A common further sub-division is to consider ballistic missile to mean a munition that follows a ballistic trajectory and cruise missile to describe a munition that generates lift.
After the boost-stage, ballistic missiles follow a trajectory mainly determined by ballistics. The guidance is for relatively small deviations from that.
Ballistic missiles are largely used for land attack missions. Although normally associated with nuclear weapons, some conventionally armed ballistic missiles are in service, such as ATACMS. The V2 had demonstrated that a ballistic missile could deliver a warhead to a target city with no possibility of interception, and the introduction of nuclear weapons meant it could do useful damage when it arrived. The accuracy of these systems was fairly poor, but post-war development by most military forces improved the basic inertial platform concept to the point where it could be used as the guidance system on ICBMs flying thousands of kilometers. Today the ballistic missile represents the only strategic deterrent in most military forces, however some Ballistic missiles are being adapted for conventional roles, such as the Russian Iskander or the Chinese DF-21D anti-ship ballistic missile. Ballistic missiles are primarily surface launched from mobile launchers, silos, ships or submarines, with air launch being theoretically possible using a weapon such as the canceled Skybolt missile.
The Russian Topol M (SS-27 Sickle B) is the fastest (7,320 m/sec) missile currently in service
The V1 had been successfully intercepted during World War II, but this did not make the cruise missile concept entirely useless. After the war, the US deployed a small number of nuclear-armed cruise missiles in Germany, but these were considered to be of limited usefulness. Continued research into much longer ranged and faster versions led to the US's Navaho missile, and its Soviet counterparts, the Burya and Buran cruise missile. However, these were rendered largely obsolete by the ICBM, and none were used operationally. Shorter-range developments have become widely used as highly accurate attack systems, such as the US Tomahawk missile, the Russian Kh-55 the German Taurus missile, the Indian BrahMos fastest supersonic cruise missile and the Pakistani Babur cruise missile.
Cruise missiles are generally associated with land attack operations, but also have an important role as anti-shipping weapons. They are primarily launched from air, sea or submarine platforms in both roles, although land based launchers also exist.
Another major German missile development project was the anti-shipping class (such as the Fritz X and Henschel Hs 293), intended to stop any attempt at a cross-channel invasion. However the British were able to render their systems useless by jamming their radios, and missiles with wire guidance were not ready by D-Day. After the war the anti-shipping class slowly developed, and became a major class in the 1960s with the introduction of the low-flying jet- or rocket-powered cruise missiles known as "sea-skimmers". These became famous during the Falklands War when an Argentine Exocet missile sank a Royal Navy destroyer.
A number of anti-submarine missiles also exist; these generally use the missile in order to deliver another weapon system such as a torpedo or depth charge to the location of the submarine, at which point the other weapon will conduct the underwater phase of the mission.
By the end of WWII all forces had widely introduced unguided rockets using HEAT warheads as their major anti-tank weapon (see Panzerfaust, Bazooka). However these had a limited useful range of a 100 m or so, and the Germans were looking to extend this with the use of a missile using wire guidance, the X-7. After the war this became a major design class in the later 1950s, and by the 1960s had developed into practically the only non-tank anti-tank system in general use. During the 1973 Yom Kippur War between Israel and Egypt, the 9M14 Malyutka (aka "Sagger") man-portable anti-tank missile proved potent against Israeli tanks. While other guidance systems have been tried, the basic reliability of wire-guidance means this will remain the primary means of controlling anti-tank missile in the near future. Anti tank missiles may be launched from aircraft, vehicles or by ground troops in the case of smaller weapons.
By 1944 US and British air forces were sending huge air fleets over occupied Europe, increasing the pressure on the Luftwaffe day and night fighter forces. The Germans were keen to get some sort of useful ground-based anti-aircraft system into operation. Several systems were under development, but none had reached operational status before the war's end. The US Navy also started missile research to deal with the Kamikaze threat. By 1950 systems based on this early research started to reach operational service, including the US Army's Nike Ajax, the Navy's "3T's" (Talos, Terrier, Tartar), and soon followed by the Soviet S-25 Berkut and S-75 Dvina and French and British systems. Anti-aircraft weapons exist for virtually every possible launch platform, with surface launched systems ranging from huge, self propelled or ship mounted launchers to man portable systems.
Like most missiles, the Arrow missile, S-300, S-400 and MIM-104 Patriot are for defense against short-range missiles and carry explosive warheads.
However, in the case of a large closing speed, a projectile without explosives is used, just a collision is sufficient to destroy the target. See Missile Defense Agency for the following systems being developed:
Soviet RS-82 rockets were successfully tested in combat at the Battle of Khalkhin Gol in 1939.
German experience in WWII demonstrated that destroying a large aircraft was quite difficult, and they had invested considerable effort into air-to-air missile systems to do this. Their Me-262's jets often carried R4M rockets, and other types of "bomber destroyer" aircraft had unguided rockets as well. In the post-war period the R4M served as the pattern for a number of similar systems, used by almost all interceptor aircraft during the 1940s and '50s. Lacking guidance systems, such rockets had to be carefully aimed at relatively close range to successfully hit the target. The US Navy and U.S. Air Force began deploying guided missiles in the early 1950s, most famous being the US Navy's AIM-9 Sidewinder and USAF's AIM-4 Falcon. These systems have continued to advance, and modern air warfare consists almost entirely of missile firing. In the Falklands War, less powerful British Harriers were able to defeat faster Argentinian opponents using AIM-9G missiles provided by the United States as the conflict began. The latest heat-seeking designs can lock onto a target from various angles, not just from behind, where the heat signature from the engines is strongest. Other types rely on radar guidance (either on-board or "painted" by the launching aircraft). Air to Air missiles also have a wide range of sizes, ranging from helicopter launched self defense weapons with a range of a few kilometers, to long range weapons designed for interceptor aircraft such as the Vympel R-37.
In the 1950s and 1960s, Soviet designers started work on an anti-satellite weapon, called the "Istrebitel Sputnik", which meant literally, Interceptor of satellites, or Destroyer of satellites. After a lengthy development process of roughly 20 years, it was finally decided that testing of the Istrebitel Sputnik be canceled. Ironically, this was when the U.S. started testing their own systems. From the mid 1970s onwards, the Soviets tested Directed-energy weapons with a facility named Terra-3, although relatively underpowered to perform a full anti-satellite attack, it was used to cause malfunctions on board the Space Shuttle Challenger in 1984. The proposed Brilliant Pebbles defense system during the 1980s would use kinetic energy collisions without explosives. Anti satellite weapons may be launched either by an aircraft or a surface platform, depending on the design. To date, only a few known tests have occurred.
Category:Ammunition Category:Explosive weapons
zh-min-nan:Tō-tôaⁿ ca:Míssil cy:Taflegryn da:Missil de:Lenkflugkörper es:Misil eo:Misilo fa:موشک fr:Missile gl:Mísil ko:미사일 hi:प्रक्षेपास्त्र id:Peluru kendali it:Missile he:טיל ml:മിസൈല് ms:Peluru berpandu ja:ミサイル no:Missil nn:Missil pl:Pocisk odrzutowy pt:Míssil rm:Missil ru:Ракетное оружие simple:Missile sl:Izstrelek fi:Ohjus sv:Robot (vapen) tl:Misil ta:ஏவுகணை te:క్షిపణి tr:Füze ur:صاروخ vi:Đạn tự hành zh:导弹This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.