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 c Length of cord of the arc connecting  
  the points corresponding to radial 
 e Eccentricity of the ellipse 
 E Eccentric anomaly 
 E1 Eccentric anomaly corresponding to  
  the launch point 
 E2 Eccentric anomaly corresponding to  
  the final destination 
  f True anomaly 
 G Universal constant of gravitation 
 m Mass of spacecraft 
 M Mass of earth 
 n Unit vector, indicating normal to the  
  trajectory plane 
 p Parameter of the orbit  
 γ Flight-path angle 
 r Radial coö rdinate 
 r1 Radial coö rdinate of launch point 
 r2 Radial coö rdinate of final destination 
 r Radius vector in the inertial coö rdinate  

   Abstract– The determination of an orbit, 
having a specified transfer time (time-of-
flight) and connecting two position vectors, 
frequently referred to as the Lambert prob-
lem, is fundamental in astrodynamics. Of the 
many techniques existing for solving this two-
body, two-point, time-constrained orbital 
boundary-value problem, Gauss' and Lag-
range's methods were combined to obtain an 
elegant algorithm based on Battin's work. 
This algorithm included detection of cross-
range error. A variable TYPE, introduced in 
the transfer-time equation, was flipped, to 
generate the inverse-Lambert scheme.  In this 
paper, an innovative adaptive scheme was 
pre-sented, which was called “ the Multi-
Stage-Lambert Scheme”. This scheme 
proposed a design of autopilot, which 
achieved the pre-decided destination position 
and velocity vectors for a multi-stage rocket, 
when each stage was detached from the main 
vehicle after it burned out, completely. 

  system 

 r 2 Radius vector of final destination 
 t Universal time 
 t 1 Launch time 

   Keywords–Lambert scheme, inverse-Lambert 
scheme, multi-stage Lambert scheme, two-body 
problem, transfer-time equation, orbital boundary-
value problem  t 2 Time of reaching final destination 
  TYPE Variable expressing direction of motion  
   of spacecraft relative to earth’s rotation 

NOMENCLATURE  v Velocity vector in the inertial coö rdinate  
   System 

A.  Symbols (in alphabetical order)  µ Product of universal constant of 
    gravitation and sum of masses of 
 a Semi-major axis of the ellipse   spacecraft and earth 
 am Semi-major axis of the minimum-  τ Time of pericenter passage 
 energy orbit  θ Transfer angle 

 φ Angle of inclination of velocity vector  
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   Astrodynamical terminologies and relationships 
are given in Appendices A and B, respectively. 
Appendix C contains a proof of the relationship 
connecting true and eccentric anomalies, providing 
a justification of positive sign in front of radical.  
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B. Compact Notations 
 

   In order to simplify the entries, ∈ = 21 e− , ∋ = 

e
e

+
−

1
1 , µ = G (m + M), are used in the expressions 

and equations. 
 
 

I. INTRODUCTION 
 
 Determination of trajectory is an important 
problem in astrodynamics. For a spacecraft moving 
under the influence of gravitational field of earth in 
free space (no air drag) the trajectory is an ellipse 
with the center of earth lying at one of the foci of the 
ellipse. This constitutes a standard two-body-central-
force problem, which has been treated, in detail, in 
many standard text-books [1, 2]. The trick is to first 
reduce the problem to two dimensions by showing 
that the trajectory always lies in a plane 
perpendicular to the angular-momentum vector. 
Then the problem is set up in plane-polar 
coö rdinates. Angular mo-mentum is conserved and 
the problem, effectively, reduces to one-dimensional 
problem involving only the variable r [3]. 
    A problem famous in astrodynamics, called “ the 
Lambert Problem” , is based on the Lambert theorem 
[4, 5]. According to this theorem the orbital-transfer 
time depends only upon the semi-major axis, the 
sum of the distances of the initial and the final points 
of the arc from the center of force as well as length 
of the line segment join-ing these points. Based on 
this theorem a problem called the Lambert problem 
is formulated. This problem deals with 
determination of an orbit having a specified flight-
time and connecting the two position vectors. Battin 
[6, 7] has set up the Lambert problem involving 
computation of a single hypergeometric function. 
Since transfer-time (time-of-flight) computation is 
done on-board, it is desirable to use an algorithm 
employ-ing as few computation steps as possible. 
The use of polynomials instead of actual expression 
and reduction of the number of degrees of freedom 
contribute towards the same goal. 
 An elegant Lambert algorithm, presented by 
Battin, was scrutinized and omissions/oversights in 
his calculations pointed out [8]. Battin’s for-
mulation, which highlighted the main principles 
involved, was developed and expanded to a set of 
formulae suitable for coding in the assembly 
language. These formulae could be used as a 
practical scheme outside the atmosphere for steering 
a satellite-launch vehicle (SLV). This scheme 
computes velocity and flight-path angle required at 
any   intermediate   time   to  be  compared  with  the 
 

 actual velocity and the actual flight path angle of the 
spacecraft, as reported by the on-board computing 
system. A spacecraft cannot reach the desired location 
if cross-range error is present. Battin’s original work 
does not address this issue. A mathematical 
formulation was given by the author to detect cross-
range error [8]. Algorithms were developed and 
tested, which indicated cross-range error. In order to 
correct cross-range error velocity vector should be 
perpendicular to normal to the desired trajectory plane 
(i. e., the velocity must lie, entirely, in the desired 
trajectory plane). 
   A variable TYPE was introduced in the transfer-time 
equation to incorporate direction of motion of the 
spacecraft [9]. This variable can take on two values, 
+1 (for spacecrafts moving in the direction of rotation 
of earth) and –1 (for spacecrafts moving opposite to 
the direction of rotation of earth). In the inverse-
Lambert scheme, TYPE was flipped, whereas all other 
parameters remained the same [8]. For an efficient 
trajectory choice, a transfer time close to minimum-
energy orbital transfer time was selected. A procedure 
for finding the minimum-energy orbital transfer time 
is included in this work. Additionally, formulae are 
given to compute the orbital parameters in which the 
SLV must be locked in at a certain position, at a time, 
t, based on the Lambert scheme. 
   In this paper, “ the Multi-Stage-Lambert Scheme”  is 
presented. In this formulation, section-wise 
corrections are achieved, where destination point of 
the first stage is initiating point of the second stage 
and so on. In this way, position and rate satu-rations 
(out of range deviations) are avoided. A similar 
formulation was, earlier, given for the Q System [9]. 
 
 

II. STATEMENT OF THE PROBLEM 
 
   In order to choose a particular trajectory on which 
the spacecraft could be locked so as to reach a certain 
point one must select a certain parameter to fix this 
trajectory out of the many possible ones connecting 
the two points. One is, therefore, interested to put the 
Kepler equation in such a form so as to make it 
computationally efficient utilizing hypergeometric 
functions or quadratic functions instead of circular 
functions (sine or co-sine, etc.). This equation should 
express transfer time between these two points in 
terms of a series or a polynomial, and another formula 
should be available to compute flight-path angle, 
correspon-ding to this transfer time. Velocity 
desirable for a particular trajectory may, then, be 
computed on- board using this formula and compared 
with velocity of the spacecraft obtained from 
integration of acceleration information, which is 
available from on-board accelerometers and rate 
velocity board 
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gyroscopes. 
 

III. THE LAMBERT THEOREM 
 
   In 1761 Johann Heinrich Lambert, using a geo-
metrical argument, demonstrated that the time taken 
to traverse any arc (now called transfer time), 

12 tt − , is a function, only, of the major axis, a, the 
arc, )( 21 rr + , and length of chord of the arc, c , for 
elliptical orbits, i. e., 

  

12 tt −  = ),,( 21 acrrf +   
  

The symbol, f, is used to express functional 
relationship in the above equation (do not confuse 
with true anomaly). Therefore, one notes that the 
transfer time does not depend on true or eccentric 
anomalies of the launch point or the final desti-
nation. Fig. 1 illustrates geometry of the problem. 

 
          Fig. 1 Geometry of the boundary-value problem 
 
Mathematically, transfer time for an elliptical trajec-
tory may be shown to be [6] 

)sin()sin()( 123 ββαα
µ

−−−=− tt
a

 
 

where, 
a

crr
42

sin 212 −+
=

α , 
a

crr
42

sin 212 ++
=

β . 

In the case at hand, GMMmG ≅+= )(µ , because 
Mm << . Based on this theorem a formu-lation to 

calculate transfer time and velocity vector at any 
instant during the boost phase is developed. This 
formulation is termed as the Lambert scheme. 
 
 
                  IV. THE LAMBERT SCHEME 
 
 Suppose a particular elliptical trajectory is 
connecting the points P1 and P2. Let 1t  and 2t be the 
times, when the spacecraft passes the points P1 and 
P2, respectively, the radial coö rdinates being 

1r and 2r . The standard Kepler equation ( τ is time of 
 
 

 
 

 
 

  pericenter passage) 
)sin()( 2/3 EeEat −=−τµ  (1) 

may be expressed as 
)cossin(2)( 23

12 χψψµ −=− att  (2) 

where )(
2
1

12 EE −=ψ , )(
2
1coscos 12 EEe +=χ . 

This equation may be used to calculate transfer time 
between two points by iterative procedure. However, 
it is unsuitable for on-board compu-tation, because 
computing time is large owing to the presence of 
circular functions. In order to put this in a form 
involving power series, one intro-duces 

)(
2
12 21 crrsam ++==  (3) 

2
cos21

θrrs =Λ  (4) 

where ma  is the semi-major axis of the minimum-  
energy orbit and θ  the transfer angle. From the 
geometry, one has 

θcos2 21
2

2
2

1 rrrrc −+=  (5) 

)1(1 22 xy −Λ−=  (6) 

Where )(
2
1cos χψ +=x . Further, introducing 

xy Λ−=η  (7) 

)1(
2
1

1 ηxS −Λ−=  (8) 

and a Q function  

);
2
5;1,3(

3
4

1SFQ =  (9) 

expressible in terms of a hypergeometric function, 

);
2
5;1,3( 1SF , instead of a circular function. This is 

needed to reduce onboard computation time. Transfer 
time may be expressed as 

ηη
µ

Λ+=− 4)( 3
123 Qtt

am
 (10) 

The magnitude of velocity, v, and flight-path angle, 
γ , may be evaluated using the following expressions 
[4, 6] 

  

2
sin)](

2
[1 2

1

22

1

θ
η

µ
η r

rx
r
a

a
v m

m
++Λ−

Λ
=    (11a) 

2
1

22

2
)cos1(

cos
vr

r θ
γ

−
=  (11b) 

   The hypergeometric function in (9) is given by the 
continued-fraction expression (this expression is 
needed to reduce on-board computing time) 
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About 100 terms are needed to get an accuracy of 
10-4. 
 To compute the transfer time corresponding to the 
minimum energy orbit connecting the current posi-
tion and the final destination one uses the transfer-
time equation (11), with 0=x  substituted in (8), 
corresponding to maa =  and solves it using 
Newton-Raphson method. Transfer time in the 
Lambert algorithm must be set close to this time. 
Fig. 2 shows the flow chart of Lambert algorithm. 
 
 

 
 

Fig. 2 Flow chart of the Lambert scheme 
 
 

V. CROSS-RANGE-ERROR DETECTION  
(MATHEMATICAL MODEL) 

 
 
 For no cross-range  error, velocity of the space-
craft must lie in the plane containing 2rr ×  (the  tra- 

 
 

 jectory plane).  In other words, the velocity vector 
must make an angle of 900 with normal to the 
trajectory plane. This is equivalent to [8]  

  
0).( 2 =× rrv  (12) 

  
which says that v (current velocity), r (current 
position) and 2r  (position of destination) are co-
planar. For no cross-range error, the angle of 
inclination, φ , between the velocity vector, v , and 
normal to the trajectory, n , must be 900. In the 
Lambert scheme a subroutine computes devi-ation of 
φ from 900. Extended-cross-product steering [10], 
dot-product steering [11] and ellipse-orientation 
steering [12] could be used to eliminate cross-range 
error.  
 
 

VI. THE INVERSE-LAMBERT SCHEME 
 
  Transfer-time equation between two points having 
eccentric anomalies 1E and 2E , (corres-ponding to 

times 1t and 2t , respectively) may be expressed as [8] 
=− 12 tt  

])][sin()sin[( 1122

3
TYPEEeEEeEa

−−−
µ

 (13) 

 The variable TYPE  has to be introduced because 
the Kepler equation is derived on the assumption that t 
increases with the increase in f. Therefore, the 
difference 

  
)]sin()sin[( 1122 EeEEeE −−−   

  
shall come out to be negative for spacecrafts orbiting 
in a sense opposite to rotation of earth. The variable 
TYPE  ensures that the transfer time (which is the 
physical time) remains positive in all situations by 
adapting the convention that TYPE =+1 for 
spacecrafts moving in the direc-tion of earth’s 
rotation, whereas, TYPE = –1 for spacecrafts moving 
opposite to the direction of earth’s rotation. This 
becomes important in computing correct flight-path 
angles in the Lambert scheme. 
    If one wants to put another spacecraft in the same 
orbit as the original spacecraft, but moving in the 
opposite direction, one can use the inverse- Lambert 
scheme. This can be accomplished by flipping sign of 
the variable, TYPE , whereas all the other parameters 
remain the same. Burns and Sherock [13] try to 
accomplish the same objective by a three-degree-of-
freedom interceptor simulation designed to rendez-
vous with a ballistic target: position and velocity 
matching, no flipping of TYPE. The  strategy  put  for- 
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ward by this author was simpler [8]: orbit matching, 
flipping of TYPE. The inverse-Q system has, also, 
been proposed by the author to accomplish the same 
objective  [9]. Do not confuse Q system with the 
symbol Q introduced in (9). 

 
 

VII. THE MULTI-STAGE-LAMBERT SCHEME 
 

    Let us consider a three-stage rocket. Destination 
point of the first (second) stage is the initiating point 
of the second (third) stage. Mathematically, 

  

initialfinalinitialfinal vvvv ,3,2,2,1 ; →→  (14a) 

initialfinalinitialfinal ,3,2,21 ; γγγγ →→  (14b) 
 
Equations (11a, b) can be used to compute velocities 
and flight-path angles at the initiating and 
destination points of various stages. By using these 
section-wise corrections, one can avoid position 
saturation and rate saturation.  

 
 

VIII. DISCUSSION AND CONCLUSIONS 
 

  The Lambert problem is a fixed-transfer-time- 
boundary-value problem. The Lambert-scheme 
formulations available in literature run into prob-
lems in terms of computing correct flight-path 
angles and velocities, in particular, for spacecrafts 
moving opposite to earth rotation because of defini-
tion of time in the Kepler equation. This problem 
was resolved by introducing a variable, TYPE, in the 
transfer-time equation. This, also, led to a natural 
formulation of the inverse-Lambert scheme. The 
Lambert scheme is applicable in free space, in the 
absence of atmospheric drags, for burnout times 
large as compared to on-board computation time 
(for example, if the burnout time for a given flight is 
18 second and the computation time is 1 second, 
there may not be enough time to utilize this 
scheme). This is needed to allow sufficient time for 
the control decisions to be taken and implemented 
before the rocket runs out of fuel. Detection of 
cross-range error is incorporated in this formulation. 
It is assumed that rocket is fired in the vertical 
position so as to get out of the atmosphere with 
minimum expenditure of fuel. Later, in free space 
this scheme is applied to correct the path of rocket. 
Since the rocket remains in free space for most of 
the time, this method may be useful in calculating 
the desired trajectory. 
  The Lambert scheme is an explicit scheme, which 
generates a suitable trajectory under the influence of 
an   inverse-square-central-force   law  (gravitational  
 
 
 
 

 field of earth) provided one knows the latitudes and 
the longitudes of launch point and of destination as 
well as the transfer time (time spent by the spacecraft 
to reach destination).  
 The Lambert scheme is an explicit scheme, which 
generates a suitable trajectory under the influence of 
an inverse-square-central-force law (gravitational field 
of earth) provided one knows the latitudes and the 
longitudes of launch point and of destination as well 
as the transfer time.  
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APPENDIX A: ASTRODYNAMICAL TERMINOLOGIES 
 
 Down-range error is the error in the range 
assuming that the vehicle is in the correct plane; cross-
range error is the offset of the trajectory from the 
desired plane. An unwanted pitch movement   shall 
produce down-range error;  an unwanted yaw 
movement shall produce cross-range error. 
 For an elliptical orbit true anomaly, f, is the polar 
angle measured from the major axis ( PFX∠ in Fig. 
3). Through the point P (current pos 

 
Fig. 3 Justification of the positive sign in ∋ 

 

position of spacecraft, rPFm = , the radial coö r-
dinate) erect a perpendicular on the major axis. Q is 
the intersection of this perpendicular with a circums-
cribed auxiliary circle about the orbital path. The 
angle, QOF∠ (cf. Fig.3) is called the eccentric 
anomaly, E.  
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 For this orbit, pericenter, the point on the major 
axis, which is closest to the force center (point A in 
Fig. 3), is chosen as the point at which f = 0. 
Apocenter is the opposite point on the major axis, 
which is farthest from the force center (point A in 
Fig. 3). The line joining the pericenter and the 
apocenter is called the line of apsides. 
 
 

APPENDIX B: ASTRODYNAMICAL RELATIONHIPS 
 
   Some useful relationships among radial 
coö rdinate, eccentric anomaly, eccentricity and 
semi-major axis for an elliptical orbit are listed 
below: 

  
)cos1( Eear −=  (B1a) 

)(coscos eEafr −=  (B1b) 
Eafr sinsin ∈=  (B1c) 

2
cos)1(

2
cos Eeafr −=  (B1d) 

2
sin)1(

2
sin Eeafr +=  (B1e) 

   The following may be useful in converting circular 
functions involving true anomalies to those 
involving eccentric anomalies and vice versa. 

  

Ee
eEf

cos1
coscos
−

−
=  (B2a) 

fe
efE

cos1
coscos
+

+
=  (B2b) 

Ee
Ef

cos1
sinsin

−
∈

=  (B2c) 

fe
fE

cos1
sinsin

+
∈

=  (B2d) 

2
tan

2
tan Ef

=∋  (B2e) 

In Appendix C, the last relation is proved and a 
justi-fication is given for the positive sign taken in 
front of the square root appearing in the expression 
for ∋. 
 
 

APPENDIX C: RELATION CONNECTING ECCENTRIC 
ANOMALY TO TRUE ANOMALY 

 
In Fig. 3, semi-minor axis of the ellipse, b, is related 
to a by ∈= ab . Do not confuse the point Q in Fig. 3 
with the quantity Q defined in (9). Using the 

relations  
fe

pr
cos1+

=  and )1( 2eap −= , one 

may write, )1()cos1( 2eafer −=+ . Rearranging 
 
 
 
 
 
 
 
 
 

   

reafer −−= )1(cos 2   
   

 

Adding er to both sides and using (B1a) on the right-
hand side, one gets 

  
)cos1)(1()cos1( Eeafr +−=+  (C1) 

  
Subtracting er from both sides and using (B1a) on the 
right-hand side, one gets 

  
)cos1)(1()cos1( Eeafr −+=−  (C2) 

  
Dividing (C2) by (C1) 

  

)cos1)(1(
)cos1)(1(

cos1
cos1

Ee
Ee

f
f

+−
−+

=
+
−   

  
Using the identities 

2
sin2cos1 2 ff =−   

2
cos2cos1 2 ff =+   

with similar results for the expressions )cos1( E− and 
)cos1( E+ , one sees that the above equation reduces 

to 

2
tan

1
1

2
tan 22 E

e
ef

−
+

=   

which implies 

2
tan

1
1

2
tan E

e
ef

−
+

±=   

Below, it is justified that only positive sign with the 
radical gives the correct answer. Consider ∆ ORF (cf. 
Fig. 3). One notes that, 

ππ ≤≤− E ⇒
222
ππ

≤≤−
E  

Further, 0≥E  ⇒ 0≥f ; 0<E ⇒ 0<f . 

Therefore, 
2
f and 

2
E  have the same sign. When 

0
22

<≤−
Eπ , 0

2
tan <

E , 0
2

tan <
f , which implies 

that positive sign with the radical should be chosen. 
Similarly, 

22
0 π

≤≤
E , 0

2
tan ≥

E , 0
2

tan ≥
f  

and, hence, positive sign with the radical is the correct 
choice.  
   Two-body problem can be handled elegantly by 
using the elliptic-astrodynamical-coö rdinate mesh [14, 
15]. One discovers additional cons-tants of motion if 
the problem is set up using this formulation [16]. 
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