
JAVA TECHNOLOGIES IN BROADCASTING
“New challenges in the digital era …”

The last decade has seen a growing competition to deliver new digital information services to millions of new
users.

The Internet, as a leading communication system, was � up to a few years ago � the only and ultimate channel for
providing sophisticated data information services. Several internet technologies were developed and tested, lead-
ing to the introduction of new techniques for distributing data. Web technologies (e.g. Java, TCP/IP, XML and
HTML) became the de-facto solutions for distributing data over the Internet.

Along with new tools, new flexible ways of creating applications were developed. When compared to the tradi-
tional Client/Server paradigm (based on data transmission) the mobile code model has shown enormous poten-
tial: not only is the data transmitted but also the logic for interpreting the data itself.

Nowadays, the increasing advances in network technology are pushing the information revolution towards new
telecommunication systems: DAB, DVB (in the case of television systems) and UMTS (on the mobile phone net-
works) are now offering even more sophisticated digital channels than the Internet; side by side with the tradi-
tional (audio and video) content, new data services (such as EPGs, eCommerce, digital archives, games, etc.) can
be delivered over these broadcasting and mobile phone networks.

A very aggressive competition is developing among these newer digital systems to deliver flexible, cheap and
ubiquitous data services. In such a moving world, the objectives of the content providers are constantly being
revised, so new solutions have to be implemented at a very fast pace.

Antonio Barletta
Sony (Germany)

JAVA
— applications in Digital Audio Broadcasting

Digital Audio Broadcasting (DAB) is preparing itself to meet the new challenges of the
digital era. The Internet, DVB, UMTS and DAB are all competing to provide flexible data
services to millions of new users.

Through the use of Java language APIs, the DAB system is now able to offer flexible and
dynamic solutions for delivering exciting new content to mobile users.

This article summarizes the potential offered by Java technology in the radio
broadcasting environment, and concludes with a description of the Java DAB API
framework, and the software architecture of the Java DAB platform.
EBU TECHNICAL REVIEW – September 2001 1 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
“... And DAB?”

In these new scenarios, the DAB system has
tremendous potentialities for providing both
traditional and modern content in an
advanced digital format.

In brief, DAB is a broadcast wireless digital
network with the capability of delivering
high-quality audio streams and digital data
content to a wide range of personal devices:
from desktop PCs to laptops, from PDAs to
electronic kiosks and in-car units.

What are the advantages of DAB in compari-
son with the other digital systems, and why is
it so important to extend the DAB system to
include new data services?

Let us answer these questions by first des-
cribing the main features offered by DAB:

! Broadcasting
DAB is a suitable medium for delivering wide-interest content (streaming audio programmes, as well as
data services such as news, traffic reports, weather forecasts and financial information). It is cheaper than
the UMTS wireless system � because of its high scalability (one DAB transmitter can serve an infinite
number of wireless receivers) � and it is cheaper than the DVB system through its more flexible use of the
frequencies allocated for small data-rate services. Multicasting on the Internet can only work for small
numbers of users � and with a great abuse of the available resources.

! Wireless
DAB is a wireless system; when used with other wireless systems (GSM, UMTS) to provide so-called
feedback channels, it can provide tremendous interactive data services to mobile wireless devices: PDAs,
in-car units, electronic kiosks etc. Portable devices are becoming attractive and powerful enough to
receive specific wireless services. And the mobile capabilities of DAB make it the perfect system for
developing location-based data services.

! Real time / best quality
The data transmitted using the DAB system
(both high-quality streaming audio and data
applications) can be updated in real time;
The Internet and mobile phone systems can
also deliver real-time audio/data streams �
but, again, with a great abuse of the availa-
ble resources, and they cannot guarantee
high performance when there are very large
numbers of users.

Along with these specific features relating to the
audio distribution, DAB has offered from the very
beginning the possibility of delivering supplemen-
tary digital data applications: Broadcast Web Site
[1] and Slide Show [2] are two simple and flexible
data applications for delivering Internet-like con-
tent over the DAB network.

In conjunction with Panasonic, Roke Manor Research – a Siemens
company – made history in September 2001 with the launch of the
Pocket DAB – claimed to be the world’s first handheld Digital Audio
Broadcasting (DAB) receiver. Despite measuring just 50mm x 76mm x
24mm, the Pocket DAB includes a battery providing five hours of radio
listening per charge and can display 10 lines of text or graphics.
http://www.roke.co.uk/

The Psion Wavefinder – an interactive DAB receiver for the PC.
Currently, the multimedia features only work in the UK but we are
told that international versions of the Wavefinder will be available
soon.
http://www.wavefinder.com/frHome.asp?page=home.asp
EBU TECHNICAL REVIEW – September 2001 2 / 14
A. Barletta

http://www.roke.co.uk/
http://www.wavefinder.com/frHome.asp?page=home.asp

JAVA TECHNOLOGIES IN BROADCASTING
In addition to these two data applications, several recent experiments have been successfully implemented and are
currently being evaluated: TPEG [3], IP-Tunnelling [4], DANTE [5], DIAMOND [6] and XML-EPG [7] are all
successful examples of how to exploit DAB (alone or in combination with other media) to provide data services.

The DAB community comprises several main interacting constituents:

! content providers (BBC, SWR, Swedish Radio, RAI, etc);
! network providers (Teracom, Deutsche Telekom, NTL, etc.);
! receiver manufacturers (Grundig, Bosch, Psion, Roke Manor Research, etc.);
! and, last but not least, a large body of users.

Developing the solutions, and taking into consideration the full needs of all these constituents, is very complex
because several conflicting interests are involved.

! On the one hand, the content providers want to have a more flexible way of controlling the applications
delivered, so that they can follow the needs of their users. Content providers want to be able to create
new data services as fast as possible.

! On the other hand, the receiver manufacturers want to have a clear definition of the minimal requirements
for DAB receivers, and they want to provide a flexible execution environment to compete with other dig-
ital platforms (PCs, TV set-top boxes, PDAs, mobile phones).

! Network providers want to design and build their DAB networks as quickly as possible for delivering the
new service.

! The users want to experience sophisticated and modern interactive DAB applications.

How can we counteract these conflicting interests? The answer is to provide an open, dynamic and standard exe-
cution environment, with the capability of offering flexible tools, adapted to the design needs of current digital
applications.

Java, as a technology, enables us to realize that answer.

Java under the hood: a brief introduction

Java is a software technology which was introduced to the Internet world by Sun Microsystems [8], as a result of
the new forces and constraints being imposed on the production and distribution of digital data content on net-
worked PC systems.

Abbreviations

API Application Programming Interface

BWS Broadcast Web Site

DAB Digital Audio Broadcasting

DVB Digital Video Broadcasting

DVB-J DVB - Java

EPG Electronic Programme Guide

ETSI European Telecommunication Standards
Institute

GSM Global System for Mobile communications

GUI Graphical User Interface

HTML Hypertext Markup Language

I/O Input/Output

MOT Multimedia Object Transfer

NPAD Not Programme-Associated Data

OS Operating System

PAD Programme-Associated Data

PDA Personal Digital Assistant

TCP/IP Transmission Control Protocol / Internet
Protocol

TPEG Transport Protocol Experts Group

UA User Application

UMTS Universal Mobile Telecommunication System

XML Extensible Markup Language

VM Virtual Machine
EBU TECHNICAL REVIEW – September 2001 3 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
The same technology has been used for other platforms (embedded systems, mobile phones, TV) and nowadays
the Java platform is implemented on a wide range of network appliances: from network servers to desktop PCs,
from PDAs to mobile phones, from TV set-top boxes to smart cards.

Before describing Java in some detail, we will look at the main reasons for using such a technology.

What, in general, are the forces and constraints imposed on the production and distribution of
digital content?

From the point of view of designing data services, a clear separation between the production, distribution and
presentation of content is needed: every stage should be independent and should be given the maximum freedom.

This results in some basic requirements:

! easy programming tools for producing content in a fast and modular way (object-oriented);

! a portable format for distributing flexible and dynamic content (data and code);

! a programming environment independent of the different platforms (different OSs, different devices,
etc.) in which to execute the applications.

What is Java and why is it a solution to these requirements?

Java technology resolves the problems listed above. The system comprises three main subsystems:

! an abstract machine specification;
! a language specification;
! a standard set of APIs.

The first of these subsystems specifies an abstract software execution environment � an abstract machine � that is
independent of the specific OS or hardware support.

For example, Java VM defines [14]:

! a set of �opcodes� (a sort of abstract assembler language);

! a stack-based abstract machine;

! a runtime environment support for multithreading applications;

! a security framework for controlling the execution of downloaded code;

! memory management, etc.

This abstract software platform architecture (so-called Virtual Machine) permits the programmers to concen-
trate on designing the applications, without having to adapt them to different platforms. Linux, Windows 2000,
Windows CE, VxWorks are only a few
examples of possible platforms on
which DAB solutions may be devel-
oped: they all support Java (see Fig. 1).

The second subsystem specifies the
Java language for developing portable
Java applications. The Java language
has the easiest learning curve among
the most common programming lan-
guages, such as C and C++, and it
maintains at the same time a very effi-
cient and flexible programming envi-
ronment, using a clear object-oriented
approach.

Java platform
for

Linux

Linux box

Java platform
for

Win32

PC running
Windows NT

Java platform
for your

television

Your
television

Java platform
for your
toaster

Your
toaster

Your Java
program

Your Java
program

Your Java
program

Your Java
program

Figure 1
Java portability (from reference [14]).
EBU TECHNICAL REVIEW – September 2001 4 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
Finally, Java is also a standard set of APIs. The Java platform specifies a standard core set of classes (classes
grouped in packages) for controlling the runtime environment: I/O control, GUI access, network, etc.

By using Java as a core technology, different developers have been able to provide more sophisticated software
frameworks: Aglets [9], Servlet [8], eCommerce framework EJB [8], JINI [8], etc.

One of these specific solutions is the so-called applet model. In brief, an applet is a small application that is
downloaded through the network to extend the capabilities of the hosting environment.

An applet is fundamentally different from the classic client-server data protocol solutions, where a specific
data format is defined to transport information to the user terminal. For example, the HTTP-HTML data pro-
tocol is a data client-server solution, where text formatted with HTML tags is transferred over the Internet, fol-
lowing the HTTP request-response pattern.

With the applet model, on the other hand, we transfer dynamic content: both the data and the software logic
needed to decode and display the information is delivered to the users, independent of the host platform. Usually
the applet extends the capability of a local application: for example if a content provider wants to deliver a video
stream with the most recent video format (MPEG XX), he can transmit an applet with the new MPEG XX
decoder, thereby allowing the new stream of data to be displayed on all the different platforms he can reach.

In the following section, we will see how we can extend the Java platform to include specific control of DAB net-
works, and how we can leverage the Java platform to provide new dynamic content.

A Java application framework for DAB

Although DAB is ready for hosting a technology such as Java, Java
is not able to deal with the DAB system-specific characteristics.

As a result of the WorldDAB Task Force for Virtual Machine (TF-
VM), an extension to the Java platform has been defined to pro-
vide the necessary control of the DAB system.

The work was divided into three main subsystems or packages,
each dealing with a specific set of requirements (see Fig. 2):
! Java DAB API package;
! Java DAB Runtime;
! Java DAB I/O.

See Panel 1 (at the end of this article) for a description of the soft-
ware architecture of a DAB platform.

Java DAB API package

The first of these packages defines the resources of the DAB network and it specifies a simple transactional-
asynchronous access model.

�The DAB package provides high-level access to the services of the Digital Audio Broadcasting (DAB)
System. The package uses the Event-Listener pattern for the communication between the DAB system
and the application. On top on this basic communication pattern a transaction concept is defined (e.g.
to deal with ongoing events) [10]�

In brief, the Java DAB API package is a collection of Java classes that model the DAB system; using this basic
framework, the developers can easily produce applications or build up a more sophisticated framework for eBusi-
ness using the DAB resources.

See Panel 2 (at the end of this article) for a complete example of how the Java DAB API can be used.

DAB
specific

Runtime
support

User I/O &
profiling

Java DAB

Figure 2
The three main sub-systems of
the Java broadcasting extension
EBU TECHNICAL REVIEW – September 2001 5 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
Java DAB Runtime

The Java DAB Runtime specifies the runtime supports needed to provide a safe and reliable execution environ-
ment [11]. The Java platform partly provides this support, but we also needed specific extensions for DAB.

We divided these extensions into five subgroups:

! DAB application model
This part defines a lifecycle for DAB Java applications, based on the Xlet model of JavaTV. This is the
basic model for downloading small Java applications from the DAB network.

! Control of Java applications
Here, we specify how an application is launched and how its state can be controlled.

The model we used for an application downloaded through the DAB system is the same application model
used in the DVB-J system � the so called Xlet model � with some additional elements specifically
designed for DAB. The DVB-J Xlet framework is more suitable for a wide range of application platforms:
alternative models � such as, for example, the applet � are specific to the browser environment. The Xlet
model is a convenient minimum framework and it can also be used for controlling more sophisticated
application types. For example, in the Java DAB prototype developed by the WorldDAB TF-VM, the
Tetris game is an applet adapted to the Xlet framework (see [11] and the screen-shot shown on the next
page).

! Security management
This part handles the security issues with regard to DAB Java applications: this is very important, espe-
cially in the case of remote downloaded code.

! Resource management
The resource management provides mechanisms for sharing resources between different DAB Java appli-
cations.

! Configuration management
This section deals with the handling of the internal profile (i.e. the profile information that is available to
the application).

Java DAB I/O

Finally,

�The DAB User I/O package specifies the Java platform that should be supported for DABJava. It
also defines the profiles for DABJava and the method for signalling the profile using the FIG0/13 User
Application Type [13].

�DABJava is defined as a User Application (UA) type within FIG0/13. The DABJava UA parameters
�Platform� and �Version� are used to signal the DABJava profile or application environment. They
are carried in the UA-specific part of FIG0/13 [12][13].�

With the first one (Platform), we signal the execution environment needed to run the applications, while the sec-
ond parameter (Version) flags the software compatibility of the DAB Package (with backward compatibility).

Two platforms have already been defined: Standard Personal Java Profile and Network-enabled Personal
Java Profile.

Currently these two platforms are the most suitable for embedded devices, both in terms of the resources used, and in
terms of their flexible programming environment: several implementations (TV set-top boxes, PDAs) are already
available on the market (see [12]).

The Sony evaluation implementation of the Java DAB API, for example, uses a Personal Java profile which is avail-
able free from Sun Microsystems (about 4 MB), plus the specific Java DAB package (68 KB). Personal Java imple-
EBU TECHNICAL REVIEW – September 2001 6 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
mentations are readily available on the market
from various software houses, for different
embedded platforms. (The Kada System
implementaion, for example, is about 330 KB
� see http://.www.kadasystems.com.)

In order to calculate the memory resources
needed for implementing the Java DAB
Runtime, we have to add the native OS mem-
ory footprint (including the DAB native pro-
tocol stack), plus the memory needed for the
Personal Java, plus the DAB-specific Java
class.

DAB Java applications

For validating the Java DAB API, three types
of application were considered: an Electronic
Programme Guide (EPG), a Share Price
Ticker and a Game.

These three types of application cover a wide
range of possible application models and they
can be delivered natively or downloaded via
DAB. However, different security and resource issues must be considered and specified.

The EPG is an application that has full access to the DAB system, and controls the DAB terminal. The Ticker is
a classic business data application, where three main functions are implemented: access to the data stream, decod-
ing of the information and displaying it to the user. The Game is a fully-interactive application using the hosting I/
O resources.

EPG

An EPG can be developed either as a native Java application or as a downloaded Xlet module. Content providers
can deliver their own flavour of EPG and dynamically update its �look and feel�.

The main functions of an EPG are, firstly, to access and control the audio and data stream and, secondly to pro-
vide a user-friendly interactive View to the user (see Panel 2).

The EPG is also the most critical component in terms of security access. A downloaded EPG has access to all the
DAB resources of the user�s terminal: selection of audio, tuning, volume level, etc. This is an entirely new con-
cept, brought about by the use of mobile code. However, the Java DAB API will also provide user access to
these resources. As a possible example of the Java DAB API in use, let us imagine that the BBC sends a new
EPG to a DAB receiver and that, whenever a user selects a BBC radio station, the sound level is automatically

Example DAB applications developed during
the Task Force VM trial.

Antonio Barletta obtained a degree in Electronic Engineering from Turin Polytechnic in
northern Italy. This was followed by a Masters degree (MSc) in Telematics and Multimedia
(his thesis was on Mobile Code technology and the broadcasting medium, DAB).

Three years ago, Mr Barletta joined the Sony research centre in Stuttgart, Germany, to
work in the mobile multimedia group. Much of his earlier work with Sony was on the
DANTE telematic project, studying the use of XML, GSM and DAB to provide in-car data
solutions (the project was presented at the Berlin IFA in 1999).

Over the past two years, Antonio Barletta has worked in the WorldDAB "task force for Virtual
Machine" and has developed some telematic applications using DAB on different platforms.
EBU TECHNICAL REVIEW – September 2001 7 / 14
A. Barletta

http://.www.kadasystems.com

JAVA TECHNOLOGIES IN BROADCASTING
turned up (something more commonly asso-
ciated with TV sets during commercial
breaks). The Java DAB API provides a way
of controlling this, thus enabling the user to
avoid having to accept volume changes
when switching between radio stations.

Ticker

The Ticker application normally controls a
data stream provided by a DAB network, and
decodes it in a proper way. The data decoder
logic and the user interactive View are down-
loaded dynamically. Security permissions
are limited strictly to a few DAB resources
(for example, access to a specific data
stream). Other examples of ticker-like appli-
cations are map viewers, TPEG decoders, etc.

Game

The Game is a fully interactive application.
Usually such applications should access only
limited resources (GUI, User I/O) in a pro-
tected manner. There are thousands of such
applications on the Internet that can readily be
adapted for use with the DAB system. Educa-
tional applets, games, animations and banners
are only a few examples of the possibilities
offered by an open platform such as Java
(remember that Java is a portable technol-
ogy!).

What next?

The results obtained by the WorldDAB Task Force for Virtual Machine 1 will be forwarded to ETSI for standard-
ization in the next few months. In the meantime, several organizations have been testing and adopting the Java
DAB API for validating and prototyping new applications and business models, using the DAB network (see
photo).

Currently, a new Task Force within the WorldDAB forum is involved in specifying a mobile DAB terminal with
extended capabilities � both in terms of integration with others networks (GSM, UMTS) and in terms of eCom-
merce solutions 2: this task force is willing to use the Java DAB API for showing off the potential of the DAB
system.

1. The Task Force for Virtual Machine was a technical group formed by technical members of the WorldDAB
Consortium. For more details about the companies involved, please contact the WorldDAB manager, Mrs Julie
Ackerman.
ackerman@worlddab.org

2. For more details of the work of the Task Force for DAB/Mobile, please visit the WorldDAB website.
http://www.worldDAB.org

Java DAB prototype : the applications can run
on both a laptop PC and a PDA platform.
EBU TECHNICAL REVIEW – September 2001 8 / 14
A. Barletta

mailto:ackerman@worlddab.org
http://www.worldDAB.org

JAVA TECHNOLOGIES IN BROADCASTING
Bibliography

[1] TS 101 498-2 v 1.1.1 (August/September 2000): Digital Audio Broadcasting (DAB); Broadcast website;
Part 1: User application specification and Part 2: Basic profile specification.
ETSI: http://pda.etsi.org/pda/queryform.asp

[2] TS 101 499 v 1.1.1 (July 2001): Digital Audio Broadcasting (DAB); MOT Slide Show; User Applica-
tion Specification.
ETSI: http://pda.etsi.org/pda/queryform.asp

[3] TPEG � http://www.tpeg.org/

[4] IP-Tunnelling � http://www.teracom.se/

[5] DANTE � http://www.worlddab.org/events/proceedings/zumkeller.pdf

[6] DIAMOND � http://www.ertico.com/links/5thfp/diamond/home.htm

[7] XML-EPG � http://www.worldDAB.org

[8] �The source for Java technology�
 http://java.sun.com/

[9] �The architecture of aglets�
 http://www.javaworld.com/javaworld/jw-04-1997/jw-04-hood.html

[10] Gil Muller: DAB Package Specification, Version 1.7 (13.11.2000)
WorldDAB Task Force for Virtual Machine.
ackerman@worlddab.org

[11] Antonio Barletta: DAB Java, The Runtime Package, Version 1.1 (15.11.2000)
WorldDAB Task Force for Virtual Machine.
ackerman@worlddab.org

[12] Tristan Ferne: DAB Java, The User I/O Package, Version 0.9 (8.3.2001)
WorldDAB Task Force for Virtual Machine.
ackerman@worlddab.org

[13] ETS 300 401 v 1.3.3 (May 2001): Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to
mobile, portable and fixed receivers.
ETSI: http://pda.etsi.org/pda/queryform.asp

[14] Bill Venners: Inside the Java 2 Virtual Machine
McGraw-Hill / Osborne. Ref.: ISBN 0-07-135093-4
http://www.osborne.com/programming_webdev/0071350934/0071350934.shtml

Note from the Editor

In addition to http://www.worldDAB.org, another useful website for anyone involved in DAB is http:/
/www.wohnort.demon.co.uk/DAB/ which gives details of DAB ensembles around the globe, and also
lists the DAB receiving equipment that is currently known to be available. Mr Carey Taylor, who oversees
this independent website in the UK, would welcome updates and corrections from anyone involved in DAB,
worldwide.

Acknowledgement

The author would like to thank all the members of the WorldDAB Task Force for Virtual Machine for the work
they have done on this project, and for the results obtained.
EBU TECHNICAL REVIEW – September 2001 9 / 14
A. Barletta

http://www.teracom.se/
http://www.worlddab.org/events/proceedings/zumkeller.pdf
http://www.tpeg.org/
http://www.ertico.com/links/5thfp/diamond/home.htm
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-hood.html
mailto:ackerman@worlddab.org
mailto:ackerman@worlddab.org
mailto:ackerman@worlddab.org
http://www.worldDAB.org
http://www.osborne.com/programming_webdev/0071350934/0071350934.shtml
http://www.worldDAB.org
http://java.sun.com/
http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://www.wohnort.demon.co.uk/DAB/
http://www.wohnort.demon.co.uk/DAB/

JAVA TECHNOLOGIES IN BROADCASTING
Panel 1
A software architecture view of a DAB platform

The introduction of Java technology will provoke basic changes to the software architecture of the DAB terminals.
These changes will allow more flexible data solutions, following the changing requirements of the users� expectations.

In this brief section, we will illustrate the main architectural blocks added to the traditional software architecture for
DAB data applications (see the diagram below). Emphasis will also be put on the software components under control of
the content providers.

The current DAB receivers have a very simple software architecture: a native operating system (Native OS on the dia-
gram), or an embedded controller, which provides the basic control of the DAB transport layer (audio/data stream) to a
set of data decoders (MPEG audio decoder, MOT decoder for PAD and NPAD data). Very basic applications provide
access and control for, usually, the Electronic Programme Guide and data-decoding applications (Broadcast Web Site
and Slide Show).

Nowadays, DAB platforms are being integrated in PDA OSs (such as Windows CE or Linux devices) or directly on
desktop PC platforms. Despite the increased capabilities of the hosting platforms, the basic software structure remains
the same: native OS and native DAB applications. In the current scenario, content providers can deliver only a specific
subset of data applications, and they are strictly dependent on the receiver capabilities.

Adding support for Java on the receiver side means adding a software engine that abstracts all the differences between
the specific platforms (embedded OS, desktop PC, PDAs). Such a universal software platform frees the content provid-
ers from delivering only specific content, and it frees the receiver manufacturers from updating their receivers when fol-
lowing the changing needs of the content providers.

Another positive advantage is the possibility to reuse native Java applications (see the diagram) on multiple platforms,
reducing the risks of developing the same solutions each time, and increasing the reliability of the code used.

Let�s go one step farther. In the Java DAB API framework, there is the possibility of delivering dynamic smart compo-
nents through the DAB network to different receivers, independent of the receiver�s capabilities.

One application, the Xlet Manager, provides the support for downloading, hosting and executing software components.
What are the real advantages of such new capabilities in the receiver? We�ll explain it through the use of some exam-
ples.

Let�s assume that a content provider would like to provide a new data service using a proprietary data format (XML, TPEG
or MPEG-7). Using the Java framework, the content provider can safely download a new application directly onto the
host platform, where the particular data format can be accessed, decoded and displayed. After one month, following the
tremendous success of his data application, the content provider decides to compress his data, in order to increase the
quantity of data delivered: the development team � by being free of licence fees � develops its own compression
encoder.

What happens now? Quite simple � a new
application, which includes support for the
compression algorithm, is developed, tested
and transmitted to the receivers: the receiver
software capabilities are updated automati-
cally.

(Using the traditional approach, for every
new protocol format developed, the content
providers would have to approach a standards
committee for validation of each new proto-
col. They would then have to wait for the
receiver manufacturers to provide support for
the new services, and so on.)

While adding Java support to a DAB plat-
form can relatively increase the architecture
of the system, it can provide the users with a
flexible modern environment in which to
deploy dynamic new services.

Native OS

N
at

iv
e

A
p

p
lic

at
io

n
: E

PG

N
at

iv
e

A
p

p
lic

at
io

n
: B

W
S

Java Platform
DAB

Java I/O

Ja
va

 E
PG

s

Ja
va

 G
am

es

Resident Application

Xlet Manager

Downloaded Application (Xlet)

Map
Viewer Ticker

Kino & Theater
program

Game

EPG

DAB
Java

Runtime

DAB
Java API

Software architecture for a DAB platform.
EBU TECHNICAL REVIEW – September 2001 10 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
Panel 2
An example of a DAB Java EPG application (from [10])

In the following we will show
how to use the Java DAB inter-
face for an EPG application. We
will focus on the main steps for
initializing and controlling the
DAB system. Basically, we need
only two main classes: a DAB-
Listener (usually on the appli-
cation side, in our case the EPG
class) and a DABClient (the
main entry for controlling the
DAB receiver � see the accompa-
nying diagram.

Before making any actions to the
DAB receiver, we have to initial-
ize it, and register a DABLis-
tener (or an adapter class) for
the incoming messages: in our
case, the EPG application class
implements the listener interface
directly.

This leads to the following initial-
ization code:

public class MyEPG implements DABListenerAdapter {
static public void main(String[] args){

...
initEPG();
startEPG(frequency);
...
pause EPG();

}
}

The implementation of the main MyEPG methods are:

public void initEPG(){
DABClient dab = new DABClient();
dab.addDABListener(this);

try {
System.out.println("Sending Open Request....");
dab.open();
System.out.println("... Open Request sent");

}catch(DABException e){
System.out.println("Caught exception during open
request:"+e.toString());
}

} // end initEPG() method

public void stopEPG(){
try {

dab.close();
dab.removeDABListener(this);

MyEPG DABListenerAdapter

DABListenerinitEPG()
startEPG()
stopEPG()

serviceInfoNtf()()
tuneCnf()
selectComponent()

DABClient

public void addDABListener()
public void removeDABListener()
public void open()
public void close()
public void selectServiceInfoReq()
public void tuneReq()

Figure A1
The classes of the EPG.
EBU TECHNICAL REVIEW – September 2001 11 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
}catch(DABException e){
System.out.println("Caught exception during open
request:"+e.toString());
}

finally{
System.exit(0);

}
} // end stopEPG() method

Notes:
! The open() method is synchronous, i.e. the application is blocked until the method returns;
! The registration procedure (dab.addDABListener(…)) should be done in relation to an open(), but abso-

lutely before using any asynchronous methods (see the EPG example);
! The closing procedure is symmetric to the opening: first we close the connection to the DAB system and then we

annul the registration as a DABListener.
After the initialization steps, we implement the basic exchange of messages for controlling the audio services in the
DAB ensemble.

We will focus our attention on the following set of asynchronous methods:

On the DAB side:
! dab.tuneReq(frequency, mode);
! dab.selectServiceInfoReq(true,true,true,true);

On the DABListener side:
! public void selectServiceInfoCnf(SelectServiceInfoCnfEvent e);
! public void serviceInfoNtf(ServiceInfoNtfEvent e);
! public void tuneCnf(TuneCnfEvent e).

With the events:
! TuneCnfEvent;
! SelectServiceInfoCnfEvent;
! ServiceInfoNtfEvent.

After tuning to a specific frequency, we register MyEPG for receiving notification messages about the available services
on the DAB ensemble (EnsembleInfo, ServiceInfo, ComponentInfo). The usage of the information
received by the DABClient is a task that is specific to the application. Here, we demonstrate it by selecting a particu-
lar audio component from a DAB ensemble.

public void startEPG(int frequency){
try {

dab.tuneReq(
frequency, DABConstants.transmissionModeAutomatic);

}catch(DABException e){
}
// to be continued

}

// DABListener interface
public void tuneCnf(TuneCnfEvent e){

Panel 2 (continued)
An example of a DAB Java EPG application
EBU TECHNICAL REVIEW – September 2001 12 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
int result = e.getResult();
int tunedFrequency = e.getTuneFrequency();
System.out.println(

“Tune cnf received,
result = “+Integer.toString(result)+”+
Frequency = "+Integer.toString(tunedFrequency));

return;
}

A tune request message is sent for tuning to a specific frequency (in Hz), using a specific mode 1. If it is successful, a
tune confirmation message is delivered and the receiver is tuned to the requested ensemble 2.

public void startEPG(){
// continued
try {

dab.selectServiceInfoReq(true,true,true,true);
}catch(DABException e){
}

}

// DABListener interface
public void serviceInfoNtf(ServiceInfoNtfEvent e){

int notificationType;
EnsembleInfo ensembleInfo;
ServiceInfo serviceInfo;
ComponentInfo componentInfo;

notificationType = e.getNotification();

switch(notificationType){
case DABConstants.notificationEnsembleAdded:
case DABConstants.notificationEnsembleRemoved:
case DABConstants.notificationEnsembleChanged:

ensembleInfo = e.getEnsembleInfo();
// notify the Application of a Ensemble info

break;

case DABConstants.notificationServiceAdded:
case DABConstants.notificationServiceRemoved:
case DABConstants.notificationServiceChanged:

serviceInfo = e.getServiceInfo();
// notify the Application of a Service info

break;

case DABConstants.notificationComponentAdded:
case DABConstants.notificationComponentRemoved:
case DABConstants.notificationComponentChanged:

componentInfo = e.getComponentInfo();

1. In the DAB specification, several modes are specified for the transmission of a DAB ensemble: some DAB receivers can au-
tomatically detect the specific transmission mode of an ensemble. In other receivers, such a parameter has to be done ex-
plicitly (cf. DAB specification).

2. Other more sophisticated tuning actions can be done using the scanReq() method (cf. DAB Java API).

Panel 2 (continued)
An example of a DAB Java EPG application
EBU TECHNICAL REVIEW – September 2001 13 / 14
A. Barletta

JAVA TECHNOLOGIES IN BROADCASTING
// notify the Application of a Component info
break;

}
return;

}

The application uses selectServiceInfoReq for receiving information about all available DAB components
(ensemble, services, components). After receiving a confirmation of the request, the DABClient will notify every
change in the DAB signal information (additions to, changes to, and removal of an ensemble, services, and compo-
nents). Specifically in this case, we ask to receive with the notification the information related to the particular info
object (see the DAB Java specification for details).

The information is delivered to the application using a special event; the usage of the carried information depends on the
application strategy.

The final step for our simple EPG is to select a particular audio component, assuming that we have collected all the
information about the services and service components available for the selected ensemble. We assume that the user has
selected a service component somehow and that the EPG has identified the selected component.

public void selectAudio(ComponentInfo componentInfo){
if(componentInfo.getType() == DABConstants.componentTypeForegroundSound)
{

try {
dab.selectComponentReq(

componentInfo.getId(),
DABConstants.selectionModeReplace);

}catch(Exception _e){
}

}
}
// DABListener interface
public void selectComponentCnf(SelectComponentCnfEvent e){

System.out.println(
“Result"+Integer.toString(e.getResult()));

return;
}

Panel 2 (continued)
An example of a DAB Java EPG application
EBU TECHNICAL REVIEW – September 2001 14 / 14
A. Barletta

One final example of a Java DAB application running on a PDA
platform, this time from Etheraction.
http://www.etheraction.com/

http://www.etheraction.com/

