An O-ring, also known as a packing, or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a disc-shaped cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, creating a seal at the interface.
The O-ring may be used in static applications or in dynamic applications where there is relative motion between the parts and the O-ring. Dynamic examples include rotating pump shafts and hydraulic cylinder pistons.
O-rings are one of the most common seals used in machine design because they are inexpensive, easy to make, reliable, and have simple mounting requirements. They can seal tens of megapascals (thousands of psi) pressure.
There is also a Swedish patent for the O-ring, that is dated May 12, 1896. It was the inventor J. O. Lundberg who received patent for the invention.
O-rings are one of the simplest, yet most engineered, precise, and useful seal designs ever developed. They are one of the most common and important elements of machine design. O-rings are available in various metric and inch standard sizes. Sizes are specified by the inside diameter and the cross section diameter (thickness). In the US the most common standard inch sizes are per SAE AS568C specification (i.e. AS568-214). ISO 3601-1:2008 contains the most commonly used standard sizes, both inch and metric, worldwide. The UK also has standards sizes known as BS sizes, typically ranging from BS001 to BS932. Several other size specifications also exist.
The seal is designed to have a point contact between the O-ring and sealing faces. This allows a high local stress, able to contain high pressure, without exceeding the yield stress of the O-ring body. The flexible nature of O-ring materials accommodates imperfections in the mounting parts. But it is still important to maintain good surface finish of those mating parts, especially at low temperatures where the seal rubber reaches its glass transition temperature and becomes increasingly crystalline. Surface finish is also especially important in dynamic applications. A surface finish that is too rough will abrade the surface of the o-ring, and a surface that is too smooth will not allow the seal to be adequately lubricated by a fluid film.
O-ring selection is based on chemical compatibility, application temperature, sealing pressure, lubrication requirements, durometer, size and cost.
Synthetic rubbers - Thermosets:
There are variations in cross-section design other than circular. These include the O-ring with an x-shaped profile, commonly called the X-ring, Q-ring, or by the trademarked name Quad Ring. When squeezed upon installation, they seal with 4 contact surfaces—2 small contact surfaces on the top and bottom. This contrasts with the standard O-ring's comparatively larger single contact surfaces top and bottom. X-rings are most commonly used in reciprocating applications, where they provide reduced running and breakout friction and reduced risk of spiraling when compared to O-rings.
There are also rings with a square profile, commonly called square-cuts, lathe cuts, or Square rings. When O-rings were selling at a premium because of the novelty, lack of efficient manufacturing processes and high labor content, Square rings were introduced as an economical substitution for O-rings. The Square ring is typically manufactured by molding an elastomer sleeve which is then lathe-cut. This style of seal is sometimes less expensive to manufacture with certain materials and molding technologies (compression molding, transfer molding, injection molding), especially in low volumes. The physical sealing performance of Square rings in static applications is superior to that of O-rings, however in dynamic applications it is inferior to that of O-rings. Square rings are usually only used in dynamic applications as energizers in cap seal assemblies. Square rings can also be more difficult to install than O-rings.
Similar devices with a non-round cross-sections are called seals or packings. See also washers.
There are O-ring materials which can tolerate temperatures as low as -200 C or as high as 250+ C. At the low end, nearly all engineering materials become rigid and fail to seal; at the high end, the materials often burn or decompose. Chemical attack can degrade the material, start brittle cracks or cause it to swell. For example, NBR seals can crack when exposed to ozone gas at very low concentrations, unless protected. Swelling by contact with a low viscosity fluid causes an increase in dimensions, and also lowers the tensile strength of the rubber. Other failures can be caused by using the wrong size of ring for a specific recess, which may cause extrusion of the rubber.
The material of the failed O-ring was FKM which was specified by the shuttle motor contractor, Morton-Thiokol. FKM is not a good material for cold temperature applications. When an O-ring is cooled below its Tg (glass transition temperature), it loses its elasticity and becomes brittle. More importantly, when an O-ring is cooled near, but not beyond, its Tg, the cold O-ring, once compressed, will take longer than normal to return to its original shape. O-rings (and all other seals) work by creating positive pressure against a surface thereby preventing leaks. On the night before the launch, exceedingly low air temperatures were recorded. On account of this, NASA technicians performed an inspection. The ambient temperature was within launch parameters, and the launch sequence was allowed to proceed. However, the temperature of the rubber O-rings remained significantly lower than that of the surrounding air. During his investigation of the launch footage, Dr. Feynman observed a small out-gassing event from the Solid Rocket Booster (SRB) at the joint between two segments in the moments immediately preceding the disaster. This was blamed on a failed O-ring seal. The escaping high temperature gas impinged upon the external tank, and the entire vehicle was destroyed as a result.
The rubber industry has gone through its share of transformation after the accident. Many O-rings now come with batch and cure date coding, as in the medicine industry, to precisely track and control distribution. For aerospace and military/defense applications, O-rings are usually individually packaged and labeled with the material, cure date, and batch information. O-rings can, if needed, be recalled off the shelf. Furthermore, O-rings and other seals are routinely batch-tested for quality control by the manufacturers, and often undergo Q/A several more times by the distributor and ultimate end users.
As for the SRBs themselves, NASA and Morton-Thiokol redesigned them with a new joint design, which now incorporated three O-rings instead of two, with the joints themselves having onboard heaters which can be turned on when temperatures drop below 50 °F (10 °C). No O-ring issues have occurred since Challenger, and they did not play a role in the Space Shuttle Columbia disaster of 2003.
Already, there are elastomers filled with nano-carbon and nano-PTFE and molded into O-rings used in high-performance applications. For example, carbon nanotubes are used in electrostatic dissipative applications and nano-PTFE is used in ultra pure semiconductor applications. The use of nano-PTFE in fluoroelastomers and perfluoroelastomers improves abrasion resistance, lowers friction, lowers permeation, and can act as clean filler.
Using conductive carbon black or other fillers can exhibit the useful properties of conductive rubber, namely preventing electrical arcing, static sparks, and the overall build-up of charge within rubber that may cause it to behave like a capacitor (electrostatic dissipative). By dissipating these charges, these materials, which include doped carbon-black and rubber with metal filling additives, reduce the risk of ignition, which can be useful for fuel lines.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.