Quadrature amplitude modulation (QAM) ( or or simply "Q-A-M") is both an analog and a digital modulation scheme. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. The two carrier waves, usually sinusoids, are out of phase with each other by 90° and are thus called quadrature carriers or quadrature components — hence the name of the scheme. The modulated waves are summed, and the resulting waveform is a combination of both phase-shift keying (PSK) and amplitude-shift keying (ASK), or (in the analog case) of phase modulation (PM) and amplitude modulation. In the digital QAM case, a finite number of at least two phases and at least two amplitudes are used. PSK modulators are often designed using the QAM principle, but are not considered as QAM since the amplitude of the modulated carrier signal is constant. QAM is used extensively as a modulation scheme for digital telecommunication systems. Spectral efficiencies of 6 bits/s/Hz can be achieved with QAM..
QAM modulation is being used in optical fiber systems as bit rates increase – QAM16 and QAM64 can be optically emulated with a 3-path interferometer.
Phase modulation (analog PM) and phase-shift keying (digital PSK) can be regarded as a special case of QAM, where the magnitude of the modulating signal is a constant, with only the phase varying. This can also be extended to frequency modulation (FM) and frequency-shift keying (FSK), for these can be regarded as a special case of phase modulation.
When transmitting two signals by modulating them with QAM, the transmitted signal will be of the form:
:,
where and are the modulating signals and is the carrier frequency.
At the receiver, these two modulating signals can be demodulated using a coherent demodulator. Such a receiver multiplies the received signal separately with both a cosine and sine signal to produce the received estimates of and respectively. Because of the orthogonality property of the carrier signals, it is possible to detect the modulating signals independently.
In the ideal case is demodulated by multiplying the transmitted signal with a cosine signal:
:
Using standard trigonometric identities, we can write it as:
:
Low-pass filtering removes the high frequency terms (containing ), leaving only the term. This filtered signal is unaffected by , showing that the in-phase component can be received independently of the quadrature component. Similarly, we may multiply by a sine wave and then low-pass filter to extract .
The phase of the received signal is assumed to be known accurately at the receiver. If the demodulating phase is even a little off, it results in crosstalk between the modulated signals. This issue of carrier synchronization at the receiver must be handled somehow in QAM systems. The coherent demodulator needs to be exactly in phase with the received signal, or otherwise the modulated signals cannot be independently received. For example analog television systems transmit a burst of the transmitting colour subcarrier after each horizontal synchronization pulse for reference.
Analog QAM is used in NTSC and PAL television systems, where the I- and Q-signals carry the components of chroma (colour) information. "Compatible QAM" or C-QUAM is used in AM stereo radio to carry the stereo difference information.
:
where S(f), MI(f) and MQ(f) are the Fourier transforms (frequency-domain representations) of s(t), I(t) and Q(t), respectively.
If data-rates beyond those offered by 8-PSK are required, it is more usual to move to QAM since it achieves a greater distance between adjacent points in the I-Q plane by distributing the points more evenly. The complicating factor is that the points are no longer all the same amplitude and so the demodulator must now correctly detect both phase and amplitude, rather than just phase.
64-QAM and 256-QAM are often used in digital cable television and cable modem applications. In the United States, 64-QAM and 256-QAM are the mandated modulation schemes for digital cable (see QAM tuner) as standardised by the SCTE in the standard ANSI/SCTE 07 2000. Note that many marketing people will refer to these as QAM-64 and QAM-256. In the UK, 16-QAM and 64-QAM are currently used for digital terrestrial television (Freeview and Top Up TV) and 256-QAM is planned for Freeview-HD.
Communication systems designed to achieve very high levels of spectral efficiency usually employ very dense QAM constellations. One example is the ITU-T G.hn standard for networking over existing home wiring (coaxial cable, phone lines and power lines), which employs constellations up to 4096-QAM (12 bits/symbol). Another example is VDSL2 technology for copper twisted pairs, whose constellation size goes up to 32768 points.
First the flow of bits to be transmitted is split into two equal parts: this process generates two independent signals to be transmitted. They are encoded separately just like they were in an amplitude-shift keying (ASK) modulator. Then one channel (the one "in phase") is multiplied by a cosine, while the other channel (in "quadrature") is multiplied by a sine. This way there is a phase of 90° between them. They are simply added one to the other and sent through the real channel.
The sent signal can be expressed in the form:
: where and are the voltages applied in response to the th symbol to the cosine and sine waves respectively.
Multiplying by a cosine (or a sine) and by a low-pass filter it is possible to extract the component in phase (or in quadrature). Then there is only an ASK demodulator and the two flows of data are merged back.
In practice, there is an unknown phase delay between the transmitter and receiver that must be compensated by synchronization of the receivers local oscillator, i.e. the sine and cosine functions in the above figure. In mobile applications, there will often be an offset in the relative frequency as well, due to the possible presence of a Doppler shift proportional to the relative velocity of the transmitter and receiver. Both the phase and frequency variations introduced by the channel must be compensated by properly tuning the sine and cosine components, which requires a phase reference, and is typically accomplished using a Phase-Locked Loop (PLL).
In any application, the low-pass filter will be within hr (t): here it was shown just to be clearer.
is related to the complementary Gaussian error function by: , which is the probability that x will be under the tail of the Gaussian PDF towards positive infinity.
The error rates quoted here are those in additive white Gaussian noise (AWGN).
Where coordinates for constellation points are given in this article, note that they represent a non-normalised constellation. That is, if a particular mean average energy were required (e.g. unit average energy), the constellation would need to be linearly scaled.
===Rectangular QAM===
Rectangular QAM constellations are, in general, sub-optimal in the sense that they do not maximally space the constellation points for a given energy. However, they have the considerable advantage that they may be easily transmitted as two pulse amplitude modulation (PAM) signals on quadrature carriers, and can be easily demodulated. The non-square constellations, dealt with below, achieve marginally better bit-error rate (BER) but are harder to modulate and demodulate.
The first rectangular QAM constellation usually encountered is 16-QAM, the constellation diagram for which is shown here. A Gray coded bit-assignment is also given. The reason that 16-QAM is usually the first is that a brief consideration reveals that 2-QAM and 4-QAM are in fact binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK), respectively. Also, the error-rate performance of 8-QAM is close to that of 16-QAM (only about 0.5 dB better), but its data rate is only three-quarters that of 16-QAM.
Expressions for the symbol-error rate of rectangular QAM are not hard to derive but yield rather unpleasant expressions. For an even number of bits per symbol, , exact expressions are available. They are most easily expressed in a per carrier sense: :, so :.
The bit-error rate depends on the bit to symbol mapping, but for and a Gray-coded assignment—so that we can assume each symbol error causes only one bit error—the bit-error rate is approximately :. Since the carriers are independent, the overall bit error rate is the same as the per-carrier error rate, just like BPSK and QPSK. :.
The exact bit-error rate, will depend on the bit-assignment.
Note that both of these constellations are seldom used in practice, as the non-rectangular version of 8-QAM is optimal. Example of second constellation's usage: LDPC and 8-QAM.
It is the nature of QAM that most orders of constellations can be constructed in many different ways and it is neither possible nor instructive to cover them all here. This article instead presents two, lower-order constellations.
Two diagrams of circular QAM constellation are shown, for 8-QAM and 16-QAM. The circular 8-QAM constellation is known to be the optimal 8-QAM constellation in the sense of requiring the least mean power for a given minimum Euclidean distance. The 16-QAM constellation is suboptimal although the optimal one may be constructed along the same lines as the 8-QAM constellation. The circular constellation highlights the relationship between QAM and PSK. Other orders of constellation may be constructed along similar (or very different) lines. It is consequently hard to establish expressions for the error rates of non-rectangular QAM since it necessarily depends on the constellation. Nevertheless, an obvious upper bound to the rate is related to the minimum Euclidean distance of the constellation (the shortest straight-line distance between two points): :.
Again, the bit-error rate will depend on the assignment of bits to symbols.
Although, in general, there is a non-rectangular constellation that is optimal for a particular , they are not often used since the rectangular QAMs are much easier to modulate and demodulate.
The notation used here has mainly (but not exclusively) been taken from
Category:Radio modulation modes Category:Data transmission
ar:تضمين مطالي رباعي ca:Modulació d'amplitud en quadratura de:Quadraturamplitudenmodulation es:Modulación de amplitud en cuadratura fr:Modulation d'amplitude en quadrature gl:Modulación de amplitude en cuadratura ko:직교 진폭 변조 id:Quadrature amplitude modulation it:Quadrature amplitude modulation hu:Kvadratúra amplitúdómoduláció ms:Pemodulatan amplitud kuadratur nl:QAM ja:直角位相振幅変調 pl:Modulacja QAM pt:Modulação de amplitude em quadratura ru:Квадратурная модуляция su:Quadrature Amplitude Modulation fi:QAM sv:Kvadraturamplitudmodulering tr:Karesel genlik modülasyonu uk:Квадратурно-амплітудна модуляція zh:正交幅度调制This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.