THE THUE-MORSE SEQUENCE ALONG SQUARES IS NORMAL
MICHAEL DRMOTA, CHRISTIAN MAUDUIT, AND JOEL RIVAT

ABSTRACT. The Thue-Morse sequence is a classical example of an almost periodic (or uniformly
recurrent) sequence in the sense that its associated symbolic dynamical system is minimal. We
prove that the subsequence along squares of the Thue-Morse sequence is normal.

1. INTRODUCTION

The goal of this work is to show a first example of an almost periodic sequence (in the sense
of symbolic dynamical systems) whose subsequence along squares is a normal sequence. As an
application, this provides a new method to produce normal numbers in a given base.

In this paper we denote by N the set of non negative integers, by U the set of complex numbers
of modulus 1 and we set e(x) = exp(2imz) for any real number z. If f and g are two functions
taking strictly positive values such that f/g is bounded, we write f = O(g) or f < g.

1.1. The Thue-Morse dynamical system. Let (t,),cy and (t.),en be the sequences of words
on the alphabet {0,1} defined by

to=0, th=1, t,,1 = t,t/, and t. , =t't,

(in all this paper we identify words by . .. bx—1 on the alphabet {0, 1} with sequences (b;)ico,... -1} €
{0,1}* and we denote by UV the concatenation of the words U and V on the alphabet {0,1}).
The sequence (t,),en converges for the product topology in {0, 1} to an infinite word t € {0, 1}
called the Thue-Morse sequence (or Thue-Morse infinite word).

There are many other ways to define the Thue-Morse sequence t = (£(n)),en € {0,1}N. For
example it is easy the check that t is the fixed point of the substitution 0 — 01 and 1 — 10 with
t(0) = 0 and that, for any non negative integer n, we have t(n) = s(n) mod 2 where s(n) denotes
the number of powers of 2 in the binary representation of n. Since its introduction independently
by Thue in [I7] and by Morse in [12] (see also [14] for an earlier variant introduced by Prouhet), the
Thue-Morse sequence has been studied in many different contexts from combinatorics to algebra,
number theory, harmonic analysis, geometry and dynamical systems (see [Il, §]).

Definition 1. The symbolic dynamical system associated to a sequence u € {0, 1} is the system
(X(u),T), where T is the shift on {0,1}N and X (u) the closure (for the product topology of {0,1})
of the orbit of u under the action of T.

We say that (bg,...,bx_1) € {0,1}* is a factor of the sequence u € {0,1}" if there exists an
integer i such that u(i) = bg,..., u(i + k — 1) = bx_1.

Definition 2. A sequence u € {0,1}" is almost periodic (or uniformly recurrent) if every factor
of u occurs infinitely often in u with bounded gaps.
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Morse proved in [12] that t is an almost periodic sequence (see also [8, Proposition 4] or [15]
Proposition 5.1.2]). This property means that the dynamical system (X (t),7") is minimal (i.e. the
only closed T-invariant sets in X (t) are () and X (t), see [16, Theorem IV.12] or [15, Proposition
5.1.13]).

1.2. Low complexity of the Thue-Morse sequence.

Definition 3. The symbolic complexity of a sequence u € {0, 1} is the function py defined by for
any positive integer k by

pu(k) = card{(bo, ..., bp_1) € {0,1}*, Fi /u(i) =bg,...,u(i +k—1)=by_ 1}
(i.e. pu(k) is equal to the number of distinct factors of length k that occur in the sequence u).

It follows from Definition [3[ that for any sequence u the function p, verifies 1 < pyu(k) < 2k and
constitutes a possible measure for the pseudorandomness of the sequence u. More precisely, it is
easy to show that the topological entropy of the symbolic dynamical system (X (u),7’) is equal to
limy, o0 % (see [1]).

The sequence t is defined by a very simple algorithm and its symbolic complexity is very low:
it follows from [3, Proposition 4.5] or [6, Corollary 4.5] that for any positive integer k& we have
pe(k) < 22k. For any fixed (a,b) € N? it is easy the check that the sequence tqp = (t(an+b))nen is
also obtained by a simple algorithm. More precisely t,; is generated by a finite 2-automaton (see
[2] for a definition of this notion). It follows that the combinatorial structure of the sequence t,
can be understood from the study of its associated 2-automaton and that its symbolic complexity is
also also sublinear: py, , (k) = Oq(k) (see [5, Theorem 2]). This shows that any symbolic dynamical
system (X (tqp),T") obtained by extracting a subsequence of t along arithmetic progressions still
has zero topological entropy.

1.3. Main result. The goal of this work is to show that the situation changes completely when
we replace linear subsequences by quadratic ones.

Definition 4. A sequence u € {0, 1} is normal if, for any k € N and any (b, . .., bx_1) € {0, 1}*,
we have

.1 : . :
A}l_lgoﬁcard{z <N, u(i) =bgy,...,u(i+k—1)=bp1}= o

Theorem 1. The sequence ta = (t(n?))nen is normal.

There are only few known explicit constructions of normal numbers in a given base (see [4],
Chapters 4 and 5]). This theorem provided a new construction of a number normal in base 2.

Hn?)

5 18 normal in base 2.

Corollary 1. The real number o = >
n=0

Remark 1. For any integer ¢ > 2, a generalized Thue-Morse sequence t9 € {0,...,q¢ — 1} can
be defined by

vn € N, t9(n) = s(n*) mod q.
Our method might be adapted to prove that t\9 is normal, providing an example of a real number

. X @)
normal in base q: a9 = > tqq#z)-
n=0

Allouche and Shallit conjectured in [2, Problem 10.12.7] that the symbolic complexity of the
sequence to is maximal (i.e. that for any positive integer k, we have pg,(k) = 2%) and this
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conjecture was proved by Moshe in [I3]. The control of the frequency of occurency of the blocks
of length £ is a more difficult question. When k£ = 1, it follows from [9] that

1 1
lim Ncard{n<]\7 t(n?*) =0} = lim Ncard{n<N tn*) =1} = =

N—o0 N—oo 2’

but the method of [9] does not allow to control higher order correlations. In this work we introduce
new ideas in order to be able to control the Fourier transform of correlations of any order.

2. PLAN OF THE PROOF

Let €;(n) € {0,1} denote the j-th digit in the binary representation of a non-negative integer n

and write
f(n) =14s(n) =3 &n)

=0
For (A, 1) € N% such that 0 < p < A, we define the truncated binary sum-of-digits function s, and
the two-fold restricted binary sum of digits function s, x by

s\n) = Y gi(n) and s,a(n) = Y gi(n) =si(n) = su(n).
0<j<A p<j<A

We also write
faln) = %S)\(n) and fya(n) = %Su,/\(”)-

In order to prove our main result, we actually need the following theorem on exponential sums.

Theorem 2. For any integer k > 1 and (ag,...,ap_1) € {0,1}* such that (ag,...,cp 1) #
(0,...,0), there exists n > 0 such that

(1) So=3 e (% > ons(in+ e>2>> <N

n<N

Lemma 1. Theorem[3 implies that the sequence ta is normal.
Proof. Let (by,...,bx_1) € {0,1}*. Then by assuming that (1)) holds we obtain
card{n < N : (tp2, ..., tik-1)2) = (bo, ... bg—1)}

e Z 1[tn2:b0] .« o 1[t(n+k_1)2:bk—l]

—ZN ZO ( (1) ~ bo) ) - ; izoe(o";‘l (s((n+k = 1)) = b))

1 Ck[)bo"—"'—FOék,lbk,l
-5 X e(— ;) S

(00, —1)€{0,1}F

1y
<Z§ags (n+2) ))
=0

N
= OV

with 7 > 0 obtained in Theorem [2| O
Thus, we just have to concentrate on Theorem 2, The structure of the full proof of Theorem [2]

is the following one. First we collect some auxiliary results (Section . The following Section (4] is
devoted to some properties of the carry propagation (in particular we have to provide a quantitative
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statement of the fact that carry propagation along several digits are rare). The main ingredients
of the proof of Theorem [2| are upper bounds on the Fourier terms

k—1
GL(h,d) = % d e <§jwhm+&uwa—mzv,

0<u<2A =0

where I = (ig,...,ix_1) € N¥. The other ingredients include Van-der-Corput type inequalities in
order to reduce the problem to sums that depend only on few digits of n?, (n+1)?,..., (n+k—1)2
These reduced sums have a periodic structure that allows a proper Fourier analytic treatment.
After the Fourier analysis the problem is roughly speaking split into a part where the Fourier terms
GA(h,d) appear and into a second part involving quadratic exponential sums. The corresponding
bounds are formulated in Propositions [I| and [2[ (see Section [5) and proved in Sections |8 and |§| We
have to distinguish in the proof of Theorem [2| between the cases where K = ag+ - - -+ ay_1 is even
and where K is odd, and Sections [6] and [7] correspond to this distinction. In Section [6] we prove
that if K is even we can deduce Theorem [2] from Proposition [I] and in Section [7] we prove that if
K is odd we can deduce Theorem [2 from Proposition . Finally, the last two sections (Sections
and E[) provide the proofs of Propositions (1| and . Proposition [1|is a bound on averages of Fourier
transforms and is actually much easier to prove than the uniform bound of Proposition [2] which is
needed in the odd case.

3. AUXILIARY LEMMAS

3.1. A multidimensional application of Vaaler’s method. The following lemma is a classical
method to detect real numbers in an interval modulo 1 by means of exponential sums. For a € R
with 0 < a < 1 we denote by x, the characteristic function of the interval [0, ) modulo 1:

(2) Xa(®) = [2] = [z —a].

Lemma 2. Foralla € R with0 < o < 1 and all integer H > 1 there exist real valued trigonometric
polynomials Ay () and By g (x) such that for all z € R

(3) Xa(2) = Aa,r(#)| < Ba,n(z),

where

(4) Aon(r) =Y an(e, H)e(ha), Bonu(z) = > bu(a, H)e(hx),
|h|<H |h|<H

with coefficients ap(a, H) and by (o, H) satisfying
(5) aola, H) = o, Jan(o, H)| < min (o, ), [ou(e, )| < 74
Proof. This is a consequence of Theorem 19 of [18] (see [1I, Lemma 1]). O

Similarly we can detect points in a d-dimensional box (modulo 1):

Lemma 3. For (ay,...,aq) € [0,1)¢ and (Hy,...,Hy) € N with Hy > 1,..., Hy > 1, we have
for all (zy,...,14) € RY

(6) H X, (25) — H Aaj 1, (25)

where Aq 1 (.) and By u(.) are the real valued trigonometric polynomials defined by ().

< Z Hxaj(xj)HBaj,Hj(x])

0£TC{L,....d} 5] jeJ
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Proof. We have

d
1] e @) HAaJ (x5)
j=1

Since xo, > 0, by () we get (6). O

Let (Uy,...,Uy) € NdwithU; > 1,...,U; > landput oy = 1/Uy,...,a0 = 1/Uy. Forj=1,....,d
and any € R we have

uA
7 a; — = :17
™) S ( Uj)
0<u; <U;

Let Ne Nwith N> 1, f:{1,...,N} > R%and g: {1,..., N} — C such that |g| < 1. Writing
f=C(f1,..., fn) we can express the sum

< Z H‘X% Lj ‘H‘Xa; ;) ozg J(xj)‘

0A£JC{1,...,d} j&J jeJ

as

Let (Hy,...,Hy) € NY with H; > 1,..., H; > 1 and

§=n§;g<n> > A (A0 = ) S Ay () - ).

0<u1<U;

Lemma 4. With the above notations we have

(®) 5-35] < DS e D YD S

=1 1<1<<jp = Y by |<H U |y |<H, U,
N
Ze (hlejlfjl(n) +oot hszjefje(n>> :
n=1

Proof. By () we have

5= <3 X (I3 v (5= 2) ) (TT X o (500- )

0£IC{1,....d} \J&J 0<u;<U; JEJ 0<u; <U;
which by (7)) gives
N
EEEEDSZUIND SN | (D S CIOEES )
n=1 PAITC{1,...,d} F€J 0<u; <U; 4
Since Bq, g, > 0 and [g| < 1 we get

53 X SIS S wlo e (i -"2)

0£JC{1,....d} n=1 jeJ 0<u;<U; |h;|<H;
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Z _hjuj o Uj lf hjEOHIOd Uj
¢ U; o 0 otherwise

Observing that

0<u;<U;
we obtain
N
s-S< Y SII6 X X busles H)eifin).
0#JCAL,....d} n=1j€]  0<u;<Uj |h;|<H;/U;
Expanding the product, reversing the order of summations and using this leads to (8). 0

3.2. Van der Corput’s inequality. The following lemma is a generalization of van der Corput’s
inequality.

Lemma 5. For all complex numbers zq,...,zx and all integers Q > 1 and R > 1 we have
2
N+QR-Q r _
1<n<N 1<n<N 1<r<R 1<n<N-—-Qr

where N(z) denotes the real part of z € C.

Proof. See for example Lemma 17 of [9]. O

3.3. Sums of geometric series. We will often make use of the following upper bound of geometric
series of ratio e(§) for (L, Ly) € Z?, Ly < Ly and € € R:

> et

L1<t<Lo

(10) < min(Ly — Ly, [sin7é| ™).

Lemma 6. Let (a,m) € Z* with m > 1, § = ged(a,m) and b € R. For any real number U > 0 we
have

(11) Z min (U ‘sm7ra”+b’ > < d min (U

0<n<m—1

sm7r6Hb/5”‘ ) + 2—mlog(2m).
T

Proof. The result is trivial for m = 1. For m > 2 after using Lemma 6 of [10] it suffice to observe
that
) 2m . 2m 1 2m . 2m _ 2m
- —log— < —log(2m).
s

sin 2— 6 ~ sin 2— T

Lemma 7. Let m > 1 and A > 1 be integers and b € R. For any real number U > 0 we have
(12) - Z Z min (U |sin 7ot | ) < 7(m) U+ mlogm
1<a<A 0<n<m
and if |b] < 3 we have the sharper bound
(13) = Z Z min (U |sin rentl | ) < 7(m) min (U, |sin7r%rl> + mlogm,
1<a<A 0<n<m

where T(m) denotes the number of divisors of m.
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Proof. Using we have for all b € R:
Z min <U |sin et | > < ged(a,m) U 4+ mlogm
0<n<m

while for |b| < 1, since ged(a, m)[|b/ ged(a, m)|| = |b| this can be sharpened using (11]) to

Z min (U |sin a2l | ) < ged(a,m) min( 2" ) + mlogm.

0<n<m
Now
1 ¥ wem=3d 3 153¢ 3 1=3a|g] <4
1<a<A Im  1<a<A Im 1<a<A  d|m
d<A ged(a,m)=d d<A dla d<A
which implies and when [b] < 3. O

3.4. Gauss sums.

Lemma 8. For all (a,b,m) € Z3 with m > 1, we have

m—1
2
e <an —i—bn)
: : m
n=0

Proof. This is Proposition 2 of [9]. O

(15) 2mged(a, m).

For incomplete quadratic Gauss sums we have

Lemma 9. For all (a,b,m, N,ng) € Z> with m > 1 and N > 0, we have
no+N

5 o(ozm)

n=ng+1

(16) < (414 2log22) \/2mged(a, m).

Proof. The following argument is a variant of a method known at least since Vinogradov. For
m = 1 the result is true. Assume that m > 2. There are |N/m| complete sums which are

bounded above by /2m ged(a, m). The remaining sum is either empty or of the form

ni+L
o an?+bn
S = g e( —
n=ni1+1
for some ny € Z and 1 < L < m. We have
ni+L m-—1 1 m—1
2
E § e(an+bn>_§ e knu
m
u=n1+1 n=0 k=0
hence
m—1 ni+L m—1
§ : z : 2 : (an2+(b+k)n)
€ )
m
k 0 u=ni+1 n=0
thus

3

m—1

1 2
s<—Y ( k )E{(M)
_mk:omln n:Oe m

Applying Lemma [§] with b replaced by b+ k and observing (by convexity of ¢ + 1/sin(nt/m)) that

1= 1 Y2 g
— E m1n<
m

k=0

Wk 2 s
)§1+— —— =1+ —logcot —
m Ji sin - s 2m
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we obtain ({16]). O

3.5. Norm of matrix products.

Lemma 10. Let My, ¢ € N, be N x N-matrices with complex entries My, ;, 1 <1i,7 < N, and

absolute row sums
N

DM < 1.

j=1
Furthermore assume that there exists integers mg > 1 and my > 1 and constants co > 0 and n > 0
such that

(1) every product A = (Ai ;)i eq,...ny2 of mo consecutive matrices My has the property that
for every row i we have

N
|Aial > co or Z |Aijl <1—m;

(2) every product B = (Bi,j)(i,j)e{l,..‘,N}Q of my consecutive matrices My has the property

N
> Byl <1-n
j=1

Then there exist constants C > 0 and 6 > 0 such that
r+k—1

1™
l=r 0o

uniformly for all v > 0 and k > 0 (where ||-|| denotes the matriz row-sum norm,).

(17) < C27%

Proof. 1t is enough to show that the product of my 4+ m; consecutive matrices M, has row-sum
norm < 1 — nc¢y. Indeed this implies

r4+k—1

[
and we obtain (17)) for C' = 1/(1 —nco) and 6 = neo/(mo +my).
Let A = (A; ;)i )eq,...,ny2 denote the product of mg consecutive matrices My and B = (B 1) (j.k)e(1,.... N2

the product of the next m; consecutive matrices M,. For any i € {1,..., N}, if |A; 1] > ¢y then
the i-th absolute row-sum of the product is bounded by

Z ZAw i <Z|AzJIZ|B,kI
k=1 | j=1
N
= [Aia] Z | Bux| + Z [Ai i1 > IBjl
— j=2 k=1

< [Aial (1 =7 +Z|AJ|

< |Aia| (1 —n) + 1 — A =1 =141 <1 —nco.

1
1T —nco

(1 —nco )Lk/(mo+m1)J < 9—ncok/(mo+ma)
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Similarly if we have Zjvzl |A; ;| <1—mn then

N | N N N
DD AUB <D A Bl <1—m.
k=1 1j=1 j=1 k=1

Since ¢g < 1 we have 1 — 1 < 1 — ¢gn, which completes the proof of Lemma [I0] 0

4. CARRY LEMMAS

The first lemma is a reformulation of Lemma 16 of [9].

Lemma 11. Let (v, \, p) € N3 such that v+ p < X\ < 2v. For any integer r with 0 < r < 2 the
number of integers n < 2” for which there exists an integer j > X with €;((n + 7)?) # ¢;(n?) is
& 22vFTr=2 Hence, the number of integers n < 2 with

sa((n+7)%) —sa(n?) # s((n+r)?) —s(n?)
is also < 2%+P—A,
The next lemma is more involved.

Lemma 12. Let (A, pu,v) € N> such that 0 < p < v < X and set y' = u — p', where p' is an
integer satisfying 2p' < p <v—p and N\ —v < 2(u— p'). For any integers n < 2", s > 1 and
1 <r <20-/2 ye set

n? = w1 2% + w; mod 2* (0<w <2, 0<u < 2247)

(18) (n+7)? = 2" + wy mod 2} (0<wy <29, 0< uy < 2217
2n = u32" 4wy mod 2* (0 < wsg <2, 0<uy < 27+ —#+7)

2sn = v mod 227H, (0<v<2m)

where the integers u; = uy(n), us = us(n) ,uz = uz(n), v =v(n) ,w; = wi(n), wy = wy(n) and
ws = ws(n) satisfy the above conditions. Then for any integer £ > 1 the number of integers n < 2¥
for which one of the following conditions

Sur((n 4+ 0)?) # Spr—ppp (ur + Cus)
(19) Sua((n 4+ 04+ 82)%)) # 8 a_ (g + fug + 027 + 0520+
Sua((n+7+ 6)2) # Sy A—ptp (U2 + Cus)
Sun((n 474 €+ 529%)) £ 8 r_ s (g + Cug + 027 + (€ + r)s2°+1)
is satisfied is < 2V77".

Proof. We first consider the case (n + ¢)%. The other cases are similar and we will comment on
them at the end of the proof. We have

(n+ 0% = (uy + Lug)2” +w; + lws + €2 mod 2.

This means that if w; + 6wz +¢? < 2%’ then for 0 < j < A — i/ we have £,/ ;((n+0)?) = €;(uy +Lus).
However, if wy 4+ fws 4+ 2 > 2# then there is a carry propagation. However, we will show that
there are only few exceptions where more than p’ digits are changed. More precisely the proof is
split into the following two steps:
(1) If the digits block (g;((n + £)?)),<j<x differ from the digits block (g;(uy 4 fus)) y<jcr—ptp's
where u; = ui(n) and uz = us(n) are defined in ([L8)), then we have

(20) (n ;6)2 B {(n ;éﬁJ < 2% or (n;é)Q B L(n;ﬁ)QJ S 2(:?”
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where C' = C({) is a constant.
(2) The number of integers n < 2" with (20) is < 27"

Of course if these two properties are true then Lemma [12]is proven.
We start with the proof of the first property. As mentioned above we just have to consider the
case where wy + lws + 2 > 2 = 2= Since wy, w3 < 2* the carry

W= {2_“’/ (w1 + fws + KQ)J

is bounded and, thus, can only attain finitely many values {1,2,..., D} (where D is a constant
that depends on /). These values of @ will certainly affect some of (lower order) digits of uy + Cus.
Let @ := u; + fusz mod 2¢ with 0 < & < 2¢". Then the digits ¢;(u; + fus), p' < j < A — p/, might
be affected by this carry if o € {27 —1,2¢ —2,...,2¢ — D}. Now since

(n+07?%  up+Lluy  wy+ lws+ (2
o 20’ Q' +p’

0wy + lwz + 2
= ﬁ + W mOd 1,
it immediately follows that holds with C' = D + 1. This completes the proof of the first part.
Next let Z denote the number integers of n < 2 with (20). Then by Lemma [2 we have

7 — Z (Xa (27*(n+0)%) 4+ xa (=27*(n + £)?))

mod 1

n<2v
1 (n+0)?
<23 (o) [T (1057)
|h|<H n<2v

where o = C277 and we can set H = 2°. It is clear that the main contribution comes from
the term with h = 0 which gives an upper bound of the form O(2"~*"). Now every h # 0 with
|h| < H = 2 can be written as h = /2!, where 0 < t < p/ and &’ is odd with |#’| < 2¢'~*. Then
we have by Lemma [J)

(n+1)*\ v (t—p) /2 (u+t) /2

n<2v

and consequently

27y

0#|h| <27’

=0 <2—p’ Z 2p/_t (2u+(t—p)/2 + M2(M+t)/2)>

0<t<p’

5(55)

n2¥

=0 (QV—M/2 + Mgu) )

Since 2p' < u < v — p' all contributions are < 2*~*". This completes the proof of the second part.
Finally we comment on the other cases. First, there is no change for (n + £ + s2*)? since the
term s2# does not affect the discussed carry propagation. Next for (n + £ + r)? we have

(n+ 04 1)% = (ug + lug)2" + wy + lws + 02 + 2r.

Here we have to assure that 27# (w4 fws + % +2r¢) remains bounded. However, this is ensured by
the assumption A—v < 2(u—p'). The same argument applies for the final case (n+/¢+s2#+r)% [
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5. FOURIER ESTIMATES

For any k € N, we denote by Z; the set of integer vectors I = (ig,...,ix_1) with ig = 0 and
ip_1 < iy <ip_y+1for 1 < <k—1 (note that Z; consists of 2*~! elements) and for any I € Ty,
h € Z and (d, \) € N?,

k—1
1
(21) Gi(hd) =5 > e (Zagfx(u+€d+ig)—hu2”>,
0<u<2* £=0

where oy € {0,1} (we assume that oy = 1). This sum can be also seen as the discrete Fourier

transform of the function .
-1
nre (Zagf)\(u—l—fd—l—ig)) )

=0
For any I € 7 we define
k—1
|| = apip + -+ + ag_1ig—1, K =ap+ -+ a1 and 0 = Zagf.
=0
We start with a recurrence for the discrete Fourier transform terms G4 (h, d) defined by (21).
For this purpose we define for any (g,&’) € {0,1}* the transformations on Z defined for any

I = (io,il,. .. ,’ik_l) €1 by
e o
T(1) = QMD _
2 e{0 —1}

-----

Lemma 13. For any [ € I}, h € Z, (d,\) € N? and ¢ € {0, 1} we have

_1>\I\+as (_1)|I\+K+Us e(_h/2/\)

(22) Gl(h,2d +¢) = <TG§G_0{”(h,d> + 5 G D (h, d).
Proof. We split up the sum 0 < u < 2* into even and odd numbers and obtain for any e € {0,1}
k—1
G4 (h, 2d) Z ( apfr(2u + 20d + le +ip) — 2hu2—>\>
0<u<2>‘ 1 =0
1 k—1
+ ) Z e arfr(2u+20d+ le+ i+ 1) — h(2u + 1)2_>‘>
0<u<2r—1

oy (fro1(u+Ld+ | (Ce +i0) /2]) + f(e0(ie))) — hug—(/\—l)>

Il
2
>
@)
N .
e
|

0<u<2r-1 /=0

1 k—1
b S e[S+ Lt i+ 1)/2)) + Fleali+ 1) — 2O - hw)

0<u<2r—1 =0

(=DM e(—h/2%)

—_1)\MI
_( 1) GTEO(I (h d) GTsl(l (h d)

2 2
since for any non negative integer i we have e(f(go(7))) = e(2(g9())) = (1)@ = (-1)". O
As I € T, implies that (Too(I), Toi (1), Tio(I), Ty1(I)) € Z, it follows that the vector Gy (h,d) =

(GL(h,d))1ez, can be determined recursively.
The next two propositions are crucial for the proof of main result. Since the proofs are quite
involved we postpone them to Sections [§ and [9]
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Proposition 1. If K is even, then there exists n > 0 such that for any I € I, we have
1 _
v > G d)) <27
0<d<2
uniformly for all integers h, where %/\ <N <A

Proposition 2. If K is odd, then there exists n > 0 such that for any I € I, we have
GA(h, d)| < 27" max |G (h, [d/2"])|
S

uniformly for all non-negative integers h,d and L.

6. THE CASE K EVEN

In this section we show that when K = o+ - -+ a1 is even, Proposition [1| provides an upper

bound for the sum
k—1
So=> e (Z agf((n+ 5)2)) :
(=0

n<N
Let v be the unique integer such that

27 < N <2
Let (A, ) € N? such that
(23) p<v<dand A—v=v—p=1(\—p)

(the precise values will be specified later).

By using Lemma [11] it follows that the number of integers n < N such that the j-th digits of
n? (n+1)% ..., (n+k —1)? coincide for j > X is equal to N — O(N2~*~")). Furthermore since
K is even if follows that we obtain for those n

k-1
1 K
> Sarsial(n+ 0%) =s1(n?) 5 € Z,
=0

where sy oo = s —sy. Consequently, if we set

Sl = Z e (Z_: Oégf)\((n + 5)2)> ,

n<N =0

then
(24) So =5 +0 (22* ).
Next we apply Lemma |5 with @) = 2# and S = 2¥7* and obtain

N? N
25 S < — + =R(S
(25) [S11" < 5+ R(S),
with s

1<s<S

and

Sh(s) = Z e (2_: ar(fur((n+0)%) = fun((n+ £+ 32“)2))> :

nel(N,s) =0
where I(N, s) is an interval included in [0, N — 1] (that we do not specify).
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The right hand side of S)(s) depends only on the digits of (n + ¢)? and (n + ¢ + s2*)? between
u and A. However, we have to take into account also the digits between p/ = p — p’ and pu, where
p > 0 will be chosen in a proper way. We set

n? = w1 2% + w; mod 2* 0<w < 2“/, 0<u <U = 2’\_“/)
2n = us2" + ws (0 <ws <2, 0<ug < Us=2""#+h
2sn = v mod 227 (0 <wv<2h7H)

where the integers u; = ui(n), ug = uz(n), v = v(n), w; = wi(n), and wy = ws(n) satisfy the
above conditions. Then, by assuming that

(26) 2u' > N,
we have

(n+0)% = (ug + lu3)2" + wy + lws 4+ 2 mod 2*,
(n+ 0+ 32“)2 = (uy + lus + 02 + ESQPI—H)QMI + wy + fws + €2 mod 27

By Lemma [12] it follows that

Fur((n+0)?) = foyampip (ur + Lug),
Fua((n 404 52)%)) = foa_prp(uy + lug + 027 4 £52°'F1)

for any integer n < N except for at most O(2"~*") exceptions. Hence it suffices to consider the
sum

k—1

Sé(s) = Z [§] <Z O./g(fp/)\_u_,_p/ (U1 + £U3) — fﬂ',)\—lﬁ‘/” (Ul + EU3 + U2p, + €82p,+1)) s
nel(N,s) =0

where u; = uy(n), us = us(n),v = v(n), since we certainly have

(27) Sy(s) = Si(s) + O(2").

Next we rewrite S5(s) as

Ss)= D, D

0<ui<U; 0<uz<Us

k—1
Z © (Z O‘f(fp’vk—u—s-p’ (uy + luz) — Jo A—ptor (ur + Cugz + U(n)Qpl + KSZP/—H))

nel(N,s) \4=0

n®> 2n U3
Xon'—x o 71 Xon'—v-1 outl 73 )

where Y, is defined by . Lemma |3| allows us to replace the product of characteristic functions
X by a product of trigonometric polynomials. More precisely, using with H; = U;2°" and
H; = U32?" for some suitable p” > 0 (that will be chosen later), we have

(28) S3(s) = Sa(s) + O(Er) + O(Es) + O(Ey3),
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with

Sis) = D > )

0<u1 <U1 0<u3<Us 0<v<2A—#

k—1
Z ‘ (Z af(fp’yk—u-i-p’(ul + lus) — Jo A—ptor (ur + luz + U(n>2pl + €S2pl+l>>

nel(N,s) \£=0

n®> 2n U3 1 2sn — v
AUl_l,Hl (§ - 71) AUgl,Hg (2u+1 B 73) A= Z € (h IN—p > ’

0<h<2X—H

where we have filtered the correct value of v = v(n) and where the error terms E;, Es, E; 3 can be
easily estimated with the help of Lemma [J] (and obvious estimates):

1 hin?
By ¥ ISe(5r)

|h1|<2e” | 7
1 hs2n
By=com D, [De ( o0 )

|ns|<2¢” | 0
hin?  hs2n
Busgr X% [Se(far 1)

|hy|<2¢” |hg|<20”

< 2y—p” +p//2V—M//2 < 2V—p”’

< 2V—p” +p//21/—u’ < 21/—p”’

< v

provided that
(29) p' < /)2 and pf < 2V7H

Thus the error terms Ey, Es3, and E) 3 are negligible (if p” — o0o) and so we just have to concentrate
on S4(s). By using the representation of A 1y, and A 1 g, We obtain

oD > an (Ui Hi)an(Us, Hs)

|h1|<Hj |h3|<H3 0<h<2X—#

h h h
O R T

0<u1 <U; 0<uz<Us 0<v<2A—H

k—1
¢ (Z O‘K(fp’)\—wrp’ (Ul + EU;;) - fp/,,\_wp/ (ul + fusz + 02” + gSQp’H))
=0

hm 3n 2hsn
e (e )

where by ,
lan, (U7 H)I < UFY - and - an, (Us™, H;)| < Uz

The first step in the analysis of the main term of Sy(s) is to observe that we only have to take into
accout the term that corresponds to h; = 0. Namely if h; # 0 we can estimate the exponential
sum in a simple way. By Lemma [0 we have

hin?  hsn  2hsn _a A2
>e T T o < (N27A+ 14 ) /2 ged(hy, 20) < A2Y24/ged(hy, 20),

n
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and
H
CURED SV P S DR pEIL | e T
1<hi1<Hy 0<i<A 1<hi<H, 0<i<A
2¢ | hy
so that

> Y < \NH, H 220,

0<|h1|<H;i |h3|<H3z 0<h<2*—H
We assume that

hln hsn  2hsn
Z + Qv + IA—p

n

(31) (v =)+ 20N —p) +2(p"+ p") < A/4
(which will be justified later) so that
(32) 54(8) = S5<S) + O()\23)\/4),

where S5(s) denotes the part of Sy(s) with hy = 0. By applying the triangle inequality and by
considering the remaining exponential sum we obtain

‘SS( )’ U1U32>‘ m Z Z Z

‘h3|<H3 0<h<2X—r 0<u3z<Us

Z Z ¢ <Z A (for—prp (1 + Luz) — fryaprp (w1 + Clus + v2” + ESQp,—H)) C -n

0<u1<U1 0<v<2A—1 =0
1)

. . hg 2hs
X min (N, sin (7r (; + Qku))

By setting u; = v/ + 27’4} and us = uj + 2°'u} (where 0 < v, ul < 2°") we get
foramurp (U + Lug) = frop(uy + Cus + i),
Fornepspr (U + Lug 4+ 027 + 0527 ) = f L (u)y + v + O(ul + 25) + if)
with ip = [(uf + Cu) /27 |. As T = (ig)o<oar = ([ (W + Cul}) /2 | )o<i<k is contained in Ty, we have

Ss(s) < 22(A—,u)+(l/+1—.“) Z Z Z

|h3|<Hs 0<h<2)—H 0<uf<2v—Htl

k—1
4 , hv
max Z Z e (Z ao(foop(uy + luy +ip) — froop(u) + v+ 0(uf + 2s) + ip) — 2>\_u)

I€Ty,
0<u] <2A~# 0<v<2A—H £=0
1)

. . hg 2h$
X min (N, sin (7r <2—V + 2/\_—u))

By substituting u} +v by another variable %}, by using the definition of G ,.(h,d) and by replacing
the maximum by a sum we obtain

Yy 2u+11u T Z)G (h,us)GL_, (h,adl + 25)

|hs|<H3z 0<h<2A—H 0<uf<2v—nt+l I€Ty
_1>

. . h3 2hs
X min (N, sin (77 <2 +2/\ u>)
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By using the estimate |G} _,(h, uj + 2s)| < 1 and the Cauchy-Schwarz inequality we have
1/2

> |G )G 29)| < 2R [ ST (G ()

0<uf<2v—Htl 0<uf<2v—ntl

Hence by applying Proposition [1| (replacing A by A — u, X' by v — 1+ 1 and using ) we get

Sy(s) < 20w 33 m< n(w(’;_+22i))>

|h3|<Hs 0<h<2A—H
It is now convenient to take also into account the dependency on s and to average according to it.

Since |hg|/2” < 1/2 we obtain from ({13])
hs | 2hs \\|™'
sin 2V + 2)\ m

5 Z > min (2“
sin G?) _1> + (N —p)2d

1<s<S 0<h<2rA—1

< (A — p) min (2”,

Finally we have

and thus we obtain the estimate

= Z |S5(s)] < 271020297 4 Hy(X — py2*

1<s<S

< 97 NA=)/2)29v
provided that
(33) v—u+p +A—p<v.

Putting all these estimates together (and recalling that 4/ = p — p'), from [24), (25), [27), [29),
(32) we finally get the upper bound

’SO| < 21/7()\71/) + Vzuzfn()\fu)/Q + 21/7;)’/2 + 21/7;)”/2 + )\1/221//2+3)\/8

provided that the conditions 26), (29). B1), hold:
2 <p<v—p, pr<ul)2, <27 2 =\
(v—p)+2=p)+2(0" +p") A4, v—p +p"+A—p<w

For example the choice

12
A vt 2 oand o = o =
”+20an r=r"=550

ensures that the above conditions are satisfied.
Summing up we have proved that there exists 7’ > 0 with

Sy < 2v0-1) « N1

which is precisely the statement of Theorem [2]
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7. THE CASE K ODD

In this section we show that when K = ag + - - - + ax_1 is odd, Proposition [2| provides an upper

bound for the sum
Z (Z arf((n+0)? )

n<N

Let u, A, p and p; be integers satisfying
(34) 0<pm<p<p=v—2p<v<A=v+2p<2v

to be chosen later. We apply Lemma [5| with ) = 1 and R = 27, we sum trivially for 1 <r < Ry =
2P and obtain

sof < L NS (12 DY i),

R R R
Ri<r<R
where
k
Sy(r (Z ((n+6)%) — f((n+r—|—£)2))>
neli(r) =0
and [,(r) is an interval included in [0, N — 1]. By Lemma (11| we have
Si(r ):s( )+ 02 ),

where

Sir)= ) e (Z ar (fal(n+0%) = falln+r +€)2))) :

nely(r) =0
which leads to

21/
|SO|2 & Q—pter 93v+p=A + E Z |Si(7’)|
Ri<r<R
and by the Cauchy-Schwarz inequality to

221/
‘50’4 < 24u—2p+2p1 + 26V+2p—2)\ + E Z ‘Si (T)‘Q ‘
Ri<r<R

Let p' € N to be chosen later such that 1 < p’ < p. Applying Lemma 5| with ¢ = 2* and
(35) S = 2% < gvh
observing that for any m € N we have

sx((m + 52)) — sx(m?) = sua((m + 52")?) = s, (m?),

we get
4V 23u
(36) ’50‘4 < 24V*2p+2p1 T 26V+2p72)\ Z Z ’512 r, 5
R1 <r<R1<s<S
with

Sars) = ) e (Z e (fur((n+0)7) = fua((n +r+0)%)

nelx(r,s) £=0
—fun((n 4+ 52 + 0)2) + fur((n+ 528 7 + £)2>)> ,

where I5(r, s) is an interval included in [0, N — 1].
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We can now make a Fourier analysis as in the case where K is even. Let u/ = p—p’ > 0. Writing
(37) U = 21+ Uy = gvmt+1 = oA

we assume that

’

n? = u 2" + wy, mod 2* 0<u; <U, 0<w <2M),
(n 4 )% = up2” + wy mod 2* (0<uy <U, 0<wy <2,
on = us2" + ws (0 <us <Us, 0<wsy<2"),

2sn = v mod 2 (0<wv<V),

where the integers u; = ui(n), us = uz(n), ug = uz(n), v = v(n), w; = wi(n), we = wy(n), and
wz = ws(n) verify the above conditions. Assuming that A < 2y/, we have

(n+0)? = (ug + u3)2" + wy + lws + (> mod 2*,
(n 4 0+ 52)% = (uy + lus + v2° + £s2° T2 4wy + fws + 02 mod 2,
(n+0+7)? = (ug + luz)2” + wy + bws + €% + 2rf mod 2*,
(n4 0+ s2% 4+ 1) = (uy + lug + v2° + (0 +1)s2°TH2% 4wy + lws + 0% + 2r¢ mod 2.

According to Lemma [12] uniformly for fixed integers r, s, ¢ > 1, the number of integers n < 2“ for
which at least one of the following conditions

fur((n + 6)2) # foa—ptrp (w1 + Lug),
Fua((n 404 $2°)%)) # o amprp (w1 + Lus + 02 + EsQ”'“)
fur((n+740%) # fy iy (ug + lug),
Fur((n 4+ €4 82°)%)) # foam (s + bug + 027 + (€ +7)s27H)

is satisfied is < 2"~*'. Filtering now by the values of u;, us, us, it follows that

Seo = Y Y Y

0<u1 <U 0<u2<U 0<u3z<Us

k—1
Z e (Z Qg (fp’A—wrp’ (w1 +luz) = fr—ppr (U2 + lus)
)

nelx(r,s £=0

—fp/’)\_u_;'_p/ (U1 + Eu;; + U(n)Qﬁl + €82p/+1)

it (2 + g - 0(n)2 + (CF mszp'“)))

n? L w (n+r1)? U 2n ug
wr\x Tr)wr U T (e T
+0(277).

Lemma 3| allows us to replace the product of characteristic functions x by a product of trigonometric
polynomials. More precisely, using Uy =U,=U, H = Hy, = U2 and H3 = U327, where the
integers po and p3 verify

(38) p2<p—p, ps<p—rp,
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we obtain
(39) Sa(r,s) = S3(r,s) + 0(2”_"/) + O (E30(r)) + O (E31(0)) + O (E31(r))

+ O (E3(0)) + O (Es(r)) + O (Es3(r)) + O (E34(r))
with

Ss3(r,s) = Z Z Z Z

0<u1 <U 0<u2<U 0<uz<Us 0<o<V

k—1
¢ <Z Qg (fP/J*/HrP’ (ul + gu?)) - fp',)\f,u,+p’ <u2 + gu?,)
=0

—Foraeprp (un 4 Lug + v2° 4 £527+1)

+fora—prpr (U2 + luz + 02 + (0 + r>52p'+1))>

n® (n+71)?  uy 2N us
> v (=) e (M5 F) A (3 - 2)

n€lz(r,s)
1 2sn — v
2A—u Z ¢ <h QA—M ) :
0<h<2A—H
We have
Us Us 2h5Usn
E = 29V 4 2
o) =2 S [T e(BM)
1<h{<Hs3/Us |n<2¥
which by and gives
v— — : Th; ! v— —p'— v—
Ego('f’) < 2 P3 +9 P3 Z sin 2H_p/3_2 < 2 P3 +M2M p'—p3 < 2 zy

1<hl,<2°3

Similarly we have
U
Bu(r) =g 2.
|| <H2/U
which gives by (for which we have 2"~#*#" complete sums), and
By(r) < 27724270 Y 277 Joed(h, 20)

1<h, <22

<& QP2 g Qrkts L ovpe

5 (4

n<2?

Similarly we have
U Us
E ————
w() =g 2. 2.
|h/2|§H2/U |h§|§H3/U3

which gives by , and , with a trivial summation over hj,
Eay(r) <2772 4270 Y 2770\ fged(hp, 207) < 272,

1<hf<2r2

Z . hy(n +1r)? N 2hfn
MU U, )|

n<2v

19
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Similarly again we have

Ba) =g > %

2 |hy|<H2/U || <H2 /U
which gives by (7)), and (38)), writing &' = b + hj,
Es3(r) <2777 27 Z VR Jged (b, 20—F') < 2V P2,

1<h/<2r2+1

Y

Z . <h’1n2 +2ia’;(Un + r)2)

n<2?

Similarly once more we have
U? Us
Bu()=mg 2. 2. 2
2 |hy | <Ha2/U || <Ha /U | by |<Hs /Us
which gives by (17)), and (38)), writing &’ = ) + h}, with a trivial summation over hj,
Eglr) < 2774277 Y 27 feed(W,200) < 272

1<h/<2p2+1

)

Z o h'1n2 + hé(n + T)2 4 2hgn
2 /U 2 /Uy

n<2?

We deduce from that
(40) Sy(r,s) = S3(r,s) + O(2"™F) + O(2"7"2) + O(2V ™)
and we can write

Ss(r,s) = 220 > " (UL H) > an,(U Hy) Y an,(Us ', Hs)

0<h<2*—# |hy|[<Hy |ha|<Ho |h3|<Hgs

hiuy + h h h
I MDD IR CL L Ly

0<u1<U 0<ua<U 0<ug<Us 0<v<V

k—1
e (Z Qy (fpl»)\*/HrP'(ul + Cus) — for a—pprpr (U2 + Lug)

=0

—Fornprpr (un 4 Cug + 027 + £527+1)

gl o2 ()

hin® + ho(n+71)?  2hsn  2hsn
Z € A + v +2)\7,u :

n€lz(r,s)
Let us introduce the decomposition
(41) Ss(r,s) = Sy(r,s) + Sy(r, s),

where Sy(r, s) denotes the contribution of the terms for which hy + hy = 0 while Sj(r, s) denotes
the contribution of the terms for which h; + hy # 0. We have by

Si(’l”, S) < Z ah1<U_1aH1) Z ahz(U_1>H2) Z ah?)(Uf%_l?HS)
|h1|<H1 |ho|<H3 |h3|<H3
UUsVA2M2\/ged(hy + hy, 22)

< VUUVIN2M2\/2H,
< V42V+%(8>\—9u+7p’+pz)
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and it remains to consider Sy(r, s). Setting u; = u” + 2w}, uy = ulf + 2°'uf and usz = ul + 27 uy
(where 0 < u?, ull, u < 2°') we get

fP/J\*lHrP’(ul +lug) = fo- " <u1 + €u3 + L Ay )/2,0 J)

fp’,/\—u+p’<u2 + fu?,) = [ " (u2 + €u3 + L " )/Qp J)
fﬂ',)\—u+p’(ul + fusz + v2” + €82p/+1) = fo u <u1 + v+ g US + 23) + L( + )/QpJ>
(v

Forcprp (g + lug + 027 + (C+7)s2°TY) = fr_, (uh + v + 287 + L(ufy + 25) + {( + Luy)/2° J) _

Using the periodicity modulo 2*7#(= V) we replace the variable v by v, such that v; = u} +
v mod 2 * and we introduce a new variable vy such that

vy = uh + v + 2sr mod 227 = vy + uh — ) + 257 mod 22

If we observe that U/2” =V and write Uj = Us/2*', we obtain

54(T75) - 22H_2)\ Z Z Z a—h2<U_17H2)ah2(U_17H2) Z aha’(UP)_lvH?))

0<h<2XA=r 0<h/ <2A—# |ho|<H> |hs|<Hs

—hot” + hot! hatt!
O S S

0<uy <2¢" 0<ul<2¢" 0<uff <27’

hguly  2Rh'sr
Z e _Té_l_ P—pt

0<uz<Us
k—
Z e Z agfa—p <u’1 + luy + L( + )/QpJ) B (—ha —2/\h_j h/)uﬁ)
0<uj <V —0
k—
Z e Z Qg frp (u’2 + lugy + L(U’Q’ + gug)/Q,o’D " W)
0<ufb<V —0
> O(uy +2 Ny AYLY (W' — h)v
OS;VG - 2 Kf)x—u <U1 + (Ug + 8) + L(ul + u3)/ J) + 2)\—_“
k-1
(Bt e ) - 22)

0<va <V =0

2horn + hor?  2hsn  2hsn
Z € 92X + v + 2A—p '

n€ls(r,s)
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Using (21 this gives

Sy(r,s) < 2¥7 Z Z Z min(U 2, hy?) Z min(U; ', hy ')

0<h<22A—1 0<h/ <22 ~H |ho|<Ha |h3|<Hs3

ID D DD

0<ul/<2r" 0<uf <20 0<uy <2¢' 0<ug<Us

D (W — b= R uy)| |G (W — g, i)

G = hydy -+ 25) | |G 0 4 25)|

2horn 2hsn  2hsn
Z © 92X + v + 2A—p )

nela(r,s)

where, for any (u, ) € N?
(| u u+1u u+ (k—1)u
](Uau) = (L?J ) { o J Y LTJ) .
This leads to

Sy(r,s) < 2% Z Z min(U 2, hy?) Z min(U; ', hyt)

0<u/ ulf ulf <2¢" |h2|<Hy lhs|<Hs
_ —1
. v har + 2% “hs + 2"hs noonoon
E min | 27, |sin -1 SS(ha h2787u17u27u3)7
0<h<2A—H

where

Ss(hho,s,uf,uyuf) = Y Y (G W) (B — b — by, ul) ‘Gl(“ (B = By, )

0<uf <UL 0<h/ <27 K

" /l

‘G ) (Bl + 2s) ‘ ‘G ey (h/,ug+2$)‘
can be bounded above by using the Cauchy-Schwarz inequality:

"noonon
S5(h, hz, S, U’la u27 u3)

< > 2 ‘G (R = h = hy, ub) :

0<uf <UL 0<h/ <2A—#

S>> @M = )

0<uf <UL 0<h/ <274

1/2
‘2

‘Gi@g’ug)(h' — h,uy + 25)

1/2
2

’Gl(ulé’u;”, (R, us + 2s)

By periodicity modulo 2*~* and taking h” = h/ — h the first parenthesis is independent of h and
we get

1/2 1/2
S5(h, ha, s, uf, uf, uf) < Sg(h, s,u}, us)*Se(ha, s, uy, us)'/?,
where

(42)  Solhays,uuf) = Y Y ‘G D (B hy, )

0<uf <UL 0<h/ <27~k

2

2 "o
G .y 420
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We obtain

Sy(r,s) < 2% Z Z min(U 2, hy?) Z min(U; ', hyt)

0<uy uf uf <20 |ha|<Ho |hs|<H3
Se(ha, s, uf, Ug)1/256(h27 5, U, Ug)l/Z
_1> ‘
Observing that
|hor + 2"V ha| /2 < (HoR + 227 Hy) /21 < 2273t eate y od=2ibpitoatl < 7 /o,

_ ( , hor + 22 hy + 2hs
Z min | 2%,
we have by
—1
min (2”, ) ‘

sin i
0<h<2A—H
-1
< ged(s, 22 *H) min <2”, ) + (A —p)2r

hor + 22 Vhs + 2"hs
9A—1

sin 7

2.

0<h<2A~—H

. A—v
sin me;rf—_lhs

. _ . . A—v
and since 2)* < min (2”, sin WW

-1
) , it follows

Sa(rs) < (A—p) ged(s, 227071 2272 %" N min(U 2, hy7)

0§ui’,ué’,u§<2pl |ho|<Hz

o 1N1/2 no1N1/2
Sﬁ(h2787ulau3) / Sﬁ(h2a87u27u3) /

> min(Us", hy') min <2”, sin a2 ha ‘1> _
|hg|<Hs
We recall here that in we have Ry < r < R and introduce the integers H) and x such that
(43) H) = 22V Hy /Ry = 22 #FHpsmmd2 — or
By , assuming that
(44) P+ ps+2<p,

we will have H) < 2*~# and the condition |he| > H} ensures that 2~ |hg| < 5 |hor|. This leads to
Sy(r,s) < Sui(r,s) + Saa(r, s) + Saz(r, s),

where Syi(r,s), Sia(r,s) and Sy3(r,s) denote respectively the contribution above of the terms
|hao| < Hy, Hy < [ho| < 2X7H, 2271 < |hy| < H.

7.1. Estimate of Sy (r,s). By we have

Z min (2",

|h3|<H3

. v—A
sin W%

-1
> <KL v,

so that
Su(r,s) < v(A—p) ged(s, 23+ viRA=2ny =2t
Z Z Sﬁ(hQ,8,U’1'7U§)1/256(h27S7U'z’,ug)1/2-

0<uf ulf ulf <2¢" |h2|<Hj
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By Proposition [2] 2 (replacing A by A — g and L by A — pu — k), we have for some 0 <7’ <1

G = )

A—p—K L
< 91 (A=n— Sne%}:m — ho, [us/2"])].

By Parseval’s equality and recalling that card Z;, = 2¥~! it follows that

> max |G = o, /24|

|ho|<H

<SS |GLUR — by, [uh /28] < 20

JETy, |ho|<H),
We obtain uniformly in A, p, H), uf, v” and uj:
I(u" ug) oy /
> |GN 0  hayt)

ha|<H],

2 Hl 7]/
—n'(A—p—k) _ 2
<2 = <2AM)

It follows from and Parseval’s equality that

/

Z Se(ha, s,u” uy) < Ul "
6\/142, 9, ) 43 3 IA—p

|ha| <H)

and by the Cauchy-Schwarz inequality we obtain
Z Se(ha, s, U1>U3)1/256(h2a3 U27“§>1/2

|ha|<H)
1/2 1/2

Hl n
< Z S6<h2757u/1/7u€3/) Z SG(h%Saug’ug) <<UZ§ (2)\_2#) :

lha|<Hj |h2|<Hj

This gives

l

H/
Si(r,s) € v (A —p) ged(s, 22771 2/ PRI 2 <2A u) :
so that by (43), and
1 / l
o RS Z Z Su(r,s) Kv(A— ,u)2 ov=n'(pr=p"=p3)

Ri<r<R1<s<S

7.2. Estimate of Sy (r, s). The condition |hy| > H} ensures that 2277 |hg| < 3 |hor| so that

(o ! 2
m1n< , ) < Hér'

By the Cauchy-Schwarz inequality we have
Z Sﬁ(h27s U17U3)1/2S6(h2,S,UQ,Ug)l/Z

Hj)<|hg|<2X—H#

. A—vp. |
Smﬁhz?“;?—_lhs

1/2 1/2

Z Se(ha, s, ul, u}y) Z Se(ha, s, Uy, us3) < Us.

|ha|<2A |ha|<2A -

IN
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It follows that

/ 22
Sia(r,8) < (A= p) ged(s, 24771 222 U2EUg Y min(Uy ! hy”)
2 |hs|<H3
and we get by and ,
d(s,2*#1 /
342(,,,7 S) < ()\ _ M)Q &c (8, )2V+91+P —037

r

so that by
1

3 ogv— 140" —p3
<46> E Z Z 542(T7 S) < p()\ — ,LL) 2 p+p1+p —p .

Ri<r<R1<s<S

7.3. Estimate of Sy3(r,s). We will split the summation over hy into J = Hy/2** — 1 parts of
the form j2** < hy < (j + 1)2*# with j = 1,...,J. The condition |hy| > j2*~# ensures that

2277 |hg| < 3 |hor| so that
-1 A g
)<=

min (2”,
By the Cauchy-Schwarz inequality we have

Z SG(h2757u/1/7ug)l/QSG(h2737u12/7ug)l/2
JRA-R<|ho| < (jH1)2Nk

. A—v
sin W—h2r—53_1 hs

1/2 1/2
< Z Se(ha, s, ul, u3) Z Se(ha, s, Uy, uy) < Us.
ha mod 2A—# ho mod 2A—H
It follows that
p 24
Sia(r,s) < (A= p) ged(s, 2271 2%05 Y == Y min(U ', hy ),

155707 |hal<t

so that by and
1 /
(47) i Z Z Sus(r,s) < p (A= p)® 27749,

R1<r<R 1<s<S

It follows from , and that

% Z Z Sa(r,s) < vhov (Q*ﬂ/(plfp’fps) 4+ 9ptrite—ps 27p+3p/> '
Ri<r<R1<s<S
Choosing
p=p=r, p=p3=7,
we obtain
(48) % YD Sulrs) <2 (2"7'(9‘?*’) Lo +2—(p—3p’>> '

Ri<r<R1<s<S

Using and (40), since 0 < 7’ < 1 we obtain
1 ! / / /
(49) ﬁ Z Z 5’2(7«7 5) < v <2*77 (p—3p") L2 4 2%(8x\f9u+8p ))

Ri<r<R1<s<S
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that we can insert in ([3€]), recalling by that S = 22" and by that p =v—2p, A\ =v+2p,
so that we get

|| < 22 4 o= 4 oM (2—’7’0’—3P’> +277 2—%+17P+4ﬂ’>
and if we set p) = |r/146| and p = 4p’ we obtain
(50) |So| < 2V~ < yNI
which completes the proof that when K 1s o roposition 2| implies Theorem |2
hich 1 h f th hen K is odd P ition [2| implies Th

8. PROOF OF PROPOSITION [

8.1. Proof of Proposition[l]in the case (ao,...,ax_1) = (1,...,1). With the help of Lemmal[L3]
it is easy to establish a set of recurrences for

/ 1 —
o) =55 Y GAh.d)GY(h.d),
0<d<2V
where h € Z, (\,N) € N* and (I, I') € Z?: if \, N > 1 we have
, (=1l
ol - CU

x (@R () + o(h/ 2RI (h) + o(—h/2) 0T () + @B ()
+ ORI () + (/2@ Y () + e(—h/2) @3 BT () + @RI (R )

If we split up the sum over 0 < d < 2" into even and odd d, this gives rise to a vector recurrence
for oy x(h) = (@5 (h)) of the form

(I,1")e1?
Yo (h) = M(h/2Y) - pr_y nv_1(h),
where the 22(:=1) 5 226 U-matrix M(B) = (M(r,11),(1.1(8))) ((1.0),(1ez2 <22 1 independent of X,
N and 8 = h/2*. By construction all absolute row sums of M(/3) are equal to 1. More precisely
in each row there are eight non-zero entries, where all of them are either equal to £1/8 or equal
to +e(£5)/8.

It is convenient to interpret these matrices as weighted directed graphs, where the vertices are
the pairs (I, ') € Z? and starting from each vertex there are eight directed edges to the vertices
(Toer(I), Teen(I')) (where (g,€’,€") € {0,1}3) with the corresponding weights 1/8 or e(£/3)/8 (with
the common sign (—1)7+17') see Figure . Of course products of m such matrices correspond to

Too(D): Too(1) (TooD: Tou1") (Toal): T

FI1GURE 1. Weighted directed graph representation of the recurrence for q)f\”j;\,,(h)
(the common sign of all the edge weights is (—1)1+11'1),
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oriented paths of length m on these graphs, where such paths are weighted with the corresponding
products (of modulus 87). The entries at position ((/,I’),(J,J")) of such product matrices
correspond then to the sum of weights of paths from (7, 1") to (J,J').

In order to prove Proposition (1] it is enough to check the conditions of Lemma [10| uniformly in
h for M, = M(h/2"). Indeed, as for A < X' < X\ we have

P (h) = M(h/2Y) - M(h/2 X )y o(h),
it follows by applying with k=X and r = A — X + 1 that
(51) [Pan ()]l < 27X [lehr_wo(h)ll, < C277 < 2732

and consequently

1

I,I
CD,\W (h) = N

S GG < llax (B, < 272

0<d<2N

We first show that there exists an integer my > 1 such that every product A = (A(”/)7(J7J/))((I,I,%(J’J/))ggng

of mg consecutive matrices M, = M(h/2) verifies the condition (1) of Lemmal[L0] It is clear that
Tie(I) = 0 for all I € Iy if m is sufficiently large, which means in the graph interpretation (see
Figure [1]) that for every vertex (I, I’) there is a path of length m from (I, 1’) to (0,0). Let mg be
one of these values and fix a row indexed by (I, I’) in the matrix A. From the graph interpretation
it is clear that the entry A ) 0,0) is the sum of at least one term of modulus 87™°. Now there
are two possible cases. If the absolute row sum is < 1 —87"/2 then we are done. However, if the
absolute row sum is > 1 —87™°/2 then it follows that |A( 1), 0,0)| = 8™ /2. Indeed the inequality
|A¢1,11),00,0)] < 877°/2 would imply that A7) 0,0) is the sum of at least two terms of modulus
87™0 so that the absolute row sum would be bounded by

L 3
Z | Ay, < 58"”0 + (1 —9. 8—m0) — 1 58‘7”0,
(J:J")

which would contradict the assumption that the absolute row sum is > 1 —87™0/2.

Finally we show that there exists an integer m; > 1 such that every product B = (B(M/%(J’J/))((LF%U’I))EII%Xz

of m; consecutive matrices M, = M(h/2%) verifies the condition (2) of Lemma[10] Indeed we will
concentrate on the entry B(g,0),0,0), that is, we will consider all possible paths from (0, 0) to (0, 0)
of length m; in the corresponding graph and show that a positive saving is just due to the structure
of this entry. Since Tyo(0) = T51(0) = 0 it follows that the entry Bg 0),0,0) is certainly a sum of
ko = ko(my) > 2 terms of modulus 8™ (for every m; > 1), that is, there are kg > 2 paths from
(0,0) to (0,0) of length m; in the corresponding graph. For m; > 3, starting from (0,0) we first
apply m; — 2 times the transformations (Tyg, 7o), then one time the transformation (7og, To1),
and then one time the transformation (7gg, Too). This corresponds in the graph interpretation (see
Figure [1) to a path from (0,0) to (0,0) of length m; with weight e(h/2*~™+1)8=m1,

Next we observe that 771(0) has k£ — 1 non-zero entries and we recall that £ — 1 is odd. Thus,
there exists m; > 4 such that 7" *71,(0) is of the form 011---1, that is, it has an odd number
of I’s. Starting from (0, 0) we apply now one time the transformation (771, 711), then one time the
transformation (Tp1, Tp1), then m; — 3 times the transformations (Tyg, Tp1), and then one time the
transformation (7o, Tho). This corresponds in the graph interpretation (see Figure to a path from
(0,0) to (0,0) of length m; with weight (—1)/0FIOLDl g(p /A=mit1yg=m1 — _ o(p, /2A=m1+1)g=m1

Thus we have shown that at least two terms cancel for a properly chosen m;. Of course this
implies

| B(0,0),0,0)] < (ko —2)87™,
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so that

> 1Bl < (ko —2)87™ 4 (1 — kg87™) < 1—2-87™,

(J,J%)
so that condition (2) of Lemma (10| is verified with = 2 - 8™ which completes the proof of
Proposition [l| when (g, ...,ax_1) = (1,...,1) and K is even.

8.2. Proof of Proposition [1|in the case (ag,...,a5-1) # (1,...,1). Without loss of generality
we can assume that oy = 1 and that for at least one ¢ > 1 we have a, = 0. As the discrete Fourier
transform G¥ only depends on those indices ¢ for which oy = 1, let us introduce the reduced K-uple
I= (2¢)o<e<k,apy=1 and the reduced sets I, = {f, I €T1;}.

Then the proof of Proposition [1] works in the case (ag, ..., ax_1) # (1,...,1) in the same way as
in the case (a, ..., ap_1) = (1,...,1) if we replace Zy by Zy, GL by GL and for any (e,¢’) € {0,1}?2
the transformation 7. on Zj, by the corresponding transformation T, on Z,. In particular, working
with .

Oy =5 D GAhd)GY(h.d)
0<d<2
instead of @{\:IA/,(h), the corresponding recurrence is exactly the same. Furthermore the matrices

M(3) have now dimension |Z;|* x |Z;|? instead of 22~ x 22(¢~1) and, of course, the corresponding

weighted directed graph has less vertices. If we replace k£ by K (and use the fact that K is even)
then we prove in the same way like in Section that the conditions of Lemma [10] are satisfied.
This completes the proof of Proposition [1]in the case where K is even.

9. PROOF OF PROPOSITION

9.1. Proof of Proposition [2]in the case (o, ..., 1) = (1,...1). Formula can be written
as

Gi(h,d) = 2Meo(d) (e(— h/zx)) Gy (h, d/2)),
with for any € € {0,1} and z € U,
M®(z) = (]I[JZTEO(I)]/LUEO(I, 2) 4 Lyer (ywar (4, z))(I,J)EIg :
where for any ¢’ € {0, 1},
Weer (1, 2) = (_1)|I|+sa+s’KZe/ _ (_1)|1|+50+5/25/

as K = k is odd) and 1jp; = 1 if the proposition P is true and 1;p) = 0 otherwise. It follows by
(P] [P]
induction that for any integer n > 1, we have
1
g M2 D (o= /2%)) Gy ([ d/27]),
where for any d = (dy, ..., dn,—1) € {0,1}" we put
Md(z) — Mdo...dm,1 (Z) — Mdo (Z) L. Mdm—l(z2m*1)
and we define the polynomials P&, for (I,J) € Z? by

M(z) = (PIdJ(Z))(I,J)EIE )

Gi(h,d) =

so that

M9 (2) H —maxmaxg |Pf(z2)
I€T, 2€U
JETLy,
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By Lemma |10, Proposition [2| will follow from the fact that there exists an integer m > 1 such that
for any d € {0,1}™ and I € Z,
d m
max Z |PR(2)] < 2m.
JEI

The end of this section is devoted to a proof of this fact.

Let G(z) be the weighted directed graph of outdegree 4 whose vertices are the elements of Z
and where for each (g,¢’) € {0,1}* and I € 7 the edge from I to T../(I) has weight w../(, 2).
For example when k = 3 we have

1—2 0 0 O 0 -1 =z 0
o | -1 2 0 o0 I N T R
M(z) 1o o ME=ly o 1
0 1 —2 0 0 0 0 11—z
and G(z) is the following weighted directed graph:
wo1(z) =z wip(z) =1

wip(z) = —1 wo1(z) = —2

For any d = (dy,...,dn_1) € {0,1}™ we can interpret the coefficients of the matrix M4(2) as
coding of paths of length m with, for 7 € {0,...,m — 1}, step j in the graph g(sz). More
precisely, for any I € Z, e = (e, ..., em-1) € {0,1}™ and i € {1,...,m}, let us denote T3¢(I) =
Ta, yei, © 0Ty, (I) and associate to each of the 2™ paths from the vertex I to the vertices
Tde(I) the weight

wde(lv Z) = Wdgeo (Iv Z>wdlel (Tlde([)v 22) © Wiy, rema (T;}L‘il([), ZQm_l)

(_1>1/(I,d,e)ZN(e),
with
(52) v(I,d,e) =|I|+ |T{°(D)| + -+ |T2e, (1)] + |d] o + |e]

and

m—1

(53) N(e)=> e2"

1=0
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Then, for any (I,.J) € Z?, we have, by definition of Pg;:

(54) Ph)= Y wt(ln= Y (-1)aee,
ec{0,1}™ ec{0,1}™
Tde(1)=J Tde(1)=J
Lemma 14. For any d € {0,1}™, the family of polynomials (P}iJ)(17J)€ZI§ has the following prop-
erties:
(1) for any (I,J) € I?, the coefficients of PY, are 0, +1 or —1;
(2) for any I € Ty, and j € {0,...,2™ — 1}, 27 or —27 appears ezactly once as a monomial of
some polynomial P, (J € Iy, );
(3) for any I € Iy,
card{j, 0 <j < 2™ 3J €Ly, 2’ appears as a monomial of Pg,
=card{j, 0<j < 2™ 3J €T, —2 appears as a monomial of P} = 2™ 1.

Proof. 1t follows from that (1) is a direct consequence of the fact that the function N defined
by is a bijection between {0,1}™ and {0,...,2" '} and (2) of the fact that for any J € Z;,
the sets E(J) = {e € {0,1}™, T9e(I) = J} form a partition of {0,1}™. Moreover, as for any
e € {0,1} the sum of the coefficients of each line of the matrix M*(1) is equal to zero, it follows
that for any d € {0,1}™ the sum of the coefficients of each line of the matrix M9(1) is equal to
zero, which proves (3). O

For any I = (d9,...,1k-1) € I we denote I|; = i;.
Lemma 15. Let (Iy,I;) € I} and j € {0,...,k — 1} such that Iy; — I; € {0,1}. Then, for any
e € {0,1}, we have either
Teo(lo); = Teo(L1); and  T(lo),; = Ta(l); +1

or
Teo(lo); = Teo(L1); + 1 and Ti(lo); = T ()

Proof. For I € Ty, j € {0,...,k — 1} and (e,¢’) € {0,1}* we have Tee (1) = V’jﬂ;%/J , 8o that
Lemma [15| follows from the fact that for any (i,7) € N* we have either
i+ i+14+7 i+ +1 i+1+d+1
e el i B il bl e el
UJ
Lemma 16. For any (d;)ien € {0, 1} and any I € T, there exist J = J(I) € Iy, m = m(I) €

{1,...,k} and (e,€) € {0,1}™ x {0,1}™", e # € such that J = T9e(I) = T (I) and N(e')
N(e) + 1, where d = (do, ..., dpm-1).

Proof. For any I € I, and ey € {0,1} we define I., = Ty, (1).

Ilfdy=0and I = (0,...,0) ordy = 1and I = (0,1,...,k — 1), we have [y = I; = I so that
Lemma [I6 is true in these two cases with m = 1.

In any other case, we have [y # I; and it remains to find an integer m € {2...,k} and
(€1, em_1) € {0,1}™ ! such that

T rem © 0 Taye,(Io) =Ty 00Ty e (1)

Let j; be the smallest integer j such that Io; = I;; + 1 and choose, by Lemma , e, € {0,1}
such that Ty,e, (Io);, = Tue,(11));, + 0. By repeating this procedure m —1 < k — 1 times (by
O OTdOO(I) and Tdi—lei—l S on01(1>

m—1€m—1

construction, for any ¢ € {1,...,m} the entries of Ty, ., ,
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are equal or differ by 1) and taking e = (0,e1,...,e,-1) and € = (1,e1,...,€,_1) we obtain
Lemma [I6] O

Lemma [16| remains valid if for any I € Z; we replace m = m(I) by m = k (or any value greater
than k) and it shows that for any m > k, d € {0,1}"" and I € 7, there exist J € Zj such
that the polynomial Pg; contains two monomials of consecutive degrees: +zV (©) and 42N+,
The end of the proof of Proposition [2] is based on Lemma [I7] which will be deduced from Lemma
[1§ showing that we can find two such monomials of consecutive degrees with different signs:
v(I,d,e) =v(l,d,e)+ 1 mod 2.

Lemma 17. For any d € {0, 1}**! and any I € T), we have
max Z }PIdJ(z)| < 2k

zeU
JEL}

Proof. Lemma [16| implies that for any d € {0,1}* and any I € Zj, there exists J = J(I) € T,
and j = j(I) € {0,...,2¥ — 2} such that +27 and +2/*! are monomials of the polynomial Pg,.
In particular, any z € U such that Y ., |Pf(2)| = 2" should verify |42/ + 27*| = [z £ 1] = 2,
which implies z € {—1,+1}. Moreover, for any ¢ € {0, 1}, it follows from the relation
PIdJ(Z) = <_1)|I|+€UP7(“160(1)J(Z2) + (_1)|I|+€G+IZP£1(I)J(Z2)

(we put d’ = (e,dy,...,d;_1) and we consider the coefficients (I,.J) of the matrix M% (z) =
M?(2)M4(22)) that if, for any I € Z; we have > Jer, |PIdJ(1)‘ < 2% then for any I € Z;, we have
> ez, | P (=1)| < 2571 Tt follows that in order to prove Lemma [17]it is enough to prove that

for any d € {0,1}* and any I € T, we have ), ., |P(1)] < 2% This will be an immediate
consequence of Lemma [18] below. O

Lemma 18. For any d € {0,1}* and any I € Iy, there exist J € T;, and (e, e’) € {0,1}* x {0, 1}*,
e # e such that J = T3¢(I) =T3¢ (I), N(e') = N(e) + 1 and v(I,d,e') = v(I,d,e) + 1 mod 2.

Proof. Let us consider for any ¢ € {1,...,k} the k-uples Iy(¢) = Ty, e, , © -+ 0 Ty, (Lp) and
ILi(0) =Ty, e, 0 0Ty, (I1) obtained by the procedure described in the proof of Lemma . By

construction the entries of Iy(¢) and I;(¢) are equal or differ by 1 and we will distinguish between
two cases depending on the parity of the number of different entries.

Even case. For any ¢ € {1,...,k}, In(¢) and I,(¢) differ at an even number of entries.
In this case, for any ¢ € {1,...,k} we have |Iy(¢)| = |I;(£)| mod 2, which implies

[ To(D)] + -+ [T (D) = [TE(D)] + -+ + T2 (1) | mod 2

and
v(I,d,e)=v(l,d,€e)+ 1 mod 2,
so that Lemma [18] is true in this case.

Odd case. There exists £ € {1,...,k} such that Io(¢) and I,(¢) differ at an odd number of entries.

In this case, let £y > 1 be the smallest number for which this occurs. In what follows we slightly
modify the procedure described in the proof of Lemma for the remaining steps. We again
construct (eg,, ..., e,_1) such that T3¢(I) = T3¢ (I), but by using another principle, namely that
at each step ¢ > ¢y (with the only exception of the final steps) Iy(¢) and I;(¢) differ at on odd
number of positions. For convenience we say that a position j is corrected if Io(£ + 1) ; = (¢ + 1)
whereas Io(€) ; and I;({) ; differ by 1.

Let us describe the first step of this new procedure. When we compare (Ty, o({0(¢)), Tu, 0(l1(€)))
and (T4, 1(1o(¢)), Ta,,1(11(¢))), which are the possible candidates for (Io(fo+1), I1(fo+1)) it follows

lj
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from Lemma [15| that a position j is corrected in the first case if and only if it is not corrected in
the second case. This means that either Ty, o(Io(€)) and Ty, o(11(¢)) or Ty, 1(Io(€)) and Ty, 1(11(¢))
differ at an odd number of positions (and the other one at an even number of positions). Suppose
without loss of generality that Ty, o({o(¢)), Ta, 0(/1(£)) differs by an odd number of positions.
If ngol(fo(f)) = TdZOl(Il(E)) then we choose eg+1 = 1 and the procedure stops. However, if
Ty 11(1o(0)) # Ta,1(11(£)) then we choose eg,1 = 0 and observe that the number of different
positions in Iy(¢y+1) and I1(¢y+ 1) is again odd but smaller than the number of different positions
in Iy(¢y) and I;(€y). Of course we can proceed in this way step by step till Iy(k) = I1(k) = J.

The advantage of this procedure is that we can control the values modulo 2 of v(I,d,e) and
v(1,d,e'). Actually since |[y(¢)] = |L(£)|mod2 for 1 < ¢ < ly, |[[h(¢)] # |[1(¢)| mod 2 for
ly <€ <myg (with 1 <mgy < k) and Iy(¢) = I,(¢) = J for my < ¢ < k, we obtain

v(I,d,e) =v(l,d,e)+ (mo—Lly+ 1) + 1 mod 2.

If mg — £y is odd we are done.

If mo—{y is even we modify the last step of the above procedure. As Iy(mg) and I (mg) differ at an
odd number of positions and Ty, c,.. (Io(10)) = Ta,, e, (11(M0)), it follows, writing €,,, = 1 — €y,
that Ty, z,, (lo(mo)) = lo(mg) and Ty, z,. (11(mg)) = I1(me) (since Ty, ,, corrects all positions,
14,2, COTTECtS 1O position). By using €, instead of ey, at step mg, we have Io(mo) = Io(mo+1)
and I1(mg) = I1(mg + 1) (and of course they differ at an odd number of positions).

If we can choose e,,,11 in a way that Iy(mg + 2) = I;(my + 2) then by the same arguments as
above (where we have to replace my by mg + 1) it follows that

(55) v(I,d,e)=v(l,d,e)+ (mg+1—4y+1)+1mod2=v(l,d,e)+1mod 2

and we are done. In particular this is possible if Io(mg + 1) and I1(mg + 1) differ at precisely one
position.

If we cannot choose €,,,+1 in a way that Io(mg + 2) = I;(mg + 2) then we restart the original
procedure at this point knowing that the number of different positions in Iy(mg+2) and I (mg+2)
is smaller than the number of different positions in Io(mg + 1) and I (mg + 1). If Io(¢) and I, (¢)
differ at an even number of positions for all £ > mg + 2 (till we end up at some common J), then
we again get and we are done. If not, let /1 be the smallest integer £ > m + 1 such that Iy(¢;)
and [;(¢,) differ at an odd number of positions. By construction this number is smaller that the
number of different positions in Iy(¢y) and I;(¢y) and we can proceed now by induction and the
procedure will terminate after at most k steps. ([l

9.2. Proof of Proposition [2|in the case (ag,...,a;_1) # (1,...,1). Without loss of generality
we can assume that ag = 1 and that for at least one £ > 1 we have oy, = 0. As we mentionned
in Section , the discrete Fourier transforms G only depends on those indices ¢ for which
ay = 1, so that we again introduce the reduced K-uple I = (i0)o<t<k,ap=1 and the reduced sets
fk = {j, I GIk}

The proof of Proposition 2] works again in the case (a, ..., ax_1) # (1,...,1) in the same way as
in the case (a, ..., ap_1) = (1,...,1) if we replace Z; by Zy, GL by GL and for any (e,¢') € {0,1}?2
the transformation T.., on Z; by the corresponding transformation T€€, on fk. In particular we
introduce, for any integer m > 1, d € {0,1}"™ and z € U, the matrices

ard d
M=) = <Pﬁ(z)>(f,])ef,§ ’
where the family of polynomials ﬁ% verifies Lemma . The corresponding weighted directed

graph G(z) has still outdegree 4 but less vertices and the coefficients of the matrix M9 (z) can still
be interpreted as codings of path of length m with, for j € {0,...,m — 1}, step j in the graph
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QN(ZQj). More precisely, for any I € Ik, e = (eg,...,em1) € {0,1}™ and i € {1,...,m}, if we
denote T9e(1) =T, rein -0 Tyoey (1) We can associate to each of the 2™ paths from the vertex
I to the vertices T9(I) the Welght

wde(’f’ Z) = Wdpeo (i Z)wdlel (Tfe(f)> ZQ) © Wy _rem—1 (Triil(jv)? Z2m71>
_ (_1>V(f,d,e)ZN(e)7

so that, for any (I,.J) € Z2, we have, by definition of ﬁ%

P(z) = Z wie(T,z) = Z (—1)Tde) N(e),

ec{0,1}™ ec{0,1}"

Tde(N=J Tde(N=J
Next, the Lemmas |1 . E and [18] can be generalized in a direct way, replacing I by I, Z; by
7, and for any m € {1,...,k} and any (d,e) € {0,1}" x {0,1}™, T9¢ by Tde. In particular the
procedures described in Lemmas [16] and [I§] directly translate to thls case. For example we can
project the two paths from the proof of Lemma [I6] that connect I to J to_corresponding paths
that connect I and .J and prove that for any m >k, d € {0,1}" and I € T, there exist J € I,
such that the polynomial P <. contains two monomials of consecutive degrees and then show, as

in Lemma (18] that we can ﬁnd J e Ik such that the polynomial P <. contains two monomials of
consecutive d egrees and opposite signs by distinguish again an even case and an odd case.
This completes the proof of Proposition

10. CONCLUSION, OPEN PROBLEMS

This work shows that it is possible, starting from an almost periodic sequence, to obtain a normal
subsequence just by extracting along the squares. Our proof works (with some extra technicity)
for any quadratic polynomial taking values in N, but the two following problems are open.

Problem 1. For any polynomial of degree at least 3 taking values in N, is it true that (t(P(n)))nen
is normal ¢

Problem 2. Let (p,)nen denote the sequence of prime numbers. For any non constant polynomial
taking values in N, is it true that (t(P(pn)))nen is normal 2]

Moreover it would be interesting to find some other almost periodic sequences u with the same
property and also to understand this phenomenon from the dynamical system point of view.
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