu and Chickwama get out of jail

Eric Weisstein's World of Mathematics, Square Number

Eric Weisstein's World of Mathematics, Unit

Eric Weisstein's World of Mathematics, Wiener Index

Index entries for "core" sequences

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

Index entries for two-way infinite sequences

Index to sequences related to polygonal numbers

Index entries for sequences related to Benford's law

FORMULA

G.f.: x*(1 + x) / (1 - x)^3.

E.g.f.: exp(x)*(x + x^2).

Dirichlet g.f.: zeta(s-2).

a(n) = a(-n).

Multiplicative with a(p^e) = p^(2*e). - David W. Wilson, Aug 01 2001

Sum of all matrix elements M(i, j) = 2*i/(i+j) (i, j = 1..n). a(n) = Sum_{i = 1..n} Sum_{j = 1..n} 2*i/(i + j). - Alexander Adamchuk, Oct 24 2004

a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 2. - Miklos Kristof, Mar 09 2005

From Pierre CAMI, Oct 22 2006: (Start)

a(n) is the sum of the odd numbers from 1 to 2*n - 1.

a(0) = 0, a(1) = 1, then a(n) = a(n-1) + 2*n - 1. (End)

For n > 0: a(n) = A130064(n)*A130065(n). - Reinhard Zumkeller, May 05 2007

a(n) = Sum_{k = 1..n} A002024(n, k). - Reinhard Zumkeller, Jun 24 2007

Left edge of the triangle in A132111: a(n) = A132111(n, 0). - Reinhard Zumkeller, Aug 10 2007

Binomial transform of [1, 3, 2, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007

a(n) = binomial(n+1, 2) + binomial(n, 2).

This sequence could be derived from the following general formula (cf. A001286, A000330): n*(n+1)*...*(n+k)*(n + (n+1) + ... + (n+k))/((k+2)!*(k+1)/2) at k = 0. Indeed, using the formula for the sum of the arithmetic progression (n + (n+1) + ... + (n+k)) = (2*n + k)*(k + 1)/2 the general formula could be rewritten as: n*(n+1)*...*(n+k)*(2*n+k)/(k+2)! so for k = 0 above general formula degenerates to n*(2*n + 0)/(0 + 2) = n^2. - Alexander R. Povolotsky, May 18 2008

From a(4) recurrence formula a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 4, a(3) = 9. - Artur Jasinski, Oct 21 2008

The recurrence a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) is satisfied by all k-gonal sequences from a(3), with a(0) = 0, a(1) = 1, a(2) = k. - Jaume Oliver Lafont, Nov 18 2008

a(n) = floor(n*(n+1)*(Sum_{i = 1..n} 1/(n*(n+1)))). - Ctibor O. Zizka, Mar 07 2009

Product_{i >= 2} 1 - 2/a(i) = -sin(A063448)/A063448. - R. J. Mathar, Mar 12 2009

Let A000290 = F(actor) then F*4 = Q^2 always, where Q = 2*n if n >= 0 and n are the unique numbers of exact roots Q. - David Scheers, Mar 15 2009

a(n) = A002378(n-1) + n. - Jaroslav Krizek, Jun 14 2009

a(n) = n*A005408(n-1) - (Sum_{i = 1..n-2} A005408(i)) - (n-1) = n*A005408(n-1) - a(n-1) - (n-1). - Bruno Berselli, May 04 2010

a(n) == 1 (mod n+1). - Bruno Berselli, Jun 03 2010

a(n) = a(n-1) + a(n-2) - a(n 3) + 4, n > 2. - Gary Detlefs, Sep 07 2010

a(n+1) = Integral_{x >= 0} exp(-x)/( (Pn(x)*exp(-x)*Ei(x) - Qn(x))^2 +(Pi*exp(-x)*Pn(x))^2 ), with Pn the Laguerre polynomial of order n and Qn the secondary Laguerre polynomial defined by Qn(x) = Integral_{t >= 0} (Pn(x) - Pn(t))*exp(-t)/(x-t). - Groux Roland, Dec 08 2010

Euler transform of length-2 sequence [4, -1]. - Michael Somos, Feb 12 2011

A162395(n) = -(-1)^n * a(n). - Michael Somos, Mar 19 2011

a(n) = A004201(A000217(n)); A007606(a(n)) = A000384(n); A007607(a(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011

Sum_{n >= 1} 1/a(n)^k = (2*Pi)^k*B_k/(2*k!) = zeta(2*k) with Bernoulli numbers B_k = -1, 1/6, 1/30, 1/42, ... for k >= 0. See A019673, A195055/10 etc. [Jolley eq 319].

Sum_{n>=1} (-1)^(n+1)/a(n)^k = 2^(k-1)*Pi^k*(1-1/2^(k-1))*B_k/k! [Jolley eq 320] with B_k as above.

A007968(a(n)) = 0. - Reinhard Zumkeller, Jun 18 2011

A071974(a(n)) = n; A071975(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2011

a(n) = A199332(2*n - 1, n). - Reinhard Zumkeller, Nov 23 2011

For n >= 1, a(n) = Sum_{d|n} phi(d)*psi(d), where phi is A000010 and psi is A001615. - Enrique Pérez Herrero, Feb 29 2012

a(n) = A000217(n^2) - A000217(n^2 - 1), for n > 0. - Ivan N. Ianakiev, May 30 2012

a(n) = (A000217(n) + A000326(n))/2. - Omar E. Pol, Jan 11 2013

a(n) = A162610(n, n) = A209297(n, n) for n > 0. - Reinhard Zumkeller, Jan 19 2013

a(A000217(n)) = Sum_{i = 1..n} Sum_{j = 1..n} i*j, for n > 0. - Ivan N. Ianakiev, Apr 20 2013

a(n) = A133280(A000217(n)). - Ivan N. Ianakiev, Aug 13 2013

a(2*a(n)+2*n+1) = a(2*a(n)+2*n) + a(2*n+1). - Vladimir Shevelev, Jan 24 2014

a(n+1) = Sum_{t1+2*t2+...+n*tn = n} (-1)^(n+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*4^(t1)*7^(t2)*8^(t3+...+tn). - Mircea Merca, Feb 27 2014

a(n) = floor(1/(1-cos(1/n)))/2 = floor(1/(1-n*sin(1/n)))/6, n > 0. - Clark Kimberling, Oct 08 2014

a(n) = ceiling(Sum_{k >= 1} log(k)/k^(1+1/n)) = -Zeta'[1+1/n]. Thus any exponent greater than 1 applied to k yields convergence. The fractional portion declines from A073002 = 0.93754... at n = 1 and converges slowly to 0.9271841545163232... for large n. - Richard R. Forberg, Dec 24 2014

a(n) = Sum_{j = 1..n} Sum_{i = 1..n} ceiling((i + j - n + 1)/3). - Wesley Ivan Hurt, Mar 12 2015

a(n) = Product_{j = 1..n-1} 2 - 2*cos(2*j*Pi/n). - Michel Marcus, Jul 24 2015

From Ilya Gutkovskiy, Jun 21 2016: (Start)

Product_{n >= 1} (1 + 1/a(n)) = sinh(Pi)/Pi = A156648.

Sum_{n >= 0} 1/a(n!) = BesselI(0, 2) = A070910. (End)

a(n) = A028338(n, n-1), n >= 1 (second diagonal). - Wolfdieter Lang, Jul 21 2017

For n >= 1, a(n) = Sum_{d|n} sigma_2(d)*mu(n/d) = Sum_{d|n} A001157(d)*A008683(n/d). - Ridouane Oudra, Apr 15 2021

a(n) = Sum_{i = 1..2*n-1} ceiling(n - i/2). - Stefano Spezia, Apr 16 2021

From Richard L. Ollerton, May 09 2021: (Start) For n >= 1,

a(n) = Sum_{k=1..n} psi(n/gcd(n,k)).

a(n) = Sum_{k=1..n} psi(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).

a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)).

a(n) = Sum_{k=1..n} sigma_2(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)). (End)

a(n) = (A005449(n) + A000326(n))/3. - Klaus Purath, May 13 2021

Let T(n) = A000217(n), then a(T(n)) + a(T(n+1)) = T(a(n+1)). - Charlie Marion, Jun 27 2022

EXAMPLE

Example: A000290 = F = 25. n = 5. Q = 10. Q^2 = F * 4 => 10^2 = 25 * 4 = 100. - David Scheers, Mar 15 2009

For n = 8, a(8) = 8 * 15 - (1 + 3 + 5 + 7 + 9 + 11 + 13) - 7 = 8 * 15 - 49 - 7 = 64. - Bruno Berselli, May 04 2010

G.f. = x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 36*x^6 + 49*x^7 + 64*x^8 + 81*x^9 + ...

a(4) = 16. For n = 4 vertices, the cycle graph C4 is A-B-C-D-A. The subtrees are: 4 singles: A, B, C, D; 4 pairs: A-B, BC, C-D, A-D; 4 triples: A-B-C, B-C-D, C-D-A, D-A-B; 4 quads: A-B-C-D, B-C-D-A, C-D-A-B, D-A-B-C; 4 + 4 + 4 + 4 = 16. - Viktar Karatchenia, Mar 02 2016

MAPLE

A000290 := n->n^2; seq(A000290(n), n=0..50);

A000290 := -(1+z)/(z-1)^3; # Simon Plouffe, in his 1992 dissertation, for sequence starting at a(1)

MATHEMATICA

Array[#^2 &, 51, 0] (* Robert G. Wilson v, Aug 01 2014 *)

LinearRecurrence[{3, -3, 1}, {0, 1, 4}, 60] (* Vincenzo Librandi, Jul 24 2015 *)

CoefficientList[Series[-(x^2 + x)/(x - 1)^3, {x, 0, 50}], x] (* Robert G. Wilson v, Jul 23 2018 *)

Range[0, 99]^2 (* Alonso del Arte, Nov 21 2019 *)

PROG

(Magma) [ n^2 : n in [0..1000]];

(PARI) {a(n) = n^2};

(PARI) b000290(maxn)=for(n=0, maxn, print(n, " ", n^2); ) \\ Anatoly E. Voevudko, Nov 11 2015

(Haskell)

a000290 = (^ 2)

a000290_list = scanl (+) 0 [1, 3..] -- Reinhard Zumkeller, Apr 06 2012

(Maxima) A000290(n):=n^2$ makelist(A000290(n), n, 0, 30); /* Martin Ettl, Oct 25 2012 */

(Scheme) (define (A000290 n) (* n n)) ;; Antti Karttunen, Oct 06 2017

(Scala) (0 to 59).map(n => n * n) // Alonso del Arte, Oct 07 2019

(Python) # See Hobson link

(Python)

def A000290(n): return n**2 # Chai Wah Wu, Nov 13 2022

CROSSREFS

Cf. A092205, A128200, A005408, A128201, A002522, A005563, A008865, A059100, A143051, A143470, A143595, A056944, A001157 (inverse Möbius transform), A001788 (binomial transform), A228039, A001105, A004159, A159918, A173277, A095794, A162395, A186646 (Pisano periods), A028338 (2nd diagonal).

A row or column of A132191.

This sequence is related to partitions of 2^n into powers of 2, as it is shown in A002577. So A002577 connects the squares and A000447. - Valentin Bakoev, Mar 03 2009

Boustrophedon transforms: A000697, A000745.

Cf. A342819.

Sequence in context: A331221 A174452 A174902 * A162395 A253909 A305559

Adjacent sequences: A000287 A000288 A000289 * A000291 A000292 A000293

KEYWORD

nonn,core,easy,nice,mult,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

Incorrect comment and example removed by Joerg Arndt, Mar 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 05:56 EST 2022. Contains 358512 sequences. (Running on oeis4.)