- Order:
- Duration: 2:45
- Published: 2008-06-30
- Uploaded: 2010-08-27
- Author: MediaWatcherOz
- http://wn.com/Digital_Radio_Trial_in_Sydney_DAB_Eureka_147__June_2008
- Email this video
- Sms this video
these configurations will be saved for each time you visit this page using this browser
The DAB standard was initiated as a European research project in the 1980s, and the BBC launched the first DAB digital radio in 1995. DAB receivers have been available in many countries since the end of the nineties. DAB may offer more radio programmes over a specific spectrum than analogue FM radio. DAB is more robust with regard to noise and multipath fading for mobile listening, since DAB reception quality first degrades rapidly when the signal strength falls below a critical threshold, whereas FM reception quality degrades slowly with the decreasing signal.
An "informal listening test" by Professor Sverre Holm has shown that for stationary listening the audio quality on DAB is lower than FM stereo, due to most stations using a bit rate of 128 kbit/s or less, with the MP2 audio codec, which requires 160 kbit/s to achieve perceived FM quality. 128 kbit/s gives better dynamic range or signal-to-noise ratio than FM radio, but a more smeared stereo image, and an upper cutoff frequency of 14 kHz, corresponding to 15 kHz of FM radio. However, "CD sound quality" with MP2 is possible "with 256..192 kbps".
An upgraded version of the system was released in February 2007, which is called DAB+. DAB is not forward compatible with DAB+, which means that DAB-only receivers will not be able to receive DAB+ broadcasts. DAB+ is approximately twice as efficient as DAB due to the adoption of the AAC+ audio codec, and DAB+ can provide high quality audio with as low as 64kbit/s. Reception quality will also be more robust on DAB+ than on DAB due to the addition of Reed-Solomon error correction coding.
More than 20 countries provide DAB transmissions, and several countries, such as Australia, Italy, Malta and Switzerland, have started transmitting DAB+ stations. See Countries using DAB/DMB. However, DAB radio has still not replaced the old FM system in popularity.
A choice of audio codec, modulation and error-correction coding schemes and first trial broadcasts were made in 1990. Public demonstrations were made in 1993 in the United Kingdom. The protocol specification was finalized in 1993 and adopted by the ITU-R standardization body in 1994, the European community in 1995 and by ETSI in 1997. Pilot broadcasts were launched in several countries in 1995.
The UK was the first country to receive a wide range of radio stations via DAB. Commercial DAB receivers began to be sold in 1999 and over 50 commercial and BBC services were available in London by 2001.
By 2006, 500 million people worldwide were in the coverage area of DAB broadcasts, although by this time sales had only taken off in the UK and Denmark. In 2006 there were approximately 1,000 DAB stations in operation world wide.
The standard was coordinated by the European DAB forum, formed in 1995 and reconstituted to the World DAB Forum in 1997, which represents more than 30 countries. In 2006 the World DAB Forum became the World DMB Forum which now presides over both the DAB and DMB standard.
In October 2005, the World DMB Forum instructed its Technical Committee to carry out the work needed to adopt the AAC+ audio codec and stronger error correction coding. This work led to the launch of the new DAB+ system.
Within an overall target bit rate for the DAB ensemble, individual stations can be allocated different bit rates. The number of channels within a DAB ensemble can be increased by lowering average bit rates, but at the expense of the quality of streams. Error correction under the DAB standard makes the signal more robust but reduces the total bit rate available for streams.
Numerical example: Analog FM requires 0.2 MHz per programme. The frequency reuse factor in most countries is approximately 15, meaning that only one out of 15 transmitter sites can use the same channel frequency without problems with co-channel interference, i.e. cross-talk. Assuming a total availability of 102 FM channels at a bandwidth of 0.2MHz over the Band II spectrum of 87.5 to 108.0 MHz, an average of 102/15 = 6.8 radio channels are possible on each transmitter site (plus lower-power local transmitters causing less interference). This results in a system spectral efficiency of 1 / 15 / (0.2 MHz) = 0.30 programmes/transmitter/MHz. DAB with 192 kbit/s codec requires 1.536 MHz * 192 kbit/s / 1136 kbit/s = 0.26 MHz per audio programme. The frequency reuse factor for local programmes and multi-frequency broadcasting networks (MFN) is typically 4 or 5, resulting in 1 / 4 / (0.26 MHz) = 0.96 programmes/transmitter/MHz. This is 3.2 times as efficient as analog FM for local stations. For single frequency network (SFN) transmission, for example of national programmes, the channel re-use factor is 1, resulting in 1/1/0.25 MHz = 3.85 programmes/transmitter/MHz, which is 12.7 times as efficient as FM for national and regional networks.
Note the above capacity improvement may not always be achieved at the L-band frequencies, since these are more sensitive to obstacles than the FM band frequencies, and may cause shadow fading for hilly terrain and for indoor communication. The number of transmitter sites or the transmission power required for full coverage of a country may be rather high at these frequencies, to avoid that the system becomes noise limited rather than limited by co-channel interference.
The BBC Research & Development department states that at least 192kbit/s is necessary for a high fidelity stereo broadcast :
}}
When BBC in July 2006 reduced the bit-rate of transmission of Radio 3 from 192 kbit/s to 160 kbit/s, the resulting degradation of audio quality prompted a number of complaints to the Corporation. BBC later announced that following this testing of new equipment, it would resume the previous practice of transmitting Radio 3 at 192 kbit/s whenever there were no other demands on bandwidth.
DAB can carry "radiotext" (in DAB terminology, Dynamic Label Segment, or DLS) from the station giving real-time information such as song titles, music type and news or traffic updates. Advance programme guides can also be transmitted. A similar feature also exists on FM in the form of the RDS. (However, not all FM receivers allow radio stations to be stored by name.)
Some radios offer a pause facility on live broadcasts, caching the broadcast stream on local flash memory, although this function is limited.
In certain areas — particularly rural areas — the introduction of DAB gives radio listeners a greater choice of radio stations. For instance, in South Norway, radio listeners experienced an increase in available stations from 6 to 21 when DAB was introduced in November 2006.
Also, as DAB transmits digital audio, there is no hiss with a weak signal, which can happen on FM. However, radios in the fringe of a DAB signal, can experience a "bubbling mud" sound interrupting the audio and/or the audio cutting out altogether.
Due to sensitivity to doppler shift in combination with multipath propagation, DAB receivers can not operate in travelling speeds of more than 200 to 600 km/h depending on carrier frequency.
However, this had led to the situation where some stations are being broadcast in mono, see music radio stations broadcasting in mono for more details.
Facts - DAB uses higher frequencies than FM and must therefore compensate with more transmitters, higher radiated powers, or a combination, to achieve the same coverage. - The power efficiency is slightly better for today's FM-transmitters, meaning they will require less electricity than DAB-transmitter, for the same radiated power. However only the last couple of years has seen significant improvement in power efficiency for DAB-transmitters - All in all, a DAB network is slightly more expensive than a FM network - BUT, a DAB network can carry 6-10 channels (with MPEG audio codec) or 10-16 channels (with HE AAC codec) - Meaning that broadcasting a channel in DAB is far less expensive than broadcasting in FM.
This is backed by independent network studies from Teracom (Sweden) and SSR/SRG (Switzerland). Among other things they show that DAB is up to 6 times less expensive than FM.
Replacing FM-radios and FM-transmitters with new DAB-radios and DAB-transmitters will be no more costly than rebuilding the existing FM facilities.
As an indicator of this increased power consumption, dual FM/DAB radios quote the length of time they can play on a single charge. For a commonly used FM/DAB-receiver from manufacturer PURE, this is stated as: DAB 10 hours, FM 22 hours.
DAB has a number of country specific transmission modes (I, II, III and IV). For worldwide operation a receiver must support all 4 modes:
The new DAB+ standard has adopted the HE-AAC version 2 audio codec, commonly known as AAC+ or aacPlus. AAC+ is approximately three-times more efficient than MP2, which means that broadcasters using DAB+ will be able to provide far higher audio quality or far more stations than they can on DAB, or, as is most likely, a combination of both higher audio quality and more stations will be provided.
One of the most important decisions regarding the design of a digital radio system is the choice of which audio codec to use, because the efficiency of the audio codec determines how many radio stations can be carried on a multiplex at a given level of audio quality. The capacity of a DAB multiplex is fixed, so the more efficient the audio codec is, the more stations can be carried, and vice versa. Similarly, for a fixed bit-rate level, the more efficient the audio codec is the higher the audio quality will be.
The old version of DAB uses punctured convolutional coding for its ECC. The coding scheme uses unequal error protection (UEP), which means that parts of the audio bit-stream that are more susceptible to errors causing audible disturbances are provided with more protection (i.e. a lower code rate) and vice versa. However, the UEP scheme used on DAB results in there being a grey area in between the user experiencing good reception quality and no reception at all, as opposed to the situation with most other wireless digital communication systems that have a sharp "digital cliff", where the signal rapidly becomes unusable if the signal strength drops below a certain threshold. When DAB listeners receive a signal in this intermediate strength area they experience a "burbling" sound which interrupts the playback of the audio.
The new DAB+ standard has incorporated Reed-Solomon ECC as an "inner layer" of coding that is placed around the byte interleaved audio frame but inside the "outer layer" of convolutional coding used by the older DAB system, although on DAB+ the convolutional coding uses equal error protection (EEP) rather than UEP since each bit is equally important in DAB+. This combination of Reed-Solomon coding as the inner layer of coding, followed by an outer layer of convolutional coding - so-called "concatenated coding" - became a popular ECC scheme in the 1990s, and NASA adopted it for its deep-space missions. One slight difference between the concatenated coding used by the DAB+ system and that used on most other systems is that it uses a rectangular byte interleaver rather than Forney interleaving in order to provide a greater interleaver depth, which increases the distance over which error bursts will be spread out in the bit-stream, which in turn will allow the Reed-Solomon error decoder to correct a higher proportion of errors.
The ECC used on DAB+ is far stronger than is used on DAB, which, with all else being equal (i.e. if the transmission powers remained the same), would translate into people who currently experience reception difficulties on DAB receiving a much more robust signal with DAB+ transmissions. It also has a far steeper "digital cliff", and listening tests have shown that people prefer this when the signal strength is low compared to the shallower digital cliff on DAB. (also known as eAAC+) was adopted. The new standard, which is called DAB+, has also adopted the MPEG Surround audio format and stronger error correction coding in the form of Reed-Solomon coding. DAB+ has been standardised as ETSI TS 102 563.
As DAB is not forward compatible with DAB+, older DAB receivers can not receive DAB+ broadcasts. However, DAB receivers that will be able to receive the new DAB+ standard via a firmware upgrade went on sale in July 2007. If a receiver is DAB+, there will be a sign on the product packaging.
DAB+ broadcasts have launched in several countries like Switzerland, Malta, Italy and Australia. Several other countries are also expected to launch DAB+ broadcasts over the next few years, such as Hungary, Germany and Asian countries, such as China and Vietnam. If DAB+ stations launch in established DAB countries, they can transmit alongside existing DAB stations that use the older MPEG-1 Audio Layer II audio format, and most existing DAB stations are expected to continue broadcasting until the vast majority of receivers support DAB+.
Digital Multimedia Broadcasting (DMB) and DAB-IP are suitable for mobile radio and TV both because they support MPEG 4 AVC and WMV9 respectively as video codecs. However, a DMB video subchannel can easily be added to any DAB transmission—as DMB was designed from the outset to be carried on a DAB subchannel. DMB broadcasts in Korea carry conventional MPEG 1 Layer II DAB audio services alongside their DMB video services.
Norway, South Korea and France are countries currently broadcasting DMB.
More than 30 countries provide DAB, DAB+ and/or DMB broadcasts, either as a permanent technology or as test transmissions.
* ETSI Specifications available at ETSI Publications Download Area, pda.etsi.org (this will open ETSI document search engine, to find the latest version of the document enter a search string; free registration is required to download PDF)
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.