- Order:
- Duration: 1:10
- Published: 26 May 2009
- Uploaded: 08 Aug 2011
- Author: dirdim
Pterosaurs are sometimes referred to in the popular media as dinosaurs, but this is incorrect. The term "dinosaur" is properly restricted to a certain group of reptiles with a unique upright stance (superorder Dinosauria, which includes birds), and therefore excludes the pterosaurs, as well as the various groups of extinct marine reptiles, such as ichthyosaurs, plesiosaurs, and mosasaurs.
Pterosaurs are also incorrectly referred to as "pterodactyls", particularly by journalists. This usage is discouraged. "Pterodactyl" refers specifically to members of the genus Pterodactylus,
While historically thought of as simple, leathery structures composed of skin, research has since shown that the wing membranes of pterosaurs were actually highly complex and dynamic structures suited to an active style of flight. First, the outer wings (from the tip to the elbow) were strengthened by closely spaced fibers called actinofibrils. The actinofibrils themselves consisted of three distinct layers in the wing, forming a crisscross pattern when superimposed on one another. The actual function of the actinofibrils is unknown, as is the exact material from which they were made. Depending on their exact composition (keratin, muscle, elastic structures, etc.), they may have been stiffening or strengthening agents in the outer part of the wing.
As evidenced by hollow cavities in the wing bones of larger species and soft tissue preserved in at least one specimen, some pterosaurs extended their system of respiratory air sacs (see Paleobiology section below) into the wing membrane itself.
Three lines of evidence, morphological, developmental and histological, indicate that the pteroid is a true bone, rather than ossified cartilage. The origin of the pteroid is unclear: it may be a modified carpal, the first metacarpal, or a neomorph (new bone).
The pterosaur wrist consists of two inner (proximal) and four outer (distal) carpals (wrist bones), excluding the pteroid bone, which may itself be a modified distal carpal. The proximal carpals are fused together into a "syncarpal" in mature specimens, while three of the distal carpals fuse to form a distal syncarpal. The remaining distal carpal, referred to here as the medial carpal, but which has also been termed the distal lateral, or pre-axial carpal, articulates on a vertically elongate biconvex facet on the anterior surface of the distal syncarpal. The medial carpal bears a deep concave fovea that opens anteriorly, ventrally and somewhat medially, within which the pteroid articulates.
There has been considerable argument among paleontologists about whether the main wing membranes (brachiopatagia) attached to the hind limbs, and if so, where. Fossils of the rhamphorhynchoid Sordes, the anurognathid Jeholopterus, and a pterodactyloid from the Santana Formation seem to demonstrate that the wing membrane did attach to the hindlimbs, at least in some species. However, modern bats and flying squirrels show considerable variation in the extent of their wing membranes and it is possible that, like these groups, different species of pterosaur had different wing designs. Indeed, analysis of pterosaur limb proportions shows that there was considerable variation, possibly reflecting a variety of wing-plans.
Many if not all pterosaurs also had webbed feet.
Unlike most archosaurs, which have several openings in the skull in front of the eyes, in pterodactyloid pterosaurs the antorbital opening and the nasal opening was merged into a single large opening, called the nasoantorbial fenestra. This likely evolved as a weight-saving feature to lighten the skull for flight. The discovery of Pterorynchus and Austriadactylus, both crested "rhamphorhynchoids", showed that even primitive pterosaurs had crests (previously, crests were thought to be restricted to the more advanced pterodactyloids).
Katsufumi Sato, a Japanese scientist, did calculations using modern birds and decided that it is impossible for a pterosaur to stay aloft. In the book Posture, Locomotion, and Paleoecology of Pterosaurs it is theorized that they were able to fly due to the oxygen-rich, dense atmosphere of the Late Cretaceous period. However, one must note both Katsufumi and the authors of Posture, Locomotion, and Paleoecology of Pterosaurs based their research on the now outdated theories of pterosaurs being seabird-like, and the size limit doesn't apply to terrestrial pterosaurs like azhdarchids and tapejarids Furthermore, Darren Naish concluded that atmospheric differences between the present and the Mesozoic weren't needed for the giant size of pterosaurs.
However, Mark Witton and Mike Habib, of the University of Portsmouth and Johns Hopkins University, respectively, argue that pterosaurs used a vaulting mechanism to obtain flight. Once in air, pterosaurs could reach speeds up to and travel thousands of kilometres. However, a large number of pterosaur trackways were later found with a distinctive four-toed hind foot and three-toed front foot; these are the unmistakable prints of pterosaurs walking on all fours.
Unlike most vertebrates, which walk on their toes with ankles held off the ground (digitigrade), fossil footprints show that pterosaurs stood with the entire foot in contact with the ground (plantigrade), in a manner similar to humans and bears. Footprints from azhdarchids show that at least some pterosaurs walked with an erect, rather than sprawling, posture. were quadrupeds.]] Though traditionally depicted as ungainly and awkward when on the ground, the anatomy of at least some pterosaurs (particularly pterodactyloids) suggests that they were competent walkers and runners. The forelimb bones of azhdarchids and ornithocheirids were unusually long compared to other pterosaurs, and in azhdarchids, the bones of the arm and hand (metacarpals) were particularly elongated. Furthermore, azhdarchid front limbs as a whole were proportioned similarly to fast-running ungulate mammals. Their hind limbs, on the other hand, were not built for speed, but they were long compared with most pterosaurs, and allowed for a long stride length. While azhdarchid pterosaurs probably could not run, they would have been relatively fast and energy efficient.
Wing membranes preserved in pterosaur embryos are well developed, suggesting pterosaurs were ready to fly soon after birth. Fossils of pterosaurs only a few days to a week old (called flaplings) have been found, representing several pterosaur families, including pterodactylids, rhamphorhinchids, ctenochasmatids and azhdarchids.
It is not known whether pterosaurs practiced any form of parental care, but their ability to fly as soon as they emerged from the egg and the numerous flaplings found in environments far from nests and alongside adults has led most researchers, including Christopher Bennett and David Unwin, to conclude that the young were only dependent on their parents for a very short period of time, while the wings grew long enough to fly, and left the nest to fend for themselves within days of hatching.
Classification of pterosaurs has historically been difficult, because there were many gaps in the fossil record. Many new discoveries are now filling in these gaps and giving a better picture of the evolution of pterosaurs. Traditionally, they are organized into two suborders: Rhamphorhynchoidea (Plieninger, 1901): A group of early, basal ("primitive") pterosaurs, many of which had long tails and short metacarpal bones in the wing. They were small, and their fingers were still adapted to climbing . They appeared in the Late Triassic period, and lasted until the late Jurassic. Rhamphorhynchoidea is a paraphyletic group (since the pterodactyloids evolved directly from them and not from a common ancestor), so with the increasing use of cladistics it has fallen out of favor in most technical literature.
, an azhdarchid from the Cretaceous of China]] , a rhamphorhynchid from the Jurassic of Germany]] Listing of families and superfamilies within Pterosauria, after Unwin 2006 unless otherwise noted.
The precise relationships between pterosaurs is still unsettled. However, several newer studies are beginning to make things clearer. Cladogram simplified after Unwin.
}} }} }} }} }}
}} |label2= Lophocratia |2= }} |label2= Dsungaripteroidea |2= |label3= Azhdarchoidea |3= }} }} }}
Pterosaurs were first used in fiction in Arthur Conan Doyle's 1912 novel The Lost World, and subsequent 1925 film adaptation. They have been used in a number of films and television programs since, including the 1933 film King Kong, and 1966 One Million Years B.C.. In the latter, animator Ray Harryhausen had to add inaccurate bat-like wing fingers to his stop motion models in order to keep the membranes from falling apart, though this particular error was common in art even before the film was made. Pterosaurs were mainly absent from notable film appearances until 2001, with Jurassic Park III. However, paleontologist Dave Hone has noted that even after the 40 intervening years, the pterosaurs in this film had not been significantly updated to reflect modern research. Among the errors he noted as persisting from the 1960s to the 2000s were teeth even in toothless species (the Jurassic Park III pterosaurs were intended to be Pteranodon, which translates as "toothless wing"), nesting behavior that was known to be inaccurate by 2001, and leathery wings, rather than the taut membranes of muscle fiber which was actually present and required for pterosaur flight.
A fictionalized mutation of a pterosaur was introduced in the 1956 Japanese film Rodan. The film was released by Toho, the same studio responsible for Godzilla. The character later appeared in a number of Godzilla films between 1964 and 2004.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.