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Abstract 
 
   The determination of an orbit, having a specified transfer time (time-of-flight) and connecting two position vectors, 
frequently referred to as the Lambert problem, is fundamental in astrodynamics. Of the many techniques existing for 
solving this two-body, two-point, time-constrained orbital boundary-value problem, Gauss' and Lagrange's methods are 
combined to obtain an elegant algorithm based on Battin's work. This algorithm includes detection of cross -range error. 
A variable TYPE, introduced in the transfer-time equation, is flipped, to generate the inverse-Lambert scheme. The 
Lambert scheme could be useful in steering a satellite-launch vehicle (SLV) as well as constructing the control system 
of a passenger craft traveling in a ballistic trajectory. 
 
Keywords: Lambert scheme, inverse-Lambert scheme, two-body problem, transfer-time equation, orbital boundary-
value problem 
 

 
Nomenclature  r 2 Radius vector of final destination 
  t Universal time 
a) Symbols (in alphabetical order)  t1 Launch time 
  t2 Time of reaching final destination 
 a Semi-major axis of the ellipse  TYPE Variable expressing direction of motion  
 am Semi-major axis of the minimum-   of spacecraft relative to earth’s rotation 
 energy orbit  v Velocity vector in the inertial coördinate  
 c Length of cord of the arc connecting    System 
 the points corresponding to radial  µ Product of universal constant of 
 coördinates r1 and r2   gravitation and sum of masses of 
 e Eccentricity of the ellipse   spacecraft and earth 
E Eccentric anomaly  τ Time of pericenter passage 
E1 Eccentric anomaly corresponding to the   θ Transfer angle 
 launch point  φ Angle of inclination of velocity vector  
E2 Eccentric anomaly corresponding to the    and normal to the plane 
 final destination  
 f True anomaly  
G Universal constant of gravitation  
m Mass of spacecraft  
M Mass of earth  
n Unit vector, indicating normal to the   
 trajectory plane  
p Parameter of the orbit   
γ Flight-path angle  
r Radial coordinate  
r1 Radial coördinate of launch point  
r2 Radial coördinate of final destination  
r Radius vector in the inertial coördinate   
 system  

  
   Astrodynamical terminologies and relationships 
are given in Appendices A and B, respectively. 
Appendix C contains a proof of the relationship 
connecting true and eccentric anomalies, providing 
a justification of positive sign in front of the 
radical. 
 
b) Compact Notations 

   In order to simplify the entries, ∈ = 21 e− , ∋ = 

e
e

+
−

1
1 , µ = G (m + M), are used in the expressions 

and equations. 
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1. Introduction 
 
 Determination of trajectory is an important 
problem in astrodynamics. For a spacecraft 
moving under the influence of gravitational field 
of earth in free space (no air drag) the trajectory is 
an ellipse with the center of earth lying at one of 
the foci of the ellipse. This constitutes a standard 
two-body-central-force problem, which has been 
treated, in detail, in many standard textbooks [1, 
2]. The trick is to first reduce the problem to two 
dimensions by showing that the trajectory always 
lies in a plane perpendicular to the angular-
momentum vector. Then the problem is set up in 
plane-polar coordinates. Angular momentum is 
conserved and the problem, effectively, reduces to 
one-dimensional problem involving only the 
variable r [3]. 
 A problem famous in astrodynamics, called “the 
Lambert Problem”, is based on the Lambert 
theorem [4, 5]. According to this theorem the 
orbital-transfer time depends only upon the semi-
major axis, the sum of the distances of the initial 
and the final points of the arc from the center of 
force as well as length of the line segment joining 
these points. Based on this theorem a problem 
called the Lambert problem is formulated. This 
problem deals with determination of an orbit 
having a specified flight-time and connecting the 
two position vectors. Battin [6, 7] has set up the 
Lambert problem involving computation of a 
single hypergeometric function. Since transfer 
time (time-of-flight) computation is done on-
board, it is desirable to use an algorithm involving 
as few computation steps as possible. The use of 
polynomials instead of actual expression and 
reduction of the number of degrees of freedom 
contribute towards the same goal. 
 In this paper an elegant Lambert algorithm, 
presented by Battin, is scrutinized and 
omissions/oversights in his calculations pointed 
out. Battin’s formulation, which highlighted the 
main principles involved, was developed and 
expanded to present a set of formulae suitable for 
coding in the assembly language to be used as a 
practical scheme outside the atmosphere for 
steering the satellite-launch vehicle (SLV). These 
formulae may be used to compute the velocity and 
the flight-path angle required at any intermediate 
time to be compared with the initial velocity and 
flight-path angle of the spacecraft. A spacecraft 
cannot reach the desired location if cross-range 
error is present. Battin’s original work does not 
address this issue. In this paper a mathematical 
formulation is given to detect cross-range error. 
Algorithms   have   been   developed   and   tested,  

 which indicate cross-range error. In order to correct 
cross-range error velocity vector should be 
perpendicular to normal to the desired trajectory   
(i. e., the velocity must lie, entirely, in the desired 
trajectory plane). 
 A variable TYPE is introduced in the transfer-
time equation to incorporate direction of motion of 
the spacecraft. This variable can take on 2 values, 
+1 (for spacecrafts moving in the direction of 
rotation of earth) and – 1 (for spacecrafts moving 
opposite to the direction of rotation of earth). In the 
inverse-Lambert scheme, TYPE is flipped, whereas 
all other parameters remain the same. 
 For an efficient trajectory choice, a 
transfer time close to minimum-energy orbital 
transfer time should be selected. The paper 
highlights a procedure for finding the minimum-
energy orbital transfer time. Additionally, formulae 
are given to compute the orbital para-meters in 
which the SLV must be locked in at a certain 
position, at a time, t, based on the Lambert scheme. 
 
 
2. Statement of the Problem 
 
 In order to choose a particular trajectory on 
which the spacecraft could be locked so as to reach 
a certain point one must select a certain parameter 
to fix this trajectory out of the many possible ones 
connecting the two points. The parameter to be 
chosen in the Lambert problem is transfer time, 
which is fixed between the two points. One is, 
therefore, interested to put the Kepler equation in 
such a form so as to make it computationally 
efficient utilizing hypergeometric functions or 
quadratic functions instead of circular functions 
(sine or cosine, etc.). This equation should express 
the transfer time between these two points in terms 
of a series or a polynomial, and another formula 
should be available to compute velocity vector 
(speed and flight-path angle), corresponding to this 
transfer time. Velocity desirable for a particular 
trajectory may, then, be computed on-board using 
this formula and compared with velocity of the 
spacecraft obtained from integration of acceleration 
information, which is available from on-board 
accelerometers and rate gyroscopes. 
 
 
3. The Lambert Theorem 
 
   In 1761 Johann Heinrich Lambert, using a 
geometrical argument, demonstrated that the time 
taken to traverse any arc (now called transfer time), 

12 tt − , is a function, only, of the major axis, a,  the 
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sum of radii vectors to the end of the specified 
arc, )( 21 rr + , and length of chord of the arc, c , 
for elliptical orbits, i. e., 

  

12 tt −  = ),,( 21 acrrf +   
  

The symbol, f, is used to express functional 
relationship in the above equation (do not confuse 
with true anomaly). Therefore, one notes that the 
transfer time does not depend on true or eccentric 
anomalies of the launch point or the final desti-
nation. Fig. 1 illustrates geometry of the problem. 
Mathematically, transfer time for an elliptical 
trajectory may be shown to be [6] 

)sin()sin()( 123 ββαα
µ

−−−=− tt
a

 
 

where, 
a

crr
42

sin 212 −+
=

α , 
a

crr
42

sin 212 ++
=

β . 

In our case, GMMmG ≅+= )(µ , because 
Mm << . Based on this theorem a formulation to 

calculate transfer time and velocity vector at any 
instant during the boost phase is developed. This 
formulation is termed as the Lambert scheme. 
 
 
4. The Lambert Scheme 
 
 Suppose a particular elliptical trajectory is 
connecting the points P1 and P2. Let 1t  and 2t be 
the times, when the spacecraft passes the points P1 
and P2, respectively, the radial coördinates being 

1r and 2r . The standard Kepler equation (τ is time 
of pericenter passage) 

)sin()( 2/3 EeEat −=−τµ  (1) 
may be expressed as 

)cossin(2)( 23
12 χψψµ −=− att  (2) 

where )(
2
1

12 EE −=ψ , )(
2
1coscos 12 EEe +=χ . 

This equation may be used to calculate transfer 
time between 2 points by iterative procedure. 
However, it is unsuitable for on-board compu-
tation, because computing time is large owing to 
the presence of circular functions. In order to put 
this in a form involving power series, one 
introduces 

)(
2
12 21 crrsam ++==  (3) 

2
cos21

θrrs =Λ  (4) 

where ma  is the semi-major axis of the minimum-  
  
5. Cross-Range-Error Detection  
(Mathematical Model) 

 energy orbit and θ the transfer angle. From the 
geometry, one has 

θcos2 21
2

2
2

1 rrrrc −+=  (5) 

)1(1 22 xy −Λ−=  (6) 

where )(
2
1cos χψ +=x . Further, introducing 

xy Λ−=η  (7) 

)1(
2
1

1 ηxS −Λ−=  (8) 

and a Q function expressible in terms of a 
hypergeometric function 

);
2
5;1,3(

3
4

1SFQ =  (9) 

Transfer time may be expressed as 

ηη
µ

Λ+=− 4)( 3
123 Qtt

am
 (10) 

This involves a hypergeometric function instead of 
a circular function, and hence it is easy to evaluate. 
The magnitude of velocity, v, and the flight-path 
angle, γ , may be evaluated using the expressions 
[4, 6] 

2
sin)](

2
[1 2

1

22

1

θ
η

µ
η r

rx
r
a

a
v m

m
++Λ−

Λ
=  (11a) 

2
1

22

2
)cos1(

cos
vr

r θ
γ

−
=  (11b) 

 The hypergeometric function in equation (9) is 
given by the continued-fraction expression (this 
expression is needed to reduce on-board computing 
time) 
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About 100 terms are needed to get an accuracy of 
10-4.  
 To compute the transfer time corresponding to 
the minimum energy orbit connecting the current 
position and the final destination one uses the 
transfer-time equation, with 0=x , corresponding 
to maa =  and solves it using Newton-Raphson 
method. Transfer time in the Lambert algorithm 
must be set close to this time. Fig. 2 shows the flow 
chart of Lambert algorithm. 
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5. Cross-Range-Error Detection  
(Mathematical Model) 
 
  For no cross-range error, velocity of the space-
craft must lie in the plane containing 2rr ×  (the 
trajectory plane).  In other words, the velocity 
vector must make an angle of 900 with normal to 
the trajectory plane. This is equivalent to [8]  

  
0).( 2 =× rrv  (13) 

  
which says that v (current velocity), r (current 
position) and 2r  (position of destination) are co-
planar. For no cross-range error, the angle of 
inclination, φ , between the velocity vector, v , 
and normal to the trajectory, n , must be 900. In 
the Lambert scheme a subroutine computes devi-
ation of φ from 900. Extended-cross-product 
steering [9] and dot-product steering [10] could be 
used to eliminate cross-range error.  
 
 
6. The Inverse-Lambert Scheme 
 
  Transfer-time equation between two points 
having eccentric anomalies 1E and 2E , (correspon-

ding to times 1t and 2t , respectively) may be 
expressed as [11-13] 

=− 12 tt  

])][sin()sin[( 1122

3
TYPEEeEEeEa

−−−
µ

 (14) 

 The variable TYPE  has to be introduced 
because the Kepler equation is derived on the 
assumption that t increases with the increase in f. 
Therefore, the difference 

  
)]sin()sin[( 1122 EeEEeE −−−   

  
shall come out to be negative for spacecrafts 
orbiting in a sense opposite to rotation of earth. 
The variable TYPE  ensures that the transfer time 
(which is the physical time) remains positive in all 
situations by adapting the convention that TYPE = 
+1 for spacecrafts moving in the direction of 
earth’s rotation, whereas, TYPE = – 1 for space-
crafts moving opposite to the direction of earth’s 
rotation. This becomes important in computing 
correct flight-path angles in Lambert scheme. 
If one wants to put another spacecraft in the same 
orbit as the original spacecraft, but moving in the 
opposite   direction,   one   can   use   the   inverse- 
Lambert scheme.    This  can  be  accomplished by 

flipping sign of the variable, TYPE , whereas all 
the other parameters remain the same. Burns and 
Sherock [14] try to accomplish the same objective 
by a three-degree-of-freedom interceptor simula-
tion designed to rendezvous with a ballistic target: 
position and velocity matching, no flipping of 
TYPE. The strategy presented in this paper is 
simpler: orbit matching, flipping of TYPE. The 
inverse-Q system has, also, been proposed by the 
author to accomplish the same objective  [15]. Do 
not confuse Q system with the symbol Q 
introduced in eq. (9). 
 
 
7. Conclusions 
 
  The Lambert scheme is applicable in free space, 
in the absence of atmospheric drags, for burnout 
times large as compared to on-board computation 
time (for example, if the burnout time for a given 
flight is 18 second and the computation time is 1 
second, there may not be enough time to utilize this 
scheme). This is needed to allow sufficient time for 
the control decisions to be taken and implemented 
before the rocket runs out of fuel. Detection of 
cross-range error is incorporated in this 
formulation. It is assumed that rocket is fired in the 
vertical position so as to get out of the atmosphere 
with minimum expenditure of fuel. Later, in free 
space this scheme is applied to correct the path of 
rocket. Since the rocket remains in free space for 
most of the time, this method may be useful in 
calculating the desired trajectory. 
  The Lambert scheme is an explicit scheme, 
which generates a suitable trajectory under the 
influence of an inverse-square-central-force law 
(gravitational field of earth) provided one knows 
the latitudes and the longitudes of launch point and 
of destination as well as the transfer time (time 
spent by the spacecraft to reach destination).  
 
 
Acknowledgement 
 
  This work was made possible, in part, by Dean's 
Research Grant awarded by University of Karachi, 
which is, gratefully, acknowledged.  
 
 
Appendix A: Astrodynamical Terminologies 
 
 Down-range error is the error in the range 
assuming that the vehicle is in the correct plane; 
cross-range error is the offset of the trajectory from 
the desired plane. An unwanted pitch movement   
shall produce down-range error;   an unwanted yaw 
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movement shall produce cross-range error. 
 For an elliptical orbit true anomaly, f, is the 
polar angle measured from the major axis 
( PFX∠ in Fig. 3). Through the point P (current 
position of spacecraft, rPFm = , the radial 
coördinate) erect a perpendicular on the major 
axis. Q is the intersection of this perpendicular 
with a circumscribed auxiliary circle about the 
orbital path. QOF∠ (cf. Fig.3) is called the 
eccentric anomaly, E.  
 For this orbit, pericenter, the point on the major 
axis, which is closest to the force center (point A 
in Fig. 3), is chosen as the point at which f = 0. 
Apocenter is the opposite point on the major axis, 
which is farthest from the force center (point A in 
Fig. 3). The line joining the pericenter and the 
apocenter is called the line of apsides. 
 
 
Appendix B: Astrodynamical Relationhips 
 
   Some useful relationships among radial 
coördinate, eccentric anomaly, eccentricity and 
semi-major axis for an elliptical orbit are listed 
below: 

)cos1( Eear −=  (B1a) 
)(coscos eEafr −=  (B1b) 

Eafr sinsin ∈=  (B1c) 

2
cos)1(

2
cos Eeafr −=  (B1d) 

2
sin)1(

2
sin Eeafr +=  (B1e) 

   The following may be useful in converting 
circular functions involving true anomalies to 
those involving eccentric anomalies and vice 
versa. 

Ee
eEf

cos1
coscos
−

−
=  (B2a) 

fe
efE

cos1
coscos
+

+
=  (B2b) 

Ee
Ef

cos1
sinsin

−
∈

=  (B2c) 

fe
fE

cos1
sinsin

+
∈

=  (B2d) 

2
tan

2
tan Ef

=∋  (B2e) 

In Appendix C, the last relation is proved and a 
justification is given for the positive sign taken in 
front of the square root appearing in the 
expression for ∋. 

 Appendix C: Relation Connecting Eccentric 
Anomaly to True Anomaly 
  
 In Fig. 3, semi-minor axis of the ellipse, b, is 
related to a by ∈= ab . Do not confuse the point Q 
in Fig. 3 with the quantity Q defined in eq. (9). 

Using 
fe

pr
cos1+

=  and )1( 2eap −= , one may 

write, )1()cos1( 2eafer −=+ . This may, in turn, 
be written as 

  

reafer −−= )1(cos 2   
  

Adding er to both sides and using (B1a) on the 
right-hand side, one gets 

  
)cos1)(1()cos1( Eeafr +−=+  (C1) 

  
Subtracting er from both sides and using (B1a) on 
the right-hand side, one gets 

  
)cos1)(1()cos1( Eeafr −+=−  (C2) 

  
Dividing (C2) by (C1) 

  

)cos1)(1(
)cos1)(1(

cos1
cos1

Ee
Ee

f
f

+−
−+

=
+
−   

  
Using the identities 

2
sin2cos1 2 ff =−   

2
cos2cos1 2 ff =+   

with similar results for )cos1( E−  and )cos1( E+ , 
one sees that the above equation reduces to 

2
tan

1
1

2
tan 22 E

e
ef

−
+

=   

which implies 

2
tan

1
1

2
tan E

e
ef

−
+

±=   

Below, it is justified that only positive sign with the 
radical gives the correct answer. Consider ∆ ORF 
(cf. Fig. 3). One notes that, 

ππ ≤≤− E ⇒
222
ππ

≤≤−
E  

Further, 0≥E  ⇒ 0≥f ; 0<E ⇒ 0<f . 

Therefore, 
2
f and 

2
E  have the same sign. When 

0
22

<≤−
Eπ , 0

2
tan <

E , 0
2

tan <
f , which implies  

that  positive  sign  with  the  radical should be 
chosen. Similarly, 
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22
0 π

≤≤
E , 0

2
tan ≥

E , 0
2

tan ≥
f  

and, hence, positive sign with the radical is the 
correct choice. 
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Fig. 1 Geometry of the boundary-value problem 
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Fig. 2 Flow chart of the Lambert scheme 
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Fig. 3 Justification of the positive sign in ∋ 

 


