- Order:
- Duration: 2:21
- Published: 21 Jul 2007
- Uploaded: 11 Jun 2011
- Author: Acorvettes
During the Triassic, both marine and continental life show an adaptive radiation beginning from the starkly impoverished biosphere that followed the Permian-Triassic extinction. Corals of the hexacorallia group made their first appearance. The first flying vertebrates, the pterosaurs, evolved during the Triassic.
The Triassic is usually separated into Early, Middle, and Late Triassic Epochs, and the corresponding rocks are referred to as Lower, Middle, or Upper Triassic. The faunal stages from the youngest to oldest are:
{| |- | Upper/Late Triassic (Tr3) |- | Rhaetian | (203.6 ± 1.5 – 199.6 ± 0.6 Mya) |- | Norian | (216.5 ± 2.0 – 203.6 ± 1.5 Mya) |- | Carnian | (228.0 ± 2.0 – 216.5 ± 2.0 Mya) |- |Middle Triassic (Tr2) |- | Ladinian | (237.0 ± 2.0 – 228.0 ± 2.0 Mya) |- | Anisian | (245.0 ± 1.5 – 237.0 ± 2.0 Mya) |- | Lower/Early Triassic (Scythian) |- | Olenekian | (249.7 ± 0.7 – 245.0 ± 1.5 Mya) |- | Induan | (251.0 ± 0.4 – 249.7 ± 0.7 Mya) |}
Temnospondyl amphibians were among those groups that survived the Permian-Triassic extinction, some lineages (e.g. Trematosaurs) flourishing briefly in the Early Triassic, while others (e.g. capitosaurs) remained successful throughout the whole period, or only came to prominence in the Late Triassic (e.g. plagiosaurs, metoposaurs). As for other amphibians, the first Lissamphibia, characterized by the first frogs, are known from the Early Triassic, but the group as a whole did not become common until the Jurassic, when the temnospondyls had become very rare.
Archosauromorph reptiles—especially archosaurs—progressively replaced the synapsids that had dominated the Permian. Although Cynognathus was a characteristic top predator in earlier Triassic (Olenekian and Anisian) Gondwana, and both kannemeyeriid dicynodonts and gomphodont cynodonts remained important herbivores during much of the period. By the end of the Triassic, synapsids played only bit parts. During the Carnian (early part of the Late Triassic), some advanced cynodont gave rise to the first mammals. At the same time the Ornithodira, which until then had been small and insignificant, evolved into pterosaurs and a variety of dinosaurs. The Crurotarsi were the other important archosaur clade, and during the Late Triassic these also reached the height of their diversity, with various groups including the phytosaurs, aetosaurs, several distinct lineages of Rauisuchia, and the first crocodylians (the Sphenosuchia). Meanwhile the stocky herbivorous rhynchosaurs and the small to medium-sized insectivorous or piscivorous Prolacertiformes were important basal archosauromorph groups throughout most of the Triassic.
Among other reptiles, the earliest turtles, like Proganochelys and Proterochersis, appeared during the Norian (middle of the Late Triassic). The Lepidosauromorpha—specifically the Sphenodontia—are first known in the fossil record a little earlier (during the Carnian). The Procolophonidae were an important group of small lizard-like herbivores.
Archosaurs were initially rarer than the therapsids which had dominated Permian terrestrial ecosystems, but they began to displace therapsids in the mid-Triassic. This "Triassic Takeover" may have contributed to the evolution of mammals by forcing the surviving therapsids and their mammaliform successors to live as small, mainly nocturnal insectivores; nocturnal life probably forced at least the mammaliforms to develop fur and higher metabolic rates.
Immediately above the boundary the glossopteris flora was suddenly largely displaced by an Australia wide coniferous flora containing few species and containing a lycopod herbaceous under story. Conifers also became common in Eurasia. These groups of conifers arose from endemic species because of the ocean barriers that prevented seed crossing for over one hundred million years. For instance, Podocarpis was located south and Pines, Junipers, and Sequoias were located north. The dividing line ran through the Amazon Valley, across the Sahara, and north of Arabia, India, Thailand, and Australia. It has been suggested that there was a climate barrier for the conifers. although water barriers are more plausible. If so, something that can cross at least short water barriers must have been involved in producing the coal hiatus. Hot climate could have been an important auxiliary factor across Antarctica or the Bering Strait, however. There was a spike of fern and lycopod spores immediately after the close of the Permian. In addition there was also a spike of fungal spores immediately after the Permian-Triassic boundary. This spike may have lasted 50,000 years in Italy and 200,000 years in China and must have contributed to the climate warmth.
An event excluding a catastrophe must have been involved to cause the coal hiatus due to the fact that fungi would have removed all dead vegetation and coal forming detritus in a few decades in most tropical places. In addition, fungal spores rose gradually and declined similarly along with a prevalence of woody debris. Each phenomenon would hint at widespread vegetative death. Whatever the cause of the coal hiatus must have started in North America approximately 25 million years sooner.
The Triassic period ended with a mass extinction, which was particularly severe in the oceans; the conodonts disappeared, and all the marine reptiles except ichthyosaurs and plesiosaurs. Invertebrates like brachiopods, gastropods, and molluscs were severely affected. In the oceans, 22% of marine families and possibly about half of marine genera went missing according to University of Chicago paleontologist Jack Sepkoski.
Though the end-Triassic extinction event was not equally devastating everywhere in terrestrial ecosystems, several important clades of crurotarsans (large archosaurian reptiles previously grouped together as the thecodonts) disappeared, as did most of the large labyrinthodont amphibians, groups of small reptiles, and some synapsids (except for the proto-mammals). Some of the early, primitive dinosaurs also went extinct, but other more adaptive dinosaurs survived to evolve in the Jurassic. Surviving plants that went on to dominate the Mesozoic world included modern conifers and cycadeoids.
What caused this Late Triassic extinction is not known with certainty. It was accompanied by huge volcanic eruptions that occurred as the supercontinent Pangaea began to break apart about 202 to 191 million years ago [(40Ar/39Ar dates)], forming the Central Atlantic Magmatic Province [(CAMP)], one of the largest known inland volcanic events since the planet cooled and stabilized. Other possible but less likely causes for the extinction events include global cooling or even a bolide impact, for which an impact crater containing Manicouagan Reservoir in Quebec, Canada, has been singled out. At the Manicouagan impact crater, however, recent research has shown that the impact melt within the crater has an age of 214±1 Mya. The date of the Triassic-Jurassic boundary has also been more accurately fixed recently, at 201.58±0.28 Mya. Both dates are gaining accuracy by using more accurate forms of radiometric dating, in particular the decay of uranium to lead in zircons formed at the impact. So the evidence suggests the Manicouagan impact preceded the end of the Triassic by approximately 10±2 Ma. Therefore it could not be the immediate cause of the observed mass extinction.
The number of Late Triassic extinctions is disputed. Some studies suggest that there are at least two periods of extinction towards the end of the Triassic, between 12 and 17 million years apart. But arguing against this is a recent study of North American faunas. In the Petrified Forest of northeast Arizona there is a unique sequence of latest Carnian-early Norian terrestrial sediments. An analysis in 2002 found no significant change in the paleoenvironment. Phytosaurs, the most common fossils there, experienced a change-over only at the genus level, and the number of species remained the same. Some aetosaurs, the next most common tetrapods, and early dinosaurs, passed through unchanged. However, both phytosaurs and aetosaurs were among the groups of archosaur reptiles completely wiped out by the end-Triassic extinction event.
It seems likely then that there was some sort of end-Carnian extinction, when several herbivorous archosauromorph groups died out, while the large herbivorous therapsids— the kannemeyeriid dicynodonts and the traversodont cynodonts— were much reduced in the northern half of Pangaea (Laurasia).
These extinctions within the Triassic and at its end allowed the dinosaurs to expand into many niches that had become unoccupied. Dinosaurs became increasingly dominant, abundant and diverse, and remained that way for the next 150 million years. The true "Age of Dinosaurs" is the Jurassic and Cretaceous, rather than the Triassic.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.