- Order:
- Duration: 1:35
- Published: 2009-03-31
- Uploaded: 2011-01-28
- Author: jackesingular
Tardigrades (commonly known as water bears or moss piglets) form the phylum Tardigrada, part of the superphylum Ecdysozoa. They are microscopic, water-dwelling, segmented animals with eight legs. Tardigrades were first described by Johann August Ephraim Goeze in 1773 (kleiner Wasserbär = little water bear). The name Tardigrada means "slow walker" and was given by Lazzaro Spallanzani in 1777. The name water bear comes from the way they walk, reminiscent of a bear's gait. The biggest adults may reach a body length of , the smallest below 0.1 mm. Freshly hatched larvae may be smaller than 0.05 mm.
More than 1,000 species of tardigrades have been described. Tardigrades occur over the entire world, from the high Himalayas (above , to the deep sea (below 4,000 m) and from the polar regions to the equator.
The most convenient place to find tardigrades is on lichens and mosses. Other environments are dunes, beaches, soil, and marine or freshwater sediments, where they may occur quite frequently (up to 25,000 animals per litre). Tardigrades often can be found by soaking a piece of moss in spring water.
Tardigrades are able to survive in extreme environments that would kill almost any other animal. Some can survive temperatures of , close to absolute zero, temperatures as high as , 1,000 times more radiation than other animals, and almost a decade without water. In September 2007, tardigrades were taken into low Earth orbit on the FOTON-M3 mission and for 10 days were exposed to the vacuum of space. After they were returned to Earth, it was discovered that many of them survived and laid eggs that hatched normally.
Tardigrades are eutelic, with all adult tardigrades of the same species having the same number of cells. Some tardigrade species have as many as about 40,000 cells in each adult's body, others have far fewer.
The body cavity consists of a haemocoel, but the only place where a true coelom can be found is around the gonad. There are no respiratory organs, with gas exchange able to occur across the whole of the body. Some tardigrades have three tubular glands associated with the rectum; these may be excretory organs similar to the Malpighian tubules of arthropods, although the details remain unclear.
The brain includes multiple lobes, and is attached to a large ganglion below the oesophagus, from which a double ventral nerve cord runs the length of the body. The cord possesses one ganglion per segment, each of which produces lateral nerve fibres that run into the limbs. Many species possess a pair of rhabdomeric pigment-cup eyes, and there are numerous sensory bristles on the head and body.
Tardigrades are one of the few groups of species that are capable of reversibly suspending their metabolism and going into a state of cryptobiosis. Several species regularly survive in a dehydrated state for nearly ten years. Depending on the environment they may enter this state via anhydrobiosis, cryobiosis, osmobiosis or anoxybiosis. While in this state their metabolism lowers to less than 0.01% of normal and their water content can drop to 1% of normal. Their ability to remain desiccated for such a long period is largely dependent on the high levels of the non-reducing sugar trehalose, which protects their membranes. In this cryptobiotic state the tardigrade is known as a tun.
Tardigrades have been known to withstand the following extremes while in this state: Temperature – tardigrades can survive being heated for a few minutes to 151 °C (424 K), or being chilled for days at -200 °C (73 K), or for a few minutes at -272 °C (~1 degree above absolute zero). Dehydration – tardigrades have been shown to survive nearly 10 years in a dry state. When encountered by extremely low temperatures, their body composition goes from 85% water to only 3%. As water expands upon freezing, dehydration ensures the tardigrades do not get ripped apart by the freezing ice (as waterless tissues cannot freeze). Radiation – tardigrades can withstand median lethal doses of 5,000 Gy (gamma-rays) and 6,200 Gy (heavy ions) in hydrated animals (5 to 10 Gy could be fatal to a human). The only explanation thus far for this ability is that their lowered water state provides fewer reactants for the ionizing radiation. In September 2007, a space launch (Foton-M3) showed that tardigrades can survive the extreme environment of outer space for 10 days. After being rehydrated back on Earth, over 68% of the subjects protected from high-energy UV radiation survived and many of these produced viable embryos, and a handful survived full exposure to solar radiation.
The minute sizes of tardigrades and their membranous integuments make their fossilization both difficult to detect and highly unlikely. The only known fossil specimens comprise some from mid-Cambrian deposits in Siberia and a few rare specimens from Cretaceous amber.
The Siberian tardigrades differ from living tardigrades in several ways. They have three pairs of legs rather than four; they have a simplified head morphology; and they have no posterior head appendages. It is considered that they probably represent a stem group of living tardigrades.
Aysheaia from the middle Cambrian Burgess shale has been proposed as a sister-taxon to an arthropod-tardigrade clade.
Tardigrades have sometimes been linked to the prehistoric oddity Opabinia as its closest living relative.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.