Symbols are encoded and .
0·0 = 25, or 1·1 = 25, or 2·2 = 25, or 3·3 = 25, and so on.This would seem to be a logical disjunction because of the repeated use of "or". However, the "and so on" makes this impossible to integrate and to interpret as a disjunction in formal logic. Instead, the statement could be rephrased more formally as :
For some natural number n, n·n = 25.This is a single statement using existential quantification.
This statement is more precise than the original one, as the phrase "and so on" does not necessarily include all natural numbers, and nothing more. Since the domain was not stated explicitly, the phrase could not be interpreted formally. In the quantified statement, on the other hand, the natural numbers are mentioned explicitly.
This particular example is true, because 5 is a natural number, and when we substitute 5 for n, we produce "5·5 = 25", which is true. It does not matter that "n·n = 25" is only true for a single natural number, 5; even the existence of a single solution is enough to prove the existential quantification true. In contrast, "For some even number n, n·n = 25" is false, because there are no even solutions.
The domain of discourse, which specifies which values the variable n is allowed to take, is therefore of critical importance in a statement's trueness or falseness. Logical conjunctions are used to restrict the domain of discourse to fulfill a given predicate. For example: :
For some positive odd number n, n·n = 25"is logically equivalent to :
For some natural number n, n is odd and n·n = 25".Here, "and" is the logical conjunction.
In symbolic logic, "∃" (a backwards letter "E" in a sans-serif font) is used to indicate existential quantification. Thus, if P(a, b, c) is the predicate "a·b = c" and is the set of natural numbers, then : is the (true) statement :
For some natural number n, n·n = 25.Similarly, if Q(n) is the predicate "n is even", then : is the (false) statement :
For some even number n, n·n = 25.
In mathematics, the proof of a "some" statement may be achieved either by a constructive proof, which exhibits an object satisfying the "some" statement, or by a nonconstructive proof which shows that there must be such an object but without exhibiting one.
For example, if P(x) is the propositional function "x is between 0 and 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is between 0 and 1" is symbolically stated: :
This can be demonstrated to be irrevocably false. Truthfully, it must be said, "It is not the case that there is a natural number x that is between 0 and 1", or, symbolically: :.
If there is no element of the domain of discourse for which the statement is true, then it must be false for all of those elements. That is, the negation of : is logically equivalent to "For any natural number x, x is not between 0 and 1", or: :
Generally, then, the negation of a propositional function's existential quantification is a universal quantification of that propositional function's negation; symbolically, :
A common error is stating "all persons are not married" (i.e. "there exists no person who is married") when "not all persons are married" (i.e. "there exists a person who is not married") is intended: :
Negation is also expressible through a statement of "for no", as opposed to "for some": :
Existential introduction concludes that, if the propositional function is known to be true for a particular element of the domain of discourse, then it must be true that there exists an element for which the proposition function is true. Symbolically,
:
The reasoning behind existential elimination is as follows: If it is given that there exists an element for which the proposition function is true, and if a conclusion can be reached by giving that element an arbitrary name, that conclusion is necessarily true, as long as it does not contain the name. Symbolically, for an arbitrary c and for a proposition Q in which c does not appear:
:
must be true for all values of c over the same domain X; else, the logic does not follow: If c is not arbitrary, and is instead a specific element of the domain of discourse, then stating P(c) might unjustifiably give more information about that object.
Unlike the universal quantifier, the existential quantifier distributes over logical disjunctions:
Category:Logic Category:Quantification Category:Something
ca:Quantificador existencial cs:Existenční kvantifikátor da:Eksistenskvantor de:Existenzaussage et:Olemasolukvantor es:Cuantificador existencial eo:Ekzistokvantigilo fa:سور وجودی fr:Existence (mathématiques) it:Quantificatore esistenziale (simbolo) nl:Existentie ja:存在記号 pl:Kwantyfikator egzystencjalny pt:Quantificação existencial ru:Квантор существования sk:Existenčný kvantifikátor fi:Eksistenssikvanttori sv:Existenskvantifikator zh:存在量化This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.