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Abstract

In the first section of this paper we give a matrix interpretation of well-
known inclusion-exclusion principle. A result concerning (0, 1)-matrices
is also proved.

In the next two section we apply these results to count the number of
specified functions from a finite set into an another finite set.

In second section we first find a formula for the number of functions
whose images contain a fixed subset. This gives a combinatorial interpre-
tation for finite differences of the function nm. We also obtain an extension
of the well-known relation for Stirling numbers of the second kind. Two
combinatorial identities are also proved. The first concerns the power
function, and the second involves Stirling numbers of the second kind.
We then prove two results for the number of function which specifically
map not particular elements, but particular subsets. Several special cases
of these formulae are stated.

In the third section we investigate the set of injective maps from a
finite set into a finite set. We first prove a formula for the number of
permutations which change all elements of a fixed set. This formula gives
a combinatorial meanings for finite differences for factorial function. As
a special case, the formula for the number of derangements is obtained.
Then two combinatorial identities are proved. The first one deals with
factorials, and the second with derangements.

Then we consider a more general situation and obtain some extensions
of derangements.

More then 200 sequences in well-known Sloan’s Encyclopedia of Integer
sequences are generated by the functions stated in the paper.
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1 Inclusion-Exclusion Principle

In this section we shall introduce a matrix interpretation of well-known Inclusion-
Exclusion method.

For the proof of the main theorem we need the following simple result:
∑

I

(−1)|I| = 0, (1)

where I run over all subsets of a finite set (empty set included). This may be
easily proved by induction or using Binomial theorem.

Let A be an m×n rectangular matrix filled with elements from a set Ω. By the
i-column of A we shall mean each column of A that is equal to [c1, c2, . . . , cm]T ,
where c1, c2, . . . , cm of Ω are given. We shall denote the number of i-columns of
A by νA(c) or simply by ν(c).

For I = {i1, i2, . . . , ik} ⊂ [m], by A(I) will be denoted the maximal number
of columns j of A such that

aij 6= cj , ( for all i ∈ I).

We also define
A(∅) = n.

Theorem 1.1. The number ν(c) of i-columns of A is equal

ν(c) =
∑

I

(−1)|I|A(I), (2)

where summation is taken over all subsets I of [m].
Proof. Theorem will be proved by the standard combinatorial method, count-
ing the contribution of each column of A in the sum on the right side of (2).
Write this formula in the form

ν(c) = n +
∑

I 6=∅
(−1)|I|A(I).

Let c = [c1, . . . , cm]T be the i-column of A. It is clear that its contribution to
the number A(I), (I 6= ∅) is equal zero. Hence, its contribution to the right
side of the preceding equation is equal 1.

If b is not an i-column then there is i0 ∈ [m] such that bi0 6= ci0 . Let I0 be
the set of all such indices. The contribution of b to the number A(I) is equal 1
if and only if I ⊆ I0. Hence, its contribution to the whole sum is

1 +
∑

I⊆I0, I 6=∅
(−1)i = 0,

according to (1).
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Theorem 1.2. If, in the condition of Theorem 1.1, the number A(I) depends
not of I, but only on |I| then

ν(c) =
m∑

i=0

(−1)i

(
m

i

)
A(i), (3)

where |I| = i.
Proof. We only need to collect terms in (2) in which I is fixed.

Let c be the i- column of a (0, 1) matrix A. Take I0 ⊆ [m], |I0| = k such
that

ci =
{

1 i ∈ I0

0 i 6∈ I0
(4)

Then A(I) is equal to the number of columns of A having 0’s in the rows whose
indices lie in I ∩ I0, and 1’s in the rows whose indices belong to the set I \ I0.
Theorem 1.3. Given a (0, 1) matrix A of the format m × n. Suppose that
c = [c1, . . . , cn]T is the i-column of A, and I0 ⊆ [m], |I0| = k such that

ci =
{

1 i ∈ I0

0 i 6∈ I0

If A(I) does not depend on elements of I ∩ I0, I \ I0, but only on its numbers
|I ∩ I0| = i1, |I \ I0| = i2, then we have

ν(c) =
k∑

i1=0

m−k∑

i2=0

(−1)i1+i2

(
k

i1

)(
m− k

i2

)
A(i1, i2). (5)

Proof. Write arbitrary I ⊆ [m] in the form

I = (I ∩ I0) ∪ (I \ I0).

If we collect terms on the right side of (2) in which I ∩ I0, and I \ I0 are
fixed, we obtain (5).

2 Functions from a finite set into a finite set

Let X = {x1, . . . , xm}, Y = {y1, . . . , yn} be two finite sets. Label all functions
f : X → Y by the numbers 1, 2, . . . , nm arbitrary and form an n × nm matrix
A in the following way:

aij =
{

1, yi 6∈ Im(fj)
0, yi ∈ Im(fj)

.

Take I0 ⊂ [n], |I0| = k, and consider the submatrix B of A consisting of those
rows of A whose indices belong to I0.

Suppose that i-column c of B consists of 0’s. Then ν(c) is equal to the
number of functions which images contain the set Y0 = {yi : i ∈ I0}. For I ⊂ I0
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the number B(I) is equal to the number of functions whose images do not
intersect {yi : i ∈ I}. There are (n − |I|)m such functions. It follows that the
formula (3) may be applied to obtain
Theorem 2.1. If k ≤ n, m are arbitrary nonnegative integers then the number
F (m,n, k) the functions from an m-set into an n-set, whose images contain fixed
k elements of Y , is

F (m,n, k) =
k∑

i=0

(−1)i

(
k

i

)
(n− i)m. (6)

Note first that in the trivial case m = n = k = 0 holds J(0, 0, 0) = 0. In the
following corollary we give the basic properties of the function F (m,n, k).
Corollary 2.1.

1◦ If S(m,n) is the number of surjections of an [m]-set onto an [n]-set then

F (m,n, n) = S(m, n).

2◦ Among nm numbers from 0 to nm−1 written in base n there are F (m,n, k)
of them in which k fixed ciphers occur.

3◦

F (m, n + k, k) = ∆knm,

where ∆k is the finite difference of the order k.

Proof. 1◦ is clear true. 2◦ holds according to the fact that for Y =
{0, 1, . . . , n − 1} functions f : [m] → Y can be regarded as numbers with m
digits written in base n. The equation 3◦ is in fact the basic formula for the
finite difference of the order kof the function nm.

The function F (m,n, k) generates several sequences which appear in [1].
In the case m ≥ n we may express F (m, n, k) in terms of number of surjec-

tions S(m,n) of an m- set onto an n-set, that is, in terms of Stirling numbers
of the second kind.

Namely, it holds

F (m,n, k) =
∑

Z⊆Y \Y0

S(m, |I0 ∪ Z|) =
n−k∑

i=0

(
n− k

i

)
S(m, k + i).

We thus have.
Corollary 2.2. For positive integers m, n and nonnegative integer k, (k ≤ n)
holds

F (m,n, k) =
n∑

i=k

(
n− k

i− k

)
S(m, i).

Taking k = 0 in the preceding equation, according to the fact that F (m,n, 0) =
nm, a well-known formula for Stirling numbers S(m,n) of the second is obtained.
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Corollary 2.3. If m,n are positive integers then

nm =
n∑

i=0

n(n− 1) · · · (n− i + 1)S(m, i).

We shall now count the number of i-columns of the matrix B consisting of
1’s. This number is equal to the number of functions which map X into Y \ Y0.
There is obviously (n− k)m such functions.

On the other A(I) is equal to the number of functions which images contain
{yi : i ∈ I}. This number may be obtained from (6). Replacing n − k by n we
derive
Corollary 2.4. For positive integers m, n and nonnegative integer k, (k ≤ n)
holds

nm =
k∑

i1=0

i1∑

i2=0

(−1)i1+i2

(
k

i1

)(
i1
i2

)
(n + k − i2)m.

Suppose now that c is arbitrary i-column of A, and denote J0 = {i ∈ [n] :
ci = 0}, |J0| = l. The number ν(c) is equal to the number of functions which
images contain {yi : i ∈ J0}, and that do not meet {yi : i ∈ [m] \ J0}. Thus
ν(c) = S(m, l). The number A(I) corresponds to the functions which images
do not intersect {yi : i ∈ I ∩ J0}, and contain {yi : i ∈ I \ J0}. It follows that
these functions send elements of X into Y \ {yi : i ∈ I ∩ J0}. Since its images
must contain the set {yi : i ∈ I \J0} it follows from (6) that the number of such
function is equal

|I\I0|∑

i3=0

(−1)i3

(|I \ I0|
i3

)
(n− |I ∩ I0| − i3)m.

Since this expression depends only on |I ∩ I0|, and |I \ I0| we may apply (5) to
obtain
Corollary 2.5. For a positive integer m, and arbitrary nonnegative integers l
and n holds.

S(m, l) =
l∑

i1=0

n∑

i2=0

i2∑

i3=0

(−1)i1+i2+i3

(
l

i1

)(
n

i2

)(
i2
i3

)
(n + l − i1 − i3)m.

In the following results we count functions that map specifically not partic-
ular elements, but particular subsets.
Theorem 2.2. Suppose that X1, X2, . . . , Xn are blocks of a finite set X, and
Y1, Y2, . . . , Yn are subsets of a finite set Y. The number N1 of function f : X → Y
such that

f(Xi) 6⊆ Yi, (i = 1, 2, . . . , n)

is
N1 =

∑

I⊆[n]

(−1)|I||Y ||X\∪i∈IXi| ·
∏

i∈I

|Yi||Xi|. (7)
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Proof. Form an n × |Y ||X| matrix A such that aij = 0 if for the function
fj : X → Y labelled by j holds fj(Xi) 6⊆ Yi, and aij = 1 otherwise.

According to Theorem 1.1, the number A(I) is the the number of functions
f : X → Y such that f(Xi) ⊆ Yi, (i ∈ I). This number is clearly equal to

|Y ||X\∪i∈IXi| ·
∏

i∈I

|Yi||Xi|.

In a similar way we obtain the following:
Theorem 2.3. Suppose that X1, X2, . . . , Xn are blocks of a finite set X and
Y1, Y2, . . . , Yn are subsets of a finite set Y . The number N2 of the functions
f : X → Y such that f(Xi) 6= Yi, (i = 1, 2, . . . , n) is

N2 =
∑

I⊆[n]

(−1)|I||Y ||X\∪i∈IXi| ·
∏

i∈I

|Yi|!S(Xi, Yi).

Depending on the number of elements of X1, . . . , Xn; Y1, . . . , Yn it is possible
to obtain a number of different enumerative formulae. Consider first the simplest
case when each X1, . . . , Xn; Y1, . . . , Yn consists of one element. Then

A(I) = |Y ||X|−|I|,

so that Theorem 1.2. may be applied. We thus obtain the following:
Corollary 2.6. Given distinct x1, . . . , xn in X and arbitrary y1, . . . , yn in Y ,
then the number N3 of functions f : X → Y such that

f(xi) 6= yi, (i = 1, 2, . . . , n),

is equal

N3 =
n∑

i=0

(−1)i

(
n

i

)
|Y ||X|−i.

According to Newton binomial formula we have

N3 = |Y ||X|−n(|Y | − 1)n.

Suppose that

|X1| = |X2| = . . . = |Xn| = 1, |Y1| = |Y2| = · · · = |Yk| = 2.

Then
A(I) = 2i|Y ||X|−|I|.

We may again apply Theorem 1.2 to obtain
Corollary 2.7. Given distinct x1, . . . , xn in X and arbitrary 2-subsets Y1, . . . , Yn

of Y , then the number N4 of functions f : X → Y such that

f(xi) 6∈ Yi, (i = 1, 2, . . . , n),
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is equal

N4 =
n∑

i=0

(−2)i

(|Y |
i

)
|Y ||X|−i.

From Newton binomial theorem we get

N4 = |Y ||X|−n(|Y | − 2)n.

If |X1| = · · · = |Xk| = 2; |Y1| = · · · |Yk| = 1 then

A(I) = |Y ||X|−2|I|,

which yields:
Corollary 2.8. Suppose that X1, . . . , Xn are 2-blocks of X and y1, . . . , yn ar-
bitrary elements in Y , then the number N5 of functions f : X → Y such that

f(Xi) 6= {yi}, (i = 1, 2, . . . , n)

is equal

N5 =
n∑

i=0

(−1)i

(
n

i

)
|Y ||X|−2i.

Newton binomial theorem yields

N5 = |Y ||X|−2n(|Y |2 − 1)n.

Take finally the case |Xi| = |Yi| = 2, (i = 1, 2, . . . , k)). We have now

A(I) = 4|I| · |Y ||X|−2|I|.

We thus obtain the following consequence of Theorem 2.3.
Corollary 2.9. Let X1, . . . , Xn be 2-blocks of X, and Y1, . . . , Yn arbitrary 2-
subsets of Y, then the number N5 of functions f : X → Y such that

f(Xi) 6= Yi, (i = 1, 2, . . . , n)

is equal

N6 =
n∑

i=0

(−4)i

(
n

i

)
|Y ||X|−2i.

Newton binomial theorem yields

N6 = |Y ||X|−2n(|Y |2 − 4)n.
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3 Injections from a finite set into a finite set

Consider now the set of all permutation of a finite set X = {x1, x2, . . . , xn}.
Label all permutations with numbers 1, 2, . . . , n! arbitrary and form an n× n!-
matrix A such that aij = 0 if πj(xi) 6= xi, and aij = 1 otherwise, where πj is
the permutation labelled by j.

Consider the submatrix B of A consisting of rows of A whose indices belong
to the set I0 ⊆ [n], |I0| = k. The i-columns of B consisting of 0’s are made of
permutations that change all elements of xi, (i ∈ I0). We denote this number
by P (n, I0). If I ⊆ I0 then the number B(I) corresponds to those permutations
which left all elements xi, (i ∈ I) fixed. There are (n− |I|)! such permutations.
We thus may apply (3) to obtain

P (n, I0) =
k∑

i=0

(−1)i

(
k

i

)
(n− i)!.

It is clear that P (n, I0) depends only of the number k of elements of I0. Thus,
if we denote by P (n, k) the number of permutations that change k elements of
X we get
Theorem 3.1. If k, n, (k ≤ n) are nonnegative integers then

P (n, k) =
k∑

i=0

(−1)i

(
k

i

)
(n− i)!. (8)

Note that in trivial case n = k = 0 holds J(n, 0) = n!. Taking n + k instead
of n to obtain
Corollary 3.1. If n, k are positive integers then

P (n + k, k) = ∆kn!,

where ∆k is the finite difference of the order k.
Proof. The formula follows immediately from the basic formula for finite dif-
ference of n!..

Taking specially k = n we obtain.
Corollary 3.2. For the number D(n) derangements of Sn holds

D(n) = P (n, n).

The i-columns of B consisting of 1’s correspond to those permutations which
remain all elements xi, (i ∈ I0) fixed. There are (n− k)! such permutations. In
this case the number B(I) is obtained of permutations that change all elements
of I. Applying Theorem 1.2. we obtain.
Corollary 3.3. If n is positive and k ≤ n nonnegative integer then

(n− k)! =
k∑

i1=0

i1∑

i2=0

(−1)i1+i2

(
k

i1

)(
i1
i2

)
(n− i2)!. (9)
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The following identity is a special case of the preceding, when k = n.
Corollary 3.4. For positive integer n holds

1 =
n∑

i1=0

i1∑

i2=0

(−1)i1+i2

(
n

i1

)(
i1
i2

)
(n− i2)!.

Suppose finally that c is arbitrary i-column of A, and I0 = {i ∈ [n] : ci =
1}, |I0| = k. The number ν(c) is equal to the number of permutations of Sn

which remain fixed only elements xi, (i ∈ I0), which yields that ν(c) = D(n−k).
The number A(I) is equal to the number of permutation which change ele-

ments xi, (i ∈ I ∩I0), while the elements xi, (i ∈ I \I0) remain fixed. It follows
from (8) that

A(I) =
|I∩I0|∑

i3=0

(−1)i3

(|I ∩ I0|
i3

)
(n− |I \ I0| − i3)!.

We see that the right side of this equation depends only on |I ∩ I0| and |I \ I0|.
Using Theorem 1.3. we obtain the following identity.
Corollary 3.5. If k, n, (k ≤ n) are positive integer then

D(n) =
k∑

i1=0

n∑

i2=0

i1∑

i3=0

(−1)i1+i2+i3

(
k

i1

)(
n

i2

)(
i1
i3

)
(n + k − i2 − i3)!.

We shall now consider injective functions from a finite set X into a finite set
Y, |Y | ≥ |X|. We start with the following:
Theorem 3.2. Let X1, X2, . . . , Xn be blocks in X and Y1, Y2, . . . , Yn blocks in
Y such that

|Xi| = |Yi|, (i = 1, 2, . . . , n).

Then the number I(m,n, k) of injection f : X → Y such that

f(Xi) 6= Yi, (i = 1, 2, . . . , n)

is equal

I(m, n, k) =
∑

I⊆[n]

(−1)|I|(|Y | −
∑

i∈I

|Yi|)(|X|−
∑

i∈I
|Xi|) ·

∏

i∈I

|Yi|(|Xi|).

Here, as usual, we denote by r(s) the falling factorials, that is,

r(s) = r(r − 1) · · · (r − s + 1).

Proof. In this case we have

A(I) = (|Y | − | ∪i∈I Yi|)(|X|−
∑

i∈I
|Xi|) ·

∏

i∈I

|Yi|(|Xi|)!,
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so that theorem follows from Theorem 1.1.
We shall also state some particular cases of this theorem. Suppose first that

|Xi| = |Yi| = 1, (i = 1, . . . , n).

For the number A(I) in this case we have

A(I) = (|Y | − |I|)(|X|−|I|),

so that Theorem 1.2 may be applied to obtain
Corollary 3.5. For mutually disjoint x1, . . . , xn in X and mutually disjoint
y1, . . . , yn in Y, the number I1(m,n, k) of injections f : X → Y such that

f(xi) 6= yi, (i = 1, 2, . . . , n)

is equal

I1(n,X, Y ) =
n∑

i=0

(−1)i

(
n

i

)
(|Y | − i)(|X|−i).

Since obviously holds D(n) = I(n, n, n), where D(n) is the number of de-
rangements of n elements, this function is an extension of derangements.

As a special case we also have the following generalization of derangements.
Corollary 3.6. If X1, X2, . . . , Xn is a partition of [kn] such that

|Xi| = k, (i = 1, 2, . . . , n)),

then the number D(n, k) of permutations f of [kn] such that f(Xi) 6= Xi, (i =
1, 2, . . . , n) is equal

D(n, k) =
n∑

i=0

(−1)i(k!)i(nk − ik)!.

For k = 1 we obtain the standard formula for derangements.
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