- Order:
- Duration: 1:22
- Published: 11 Apr 2006
- Uploaded: 02 Aug 2011
- Author: overtud1
Brains can be extremely complex. The cerebral cortex of the human brain contains roughly 15–33 billion neurons, perhaps more, depending on gender and age, linked with up to 10,000 synaptic connections each. Each cubic millimeter of cerebral cortex contains roughly one billion synapses. These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body and target them to specific recipient cells.
The brain controls the other organ systems of the body, either by activating muscles or by causing secretion of chemicals such as hormones and neurotransmitters. This centralized control allows rapid and coordinated responses to changes in the environment. Some basic types of responsiveness are possible without a brain: even single-celled organisms may be capable of extracting information from the environment and acting in response to it. Sponges, which lack a central nervous system, are capable of coordinated body contractions and even locomotion. In vertebrates, the spinal cord by itself contains neural circuitry capable of generating reflex responses as well as simple motor patterns such as swimming or walking. However, sophisticated control of behavior on the basis of complex sensory input requires the information-integrating capabilities of a centralized brain.
Despite rapid scientific progress, much about how brains work remains a mystery. The operations of individual neurons and synapses are now understood in considerable detail, but the way they cooperate in ensembles of thousands or millions has been very difficult to decipher. Methods of observation such as EEG recording and functional brain imaging tell us that brain operations are highly organized, while single unit recording can resolve the activity of single neurons, but how individual cells give rise to complex operations is unknown.
The first vertebrates appeared over 500 million years ago (mya), during the Cambrian period, and may have somewhat resembled the modern hagfish in form. Sharks appeared about 450 mya, amphibians about 400 mya, reptiles about 350 mya, and mammals about 200 mya. No modern species should be described as more "primitive" than others, since all have an equally long evolutionary history, but the brains of modern hagfishes, lampreys, sharks, amphibians, reptiles, and mammals show a gradient of size and complexity that roughly follows the evolutionary sequence. All of these brains contain the same set of basic anatomical components, but many are rudimentary in hagfishes, whereas in mammals the foremost parts are greatly elaborated and expanded.
All vertebrate brains share a common underlying form, which can most easily be appreciated by examining how they develop. The first appearance of the nervous system is as a thin strip of tissue running along the back of the embryo. This strip thickens and then folds up to form a hollow tube. The front end of the tube develops into the brain. In its earliest form, the brain appears as three swellings, which eventually become the forebrain, midbrain, and hindbrain. In many classes of vertebrates these three parts remain similar in size in the adult, but in mammals the forebrain becomes much larger than the other parts, and the midbrain quite small.
The relationship between brain size, body size and other variables has been studied across a wide range of vertebrate species. Brain size increases with body size but not proportionally. Averaging across all orders of mammals, it follows a power law, with an exponent of about 0.75. This formula applies to the average brain of mammals but each family departs from it, reflecting their sophistication of behavior. For example, primates have brains 5 to 10 times as large as the formula predicts. Predators tend to have larger brains. When the mammalian brain increases in size, not all parts increase at the same rate. The larger the brain of a species, the greater the fraction taken up by the cortex.
Some branches of vertebrate evolution have led to substantial changes in brain shape, especially in the forebrain. The brain of a shark shows the basic components in a straightforward way, but in teleost fishes (the great majority of modern species), the forebrain has become "everted", like a sock turned inside out. In birds, also, there are major changes in shape. One of the main structures in the avian forebrain, the dorsal ventricular ridge, was long thought to correspond to the basal ganglia of mammals, but is now thought to be more closely related to the neocortex.
Several brain areas have maintained their identities across the whole range of vertebrates, from hagfishes to humans. The hypothalamus is a small region at the base of the forebrain, whose complexity and importance belies its size. It is composed of numerous small nuclei, each with distinct connections and distinct neurochemistry. The hypothalamus is the central control station for sleep/wake cycles, control of eating and drinking, control of hormone release, and many other critical biological functions. Like the hypothalamus, the thalamus is a collection of nuclei with diverse functions. Some of them are involved in relaying information to and from the cerebral hemispheres. Others are involved in motivation. The subthalamic area (zona incerta) seems to contain action-generating systems for several types of "consummatory" behaviors, including eating, drinking, defecation, and copulation. The cerebellum modulates the outputs of other brain systems to make them more precise. Removal of the cerebellum does not prevent an animal from doing anything in particular, but it makes actions hesitant and clumsy. This precision is not built-in, but learned by trial and error. Learning how to ride a bicycle is an example of a type of neural plasticity that may take place largely within the cerebellum. The tectum, often called "optic tectum", allows actions to be directed toward points in space. In mammals it is called the "superior colliculus", and its best studied function is to direct eye movements. It also directs reaching movements, though. It gets strong visual inputs, but also inputs from other senses that are useful in directing actions, such as auditory input in owls, input from the thermosensitive pit organs in snakes, etc. In some fishes, such as lampreys, it is the largest part of the brain. The pallium is a layer of gray matter that lies on the surface of the forebrain. In reptiles and mammals it is called cortex instead. The pallium is involved in multiple functions, including olfaction and spatial memory. In mammals, where it comes to dominate the brain, it subsumes functions from many subcortical areas. The hippocampus, strictly speaking, is found only in mammals. However, the area it derives from, the medial pallium, has counterparts in all vertebrates. There is evidence that this part of the brain is involved in spatial memory and navigation in fishes, birds, reptiles, and mammals. The basal ganglia are a group of interconnected structures in the forebrain, of which our understanding has increased enormously over the last few years. The primary function of the basal ganglia seems to be action selection. They send inhibitory signals to all parts of the brain that can generate actions, and in the right circumstances can release the inhibition, so that the action-generating systems are able to execute their actions. Rewards and punishments exert their most important neural effects within the basal ganglia. The olfactory bulb is a special structure that processes olfactory sensory signals, and sends its output to the olfactory part of the pallium. It is a major brain component in many vertebrates, but much reduced in primates.
The brains of humans and other primates contain the same structures as the brains of other mammals, but are considerably larger in proportion to body size. The visual processing network of primates is very complex, including at least 30 distinguishable areas, with a bewildering web of interconnections. Taking all of these together, visual processing makes use of more than half of the primate neocortex. The other part of the brain that is greatly enlarged is the prefrontal cortex, whose functions are difficult to summarize succinctly, but relate to planning, working memory, motivation, attention, and executive control.
Because of the large array of techniques available for studying their genetics, fruit flies have been a natural subject for studying the role of genes in brain development. Remarkably, many aspects of Drosophila neurogenetics have turned out to be relevant to humans. The first biological clock genes, for example, were identified by examining Drosophila mutants that showed disrupted daily activity cycles. A search in the genomes of vertebrates turned up a set of analogous genes, which were found to play similar roles in the mouse biological clock—and therefore almost certainly in the human biological clock as well.
Like Drosophila, the nematode worm C. elegans has been studied largely because of its importance in genetics. In the early 1970s, Sydney Brenner chose it as a model system for studying the way that genes control development. One of the advantages of working with this worm is that the body plan is very stereotyped: the nervous system of the hermaphrodite morph contains exactly 302 neurons, always in the same places, making identical synaptic connections in every worm. In a heroic project, Brenner's team sliced worms into thousands of ultrathin sections and photographed every section under an electron microscope, then visually matched fibers from section to section, in order to map out every neuron and synapse in the entire body. Nothing approaching this level of detail is available for any other organism, and the information has been used to enable a multitude of studies that would not have been possible without it.
The property that makes neurons so important is that, unlike glia, they are capable of sending signals to each other over long distances. They send these signals by means of an axon, a thin protoplasmic fiber that extends from the cell body and projects, usually with numerous branches, to other areas, sometimes nearby, sometimes in distant parts of the brain or body. The extent of an axon can be extraordinary: to take an example, if a pyramidal cell of the neocortex were magnified so that its cell body became the size of a human, its axon, equally magnified, would become a cable a few centimeters in diameter, extending farther than a kilometer. These axons transmit signals in the form of electrochemical pulses called action potentials, lasting less than a thousandth of a second and traveling along the axon at speeds of 1–100 meters per second. Some neurons emit action potentials constantly, at rates of 10–100 per second, usually in irregular temporal patterns; other neurons are quiet most of the time, but occasionally emit a burst of action potentials.
, which receive synaptic connections. Shown here is photomicrograph of a pyramidal neuron from the human hippocampus, stained by the Golgi method.]] Axons transmit signals to other neurons, or to non-neuronal cells, by means of specialized junctions called synapses. A single axon may make as many as several thousand synaptic connections. When an action potential, traveling along an axon, arrives at a synapse, it causes a chemical called a neurotransmitter to be released. The neurotransmitter binds to receptor molecules in the membrane of the target cell. Some types of neuronal receptors are excitatory, meaning that they increase the rate of action potentials in the target cell; other receptors are inhibitory, meaning that they decrease the rate of action potentials; others have complex modulatory effects.
Axons actually fill most of the space in the brain. Often large groups of them are bundled together in what are called nerve fiber tracts. Many axons are wrapped in thick sheaths of a fatty substance called myelin, which serves to greatly increase the speed of action potential propagation. Myelin is white, so parts of the brain filled exclusively with nerve fibers appear as white matter, in contrast to the gray matter that marks areas with high densities of neuron cell bodies. The total length of myelinated axons in an average adult human brain is well over .
vertebrate brain. These regions will later differentiate into forebrain, midbrain and hindbrain structures.]] The brain does not simply grow; rather, it develops in an intricately orchestrated sequence of stages. Many neurons are created in special zones that contain stem cells, and then migrate through the tissue to reach their ultimate locations. In the cortex, for example, the first stage of development is the formation of a "scaffold" by a special group of glial cells, called radial glia, which send fibers vertically across the cortex. New cortical neurons are created at the bottom of the cortex, and then "climb" along the radial fibers until they reach the layers they are destined to occupy in the adult.
In vertebrates, the early stages of neural development are similar for all species. Axons, because they commonly extend a great distance from the cell body and need to make contact with specific targets, grow in a particularly complex way. The tip of a growing axon consists of a blob of protoplasm called a "growth cone", studded with chemical receptors. These receptors sense the local environment, causing the growth cone to be attracted or repelled by various cellular elements, and thus to be pulled in a particular direction at each point along its path. The result of this pathfinding process is that the growth cone navigates through the brain until it reaches its destination area, where other chemical cues cause it to begin generating synapses. Taking the entire brain into account, many thousands of genes give rise to proteins that influence axonal pathfinding.
The synaptic network that finally emerges is only partly determined by genes, though. In many parts of the brain, axons initially "overgrow", and then are "pruned" by mechanisms that depend on neural activity. In the projection from the eye to the midbrain, for example, the structure in the adult contains a very precise mapping, connecting each point on the surface of the retina to a corresponding point in a midbrain layer. In the first stages of development, each axon from the retina is guided to the right general vicinity in the midbrain by chemical cues, but then branches very profusely and makes initial contact with a wide swath of midbrain neurons. The retina, before birth, contains special mechanisms that cause it to generate waves of activity that originate spontaneously at some point and then propagate slowly across the retinal layer. These waves are useful because they cause neighboring neurons to be active at the same time: that is, they produce a neural activity pattern that contains information about the spatial arrangement of the neurons. This information is exploited in the midbrain by a mechanism that causes synapses to weaken, and eventually vanish, if activity in an axon is not followed by activity of the target cell. The result of this sophisticated process is a gradual tuning and tightening of the map, leaving it finally in its precise adult form.
Similar things happen in other brain areas: an initial synaptic matrix is generated as a result of genetically determined chemical guidance, but then gradually refined by activity-dependent mechanisms, partly driven by internal dynamics, partly by external sensory inputs. In some cases, as with the retina-midbrain system, activity patterns depend on mechanisms that operate only in the developing brain, and apparently exist solely for the purpose of guiding development. There are, however, a few areas where new neurons continue to be generated throughout life. The two areas for which this is well established are the olfactory bulb, which is involved in the sense of smell, and the dentate gyrus of the hippocampus, where there is evidence that the new neurons play a role in storing newly acquired memories. With these exceptions, however, the set of neurons that is present in early childhood is the set that is present for life. Glial cells are different, however; as with most types of cells in the body, these are generated throughout the lifespan.
Although the pool of neurons is largely in place by birth, the axonal connections continue to develop for a long time afterward. In humans, full myelination is not completed until adolescence.
There has long been debate about whether the qualities of mind, personality, and intelligence can mainly be attributed to heredity or to upbringing; the nature versus nurture debate. This is not just a philosophical question: it has great practical relevance to parents and educators. Although many details remain to be settled, neuroscience clearly shows that both factors are essential. Genes determine the general form of the brain, and genes determine how the brain reacts to experience. Experience, however, is required to refine the matrix of synaptic connections. In some respects it is mainly a matter of presence or absence of experience during critical periods of development. In other respects, the quantity and quality of experience may be more relevant: for example, there is substantial evidence that animals raised in enriched environments have thicker cortices, indicating a higher density of synaptic connections, than animals whose levels of stimulation are restricted.
Nevertheless, the great majority of psychoactive drugs exert their effects by altering neurotransmitter systems not directly involving glutamatergic or GABAergic transmission. Drugs such as caffeine, nicotine, heroin, cocaine, Prozac, Thorazine, etc., act on other neurotransmitters. Many of these other transmitters come from neurons that are localized in particular parts of the brain. Serotonin, for example—the primary target of antidepressant drugs and many dietary aids—comes exclusively from a small brainstem area called the Raphe nuclei. Norepinephrine, which is involved in arousal, comes exclusively from a nearby small area called the locus ceruleus. Histamine, as a neurotransmitter, comes from a tiny part of the hypothalamus called the tuberomammilary nucleus (histamine also has non-CNS functions, but the neurotransmitter function is what causes antihistamines to have sedative effects). Other neurotransmitters such as acetylcholine and dopamine have multiple sources in the brain, but are not as ubiquitously distributed as glutamate and GABA.
One of the primary functions of a brain is to extract biologically relevant information from sensory inputs. Even in the human brain, sensory processes go well beyond the classical five senses of sight, sound, taste, touch, and smell: our brains are provided with information about temperature, balance, limb position, and the chemical composition of the bloodstream, among other things. All of these modalities are detected by specialized sensors that project signals into the brain. In other animals, additional senses may be present, such as the infrared heat-sensors in the pit organs of snakes; or the "standard" senses may be used in nonstandard ways, as in the auditory "sonar" of bats. Here are a few principles that apply to most sensory systems, using the auditory system for specific examples.
Each sensory system begins with specialized "sensory receptor" cells. These are neurons, but unlike most neurons, they are not controlled by synaptic input from other neurons: instead they are activated by membrane-bound receptors that are sensitive to some physical modality, such as light, temperature, or physical stretching. The axons of sensory receptor cells travel into the spinal cord or brain. For the sense of hearing, the receptors are located in the inner ear, on the cochlea, and are activated by vibration.
For most senses, there is a "primary nucleus" or set of nuclei, located in the brainstem, that gathers signals from the sensory receptor cells. For the sense of hearing, these are the cochlear nuclei. For the sense of smell, there is no relay in the thalamus; instead the signals go directly from the primary brain area—the olfactory bulb—to the cortex.
Motor systems are areas of the brain that are more or less directly involved in producing body movements, that is, in activating muscles. With the exception of the muscles that control the eye, all of the voluntary muscles in the body are directly innervated by motor neurons in the spinal cord, which therefore are the final common path for the movement-generating system. Spinal motor neurons are controlled both by neural circuits intrinsic to the spinal cord, and by inputs that descend from the brain. The intrinsic spinal circuits implement many reflex responses, and also contain pattern generators for rhythmic movements such as walking or swimming. The descending connections from the brain allow for more sophisticated control.
The brain contains a number of areas that project directly to the spinal cord. At the lowest level are motor areas in the medulla and pons. At a higher level are areas in the midbrain, such as the red nucleus, which is responsible for coordinating movements of the arms and legs. At a higher level yet is the primary motor cortex, a strip of tissue located at the posterior edge of the frontal lobe. The primary motor cortex sends projections to the subcortical motor areas, but also sends a massive projection directly to the spinal cord, via the so-called pyramidal tract. This direct corticospinal projection allows for precise voluntary control of the fine details of movements. Other "secondary" motor-related brain areas do not project directly to the spinal cord, but instead act on the cortical or subcortical primary motor areas. Among the most important secondary areas are the premotor cortex, basal ganglia, and cerebellum: The premotor cortex (which is actually a large complex of areas) adjoins the primary motor cortex, and projects to it. Whereas elements of the primary motor cortex map to specific body areas, elements of the premotor cortex are often involved in coordinated movements of multiple body parts. The basal ganglia are a set of structures in the base of the forebrain that project to many other motor-related areas. Their function has been difficult to understand, but one of the most popular theories currently is that they play a key role in action selection. Most of the time they restrain actions by sending constant inhibitory signals to action-generating systems, but in the right circumstances, they release this inhibition and therefore allow their targets to take control of behavior. The cerebellum is a very distinctive structure attached to the back of the brain. The autonomic nervous system affects heart rate, digestion, respiration rate, salivation, perspiration, urination, and sexual arousal—but most of its functions are not under direct voluntary control.
A key component of the arousal system is the suprachiasmatic nucleus (SCN), a tiny part of the hypothalamus located directly above the point at which the optic nerves from the two eyes cross. The SCN contains the body's central biological clock. Neurons there show activity levels that rise and fall with a period of about 24 hours, circadian rhythms: these activity fluctuations are driven by rhythmic changes in expression of a set of "clock genes". The SCN continues to keep time even if it is excised from the brain and placed in a dish of warm nutrient solution, but it ordinarily receives input from the optic nerves, through the retinohypothalamic tract (RHT), that allow daily light-dark cycles to calibrate the clock.
The SCN projects to a set of areas in the hypothalamus, brainstem, and midbrain that are involved in implementing sleep-wake cycles. An important component of the system is the so-called reticular formation, a group of neuron-clusters scattered diffusely through the core of the lower brain. Until the 1950s it was generally believed that the brain essentially shuts off during sleep, but this is now known to be far from true: activity continues, but patterns become very different. In fact, there are two types of sleep, REM sleep (with dreaming) and NREM (non-REM, usually without dreaming) sleep, which repeat in slightly varying patterns throughout a sleep episode. Three broad types of distinct brain activity patterns can be measured: REM, light NREM and deep NREM. During deep NREM sleep, also called slow wave sleep, activity in the cortex takes the form of large synchronized waves, where in the waking state it is noisy and desynchronized. Levels of the neurotransmitters norepinephrine and serotonin drop during slow wave sleep, and fall almost to zero during REM sleep; levels of acetylcholine show the reverse pattern.
The mind-body problem is one of the central issues in the history of philosophy, which asks us to consider if the brain and the mind are identical, partially distinct, or related in some unknown way. There are three major schools of thought concerning the answer: dualism, materialism, and idealism. Dualism holds that the mind exists independently of the brain; materialism holds that mental phenomena are identical to neuronal phenomena; and idealism holds that only mental phenomena exist. Philosophers such as Patricia Churchland posit that the drug-mind interaction is indicative of an intimate connection between the brain and the mind, not that the two are the same entity. Descartes, who thought extensively about mind-brain relationships, found it possible to explain reflexes and other simple behaviors in mechanistic terms, although he did not believe that complex thought, and language in particular, could be explained by reference to the physical brain alone.
The oldest method of studying the brain is anatomical, and until the middle of the 20th century, much of the progress in neuroscience came from the development of better stains and better microscopes—the neuroanatomist Floyd Bloom famously quipped that "the gain in brain is mainly in the stain." Neuroanatomists study the large-scale structure of the brain as well as the microscopic structure of neurons and their components, especially synapses. Among other tools, they employ a plethora of stains that reveal neural structure, chemistry, and connectivity. In recent years, the development of immunostaining techniques has allowed staining of neurons that express specific sets of genes. Also, functional neuroanatomy uses medical imaging techniques to correlate variations in human brain structure with differences in cognition or behavior.
Neurophysiologists study the chemical, pharmacological, and electrical properties of the brain: their primary tools are drugs and recording devices. Many thousands of experimentally developed drugs affect the nervous system, some in highly specific ways. Recordings of brain activity can be made using electrodes, either glued to the skull as in EEG studies, or implanted inside the brains of animals for extracellular recordings, which can detect action potentials generated by individual neurons. Because the brain does not contain pain receptors, it is possible using these techniques to record from animals that are awake and behaving without causing distress. The same techniques have occasionally been used to study brain activity in human patients suffering from intractable epilepsy, in cases where there was a medical necessity to implant electrodes in order to localize the brain area responsible for seizures. It is also possible to study brain activity noninvasively in humans using functional imaging techniques such as MRI—this field has expanded enormously over the past two decades.
A different approach to brain function is to examine the consequences of damage to specific brain areas. Even though it is protected by the skull and meninges, surrounded by cerebrospinal fluid, and isolated from the bloodstream by the blood-brain barrier, the delicate nature of the brain makes it vulnerable to numerous diseases and several types of damage. In humans, the effects of strokes and other types of brain damage have been a key source of information about brain function. Because there is no ability to experimentally control the nature of the damage, however, this information is often difficult to interpret. In animal studies, most commonly involving rats, it is possible to use electrodes or locally injected chemicals to produce precise patterns of damage and then examine the consequences for behavior.
Computational neuroscience encompasses two approaches: first, the use of computers to study the brain; second, the study of how brains perform computation. On one hand, it is possible to write a computer program to simulate the operation of a group of neurons by making use of systems of equations that describe their electrochemical activity; such simulations are known as biologically realistic neural networks. On the other hand, it is possible to study algorithms for neural computation by simulating, or mathematically analyzing, the operations of simplified "units" that have some of the properties of neurons but abstract out much of their biological complexity. The computational functions of the brain are studied both by neuroscientists and computer scientists.
Recent years have seen the first applications of genetic engineering techniques to the study of the brain. The most common subjects are mice, because the technical tools are more advanced for this species than for any other. It is now possible with relative ease to "knock out" or mutate a wide variety of genes, and then examine the effects on brain function. More sophisticated approaches are also beginning to be used: for example, using the Cre-Lox recombination method it is possible to activate or inactivate genes in specific parts of the brain, at specific times.
Men ought to know that from nothing else but the brain come joys, delights, laughter and sports, and sorrows, griefs, despondency, and lamentations. ... And by the same organ we become mad and delirious, and fears and terrors assail us, some by night, and some by day, and dreams and untimely wanderings, and cares that are not suitable, and ignorance of present circumstances, desuetude, and unskilfulness. All these things we endure from the brain, when it is not healthy...
—Hippocrates, On the Sacred Disease
The famous Roman physician Galen also advocated the importance of the brain, and theorized in some depth about how it might work. Even after physicians and philosophers had accepted the primacy of the brain, though, the idea of the heart as seat of intelligence continued to survive in popular idioms, such as "learning something by heart". Galen did a masterful job of tracing out the anatomical relationships among brain, nerves, and muscles, demonstrating that all muscles in the body are connected to the brain via a branching network of nerves. He postulated that nerves activate muscles mechanically, by carrying a mysterious substance he called pneumata psychikon, usually translated as "animal spirits". His ideas were widely known during the Middle Ages, but not much further progress came until the Renaissance, when detailed anatomical study resumed, combined with the theoretical speculations of Descartes and his followers. Descartes, like Galen, thought of the nervous system in hydraulic terms. He believed that the highest cognitive functions—language in particular—are carried out by a non-physical res cogitans, but that the majority of behaviors of humans and animals could be explained mechanically. The first real progress toward a modern understanding of nervous function, though, came from the investigations of Luigi Galvani, who discovered that a shock of static electricity applied to an exposed nerve of a dead frog could cause its leg to contract.
Each major advance in understanding has followed more or less directly from the development of a new method of investigation. Until the early years of the 20th century, the most important advances were derived from new stains. Particularly critical was the invention of the Golgi stain, which (when correctly used) stains only a small, and apparently random, fraction of neurons, but stains them in their entirety, including cell body, dendrites, and axon. Without such a stain, brain tissue under a microscope appears as an impenetrable tangle of protoplasmic fibers, in which it is impossible to determine any structure. In the hands of Camillo Golgi, and especially of the Spanish neuroanatomist Santiago Ramon y Cajal, the new stain revealed hundreds of distinct types of neurons, each with its own unique dendritic structure and pattern of connectivity.
In the 20th century, progress in electronics enabled investigation of the electrical properties of nerve cells, culminating in the work by Alan Hodgkin, Andrew Huxley, and others on the biophysics of the action potential, and the work of Bernard Katz and others on the electrochemistry of the synapse. The earliest studies used special preparations, such as the "fast escape response" system of the squid, which involves a giant axon as thick as a pencil lead, and giant synapses connecting to this axon. Steady improvements in electrodes and electronics allowed ever finer levels of resolution. These studies complemented the anatomical picture with a conception of the brain as a dynamic entity. Reflecting the new understanding, in 1942 Charles Sherrington visualized the workings of the brain in action in somewhat breathless terms:
The great topmost sheet of the mass, that where hardly a light had twinkled or moved, becomes now a sparkling field of rhythmic flashing points with trains of traveling sparks hurrying hither and thither. ... It is as if the Milky Way entered upon some cosmic dance. Swiftly the head mass becomes an enchanted loom where millions of flashing shuttles weave a dissolving pattern, always a meaningful pattern though never an abiding one; a shifting harmony of subpatterns.
—Sherrington, 1942, Man on his Nature
The 1990s were known in the US as the "Decade of the Brain" to commemorate advances made in brain research, and to promote funding for such research.
|group2 = TA 5-11:splanchnic/viscus |list2 = | group2 = mostlyAbdominopelvic | list2 = |group3 = Endocrine system |list3 = Pituitary Pineal Thyroid Parathyroid Adrenal Islets of Langerhans
}} |group3 = TA 12-16 |list3 = | group2style = background:LemonChiffon; | group2 = Nervous system | list2 = (Brain, Spinal cord, Nerve) Sensory system (Ear, Eye) | group3style = background:Linen; |group3 = Integumentary system |list3 = Skin Subcutaneous tissue Breast (Mammary gland)
}}
|group4 = Blood
(Non-TA)
|list4 =
|group5 =
|list5 =
| below =
}}
Category:Article Feedback Pilot Category:Central nervous system Category:Neuroanatomy Category:Organs
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.