- Duration: 2:07
- Published: 2009-06-09
- Uploaded: 2010-12-16
- Author: watchCulturetainment
these configurations will be saved for each time you visit this page using this browser
Name | Moon |
---|---|
Background | #dddddd |
Apsis | gee |
Symbol | |
Caption | A moon just past full as seen from Earth's northern hemisphere |
Periapsis | 363,104 km (0.0024 AU) |
Apoapsis | 405,696 km (0.0027 AU) |
Semimajor | 384,399 km () |
Polar radius | |
Magnitude | −2.5 to −12.9 −12.74 (mean full Moon) |
Temp name1 | equator |
Min temp 1 | 100 K |
Mean temp 1 | 220 K |
Max temp 1 | 390 K |
Temp name2 | 85°N}} |
The Moon is Earth's only natural satellite and is the fifth largest satellite in the Solar System. It is the largest natural satellite in the Solar System relative to the size of its planet, a quarter the diameter of Earth and 1/81 its mass, and is the second densest satellite after Io. It is in synchronous rotation with Earth, always showing the same face; the near side is marked with dark volcanic maria among the bright ancient crustal highlands and prominent impact craters. It is the brightest object in the sky after the Sun, although its surface is actually very dark, with a similar reflectance to coal. Its prominence in the sky and its regular cycle of phases have since ancient times made the Moon an important cultural influence on language, the calendar, art and mythology. The Moon's gravitational influence produces the ocean tides and the minute lengthening of the day. The Moon's current orbital distance, about thirty times the diameter of the Earth, causes it to be the same size in the sky as the Sun—allowing the Moon to cover the Sun precisely in total solar eclipses.
The Moon is the only celestial body on which humans have made a manned landing. While the Soviet Union's Luna programme was the first to reach the Moon with unmanned spacecraft, the United States' NASA Apollo program achieved the only manned missions to date, beginning with the first manned lunar orbiting mission by Apollo 8 in 1968, and six manned lunar landings between 1969 and 1972—the first being Apollo 11 in 1969. These missions returned over 380 kg of lunar rocks, which have been used to develop a detailed geological understanding of the Moon's origins (it is thought to have formed some 4.5 billion years ago in a giant impact), the formation of its internal structure, and its subsequent history.
After the Apollo 17 mission in 1972, the Moon has been visited only by unmanned spacecraft, notably by Soviet Lunokhod rovers. Since 2004, Japan, China, India, the United States, and the European Space Agency have each sent lunar orbiters. These spacecraft have contributed to confirming the discovery of lunar water ice in permanently shadowed craters at the poles and bound into the lunar regolith. Future manned missions to the Moon are planned but not yet underway; the Moon remains, under the Outer Space Treaty, free to all nations to explore for peaceful purposes.
The principal modern English adjective pertaining to the Moon is lunar, derived from the Latin Luna. Another less common adjective is selenic, derived from the Ancient Greek Selene (), from which the prefix "seleno-" (as in selenography) is derived.
The prevailing hypothesis today is that the Earth–Moon system formed as a result of a giant impact: a Mars-sized body hit the nearly formed proto-Earth, blasting material into orbit around the proto-Earth, which accreted to form the Moon. Giant impacts are thought to have been common in the early Solar System. Computer simulations modelling a giant impact are consistent with measurements of the angular momentum of the Earth–Moon system, and the small size of the lunar core; they also show that most of the Moon came from the impactor, not from the proto-Earth. However, meteorites show that other inner Solar System bodies such as Mars and Vesta have very different oxygen and tungsten isotopic compositions to the Earth, while the Earth and Moon have near-identical isotopic compositions. Post-impact mixing of the vaporized material between the forming Earth and Moon could have equalized their isotopic compositions, although this is debated.
The large amount of energy released in the giant impact event and the subsequent reaccretion of material in Earth orbit would have melted the outer shell of the Earth, forming a magma ocean. The newly formed Moon would also have had its own lunar magma ocean; estimates for its depth range from about 500 km to the entire radius of the Moon. !rowspan="2"|Compound !rowspan="2"|Formula !colspan="2"|Composition (wt %) |- !style="font-size: smaller;"|Maria !style="font-size: smaller;"|Highlands |- |silica |style="text-align: center;"|SiO2 |style="text-align: right;"|45.4% |style="text-align: right;"|45.5% |- |alumina |style="text-align: center;"|Al2O3 |style="text-align: right;"|14.9% |style="text-align: right;"|24.0% |- |lime |style="text-align: center;"|CaO |style="text-align: right;"|11.8% |style="text-align: right;"|15.9% |- |iron(II) oxide |style="text-align: center;"|FeO |style="text-align: right;"|14.1% |style="text-align: right;"|5.9% |- |magnesia |style="text-align: center;"|MgO |style="text-align: right;"|9.2% |style="text-align: right;"|7.5% |- |titanium dioxide |style="text-align: center;"|TiO2 |style="text-align: right;"|3.9% |style="text-align: right;"|0.6% |- |sodium oxide |style="text-align: center;"|Na2O |style="text-align: right;"|0.6% |style="text-align: right;"|0.6% |- !colspan="2"|Total !style="text-align: right;"|99.9% !style="text-align: right;"|100.0% |} The Moon is a differentiated body: it has a geochemically distinct crust, mantle, and core. This structure is thought to have developed through the fractional crystallization of a global magma ocean shortly after the Moon's formation 4.5 billion years ago. Crystallization of this magma ocean would have created a mafic mantle from the precipitation and sinking of the minerals olivine, clinopyroxene, and orthopyroxene; after about three-quarters of the magma ocean had crystallised, lower-density plagioclase minerals could form and float into a crust on top. and moon rock samples of the flood lavas erupted on the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron rich than that of Earth.
The Moon is the second densest satellite in the Solar System after Io. However, the core of the Moon is small, with a radius of about 350 km or less;
, referenced to a sphere of radius 1737.4 km|Topography of the Moon.]]
The Moon is in synchronous rotation: it rotates about its axis in about the same time it takes to orbit the Earth. This results in it nearly always keeping the same face turned towards the Earth. The Moon used to rotate at a faster rate, but early in its history, its rotation slowed and became locked in this orientation as a result of frictional effects associated with tidal deformations caused by the Earth. The side of the Moon that faces Earth is called the near side, and the opposite side the far side. The far side is often called the "dark side," but in fact, it is illuminated as often as the near side: once per lunar day, during the new Moon phase we observe on Earth when the near side is dark.
The topography of the Moon has been measured with laser altimetry and stereo image analysis. The most visible topographic feature is the giant far side South Pole – Aitken basin, some 2,240 km in diameter, the largest crater on the Moon and the largest known crater in the Solar System. At 13 km deep, its floor is the lowest elevation on the Moon. The highest elevations are found just to its north-east, and it has been suggested that this area might have been thickened by the oblique formation impact of South Pole – Aitken. Other large impact basins, such as Imbrium, Serenitatis, Crisium, Smythii, and Orientale, also possess regionally low elevations and elevated rims. They are now known to be vast solidified pools of ancient basaltic lava. While similar to terrestrial basalts, the mare basalts have much higher abundances of iron and are completely lacking in minerals altered by water. The majority of these lavas erupted or flowed into the depressions associated with impact basins. Several geologic provinces containing shield volcanoes and volcanic domes are found within the near side maria.
Maria are found almost exclusively on the near side of the Moon, covering 31% of the surface on the near side, This is thought to be due to a concentration of heat-producing elements under the crust on the near side, seen on geochemical maps obtained by Lunar Prospector's gamma-ray spectrometer, which would have caused the underlying mantle to heat up, partially melt, rise to the surface and erupt. Most of the Moon's mare basalts erupted during the Imbrian period, 3.0–3.5 billion years ago, although some radiometrically dated samples are as old as 4.2 billion years, and the youngest eruptions, dated by crater counting, appear to have been only 1.2 billion years ago.
The lighter-coloured regions of the Moon are called terrae, or more commonly highlands, since they are higher than most maria. They have been radiometrically dated as forming 4.4 billion years ago, and may represent plagioclase cumulates of the lunar magma ocean.
Blanketed on top of the Moon's crust is a highly comminuted (broken into ever smaller particles) and impact gardened surface layer called regolith, formed by impact processes. The finer regolith, the lunar soil of silicon dioxide glass, has a texture like snow and smell like spent gunpowder. The regolith of older surfaces is generally thicker than for younger surfaces: it varies in thickness from 10–20 m in the highlands and 3–5 m in the maria. Beneath the finely comminuted regolith layer is the megaregolith, a layer of highly fractured bedrock many kilometres thick.
Liquid water cannot persist at the Moon's surface, and water vapour quickly evaporates, breaks up through photodissociation due to sunlight, and is lost to space. However, scientists have thought since the 1960s that water ice, deposited by impacting comets or produced by the reaction of oxygen-rich lunar rocks and hydrogen in the solar wind, could survive in the cold, permanently shadowed craters at the Moon's poles. These craters have been in shadow for the past two billion years, and computer simulations suggest that up to 14,000 km2 might be in permanent shadow.
Many different signatures of lunar water have since been found. In 1994, Clementine bistatic radar experiment found indications of small, frozen pockets of water close to the surface (though later Arecibo radar observations suggested these might be rocks ejected from young impact craters); Lunar Prospector's neutron spectrometer indicated in 1998 that high concentrations of hydrogen are present in the upper metre of the regolith near the polar regions; in 2008, new analysis found small amounts of water in the interior of volcanic lava beads brought to Earth by Apollo 15. In October 2008, India launched its maiden Moon Mission Chandrayaan-1, whose imaging spectrometer in September 2009, detected water and hydroxyl absorption lines in reflected sunlight, evidence of large quantities of water on the Moon's surface, possibly as high as 1,000 ppm. Weeks later, the LCROSS mission flew its 2300 kg impactor into a permanently shadowed polar crater, and detected at least 100 kg of water in the plume of ejected material.
The Moon has an external magnetic field of the order of one to a hundred nanoteslas, less than one-hundredth that of the Earth. It does not currently have a global dipolar magnetic field, as would be generated by a liquid metal core geodynamo, and only has crustal magnetization, probably acquired early in lunar history when a geodynamo was still operating. Alternatively, some of the remnant magnetization may be from transient magnetic fields generated during large impact events, through the expansion of an impact-generated plasma cloud in the presence of an ambient magnetic field—this is supported by the apparent location of the largest crustal magnetizations near the antipodes of the giant impact basins.
However, the Earth and Moon are still considered a planet–satellite system, rather than a double-planet system, as their barycentre, the common centre of mass, is located 1,700 km (about a quarter of the Earth's radius) beneath the surface of the Earth.
The highest altitude of the Moon in the sky varies: while it has nearly the same limit as the Sun, it alters with the lunar phase and with the season of the year, with the full Moon highest during winter. The 18.6-year nodes cycle also has an influence: when the ascending node of the lunar orbit is in the vernal equinox, the lunar declination can go as far as 28° each month. This means the Moon can go overhead at latitudes up to 28° from the equator, instead of only 18°. The orientation of the Moon's crescent also depends on the latitude of the observation site: close to the equator, an observer can see a smile-shaped crescent Moon.
There has been historical controversy over whether features on the Moon's surface change over time. Today, many of these claims are thought to be illusory, resulting from observation under different lighting conditions, poor astronomical seeing, or inadequate drawings. However, outgassing does occasionally occur, and could be responsible for a minor percentage of the reported lunar transient phenomena. Recently, it has been suggested that a roughly 3 km diameter region of the lunar surface was modified by a gas release event about a million years ago. The Moon's appearance, like that of the Sun, can be affected by Earth's atmosphere: common effects are a 22° halo ring formed when the Moon's light is refracted through the ice crystals of high cirrostratus cloud, and smaller coronal rings when the Moon is seen through thin clouds.
The lunar surface also experiences tides of amplitude ~10 cm over 27 days, with two components: a fixed one due to the Earth, as they are in synchronous rotation, and a varying component from the Sun.
Eclipses can only occur when the Sun, Earth, and Moon are all in a straight line. Solar eclipses occur near a new Moon, when the Moon is between the Sun and Earth. In contrast, lunar eclipses occur near a full Moon, when the Earth is between the Sun and Moon. The angular diameters of the Moon and the Sun as seen from Earth overlap in their variation, so that both total and annular solar eclipses are possible. In a total eclipse, the Moon completely covers the disc of the Sun and the solar corona becomes visible to the naked eye. Since the distance between the Moon and the Earth is very slowly increasing over time, The periodicity and recurrence of eclipses of the Sun by the Moon, and of the Moon by the Earth, is described by the saros cycle, which has a period of approximately 18 years.
As the Moon is continuously blocking our view of a half-degree-wide circular area of the sky, the related phenomenon of occultation occurs when a bright star or planet passes behind the Moon and is occulted: hidden from view. In this way, a solar eclipse is an occultation of the Sun. Because the Moon is comparatively close to the Earth, occultations of individual stars are not visible everywhere on the planet, nor at the same time. Because of the precession of the lunar orbit, each year different stars are occulted.
Understanding of the Moon's cycles was an early development of astronomy: by the , Babylonian astronomers had recorded the 18-year Saros cycle of lunar eclipses, and Indian astronomers had described the Moon’s monthly elongation. The Chinese astronomer Shi Shen gave instructions for predicting solar and lunar eclipses. Later, the physical form of the Moon and the cause of moonlight became understood. The ancient Greek philosopher Anaxagoras reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. Although the Chinese of the Han Dynasty believed the Moon to be energy equated to qi, their 'radiating influence' theory also recognized that the light of the Moon was merely a reflection of the Sun, and Jing Fang (78–37 BC) noted the sphericity of the Moon. In 499 AD, the Indian astronomer Aryabhata mentioned in his Aryabhatiya that reflected sunlight is the cause of the shining of the Moon. Shen Kuo (1031–1095) of the Song Dynasty created an allegory equating the waxing and waning of the Moon to a round ball of reflective silver that, when doused with white powder and viewed from the side, would appear to be a crescent.
In Aristotle's (384–322 BC) description of the universe, the Moon marked the boundary between the spheres of the mutable elements (earth, water, air and fire), and the imperishable stars of aether, an influential philosophy that would dominate for centuries. However, in the , Seleucus of Seleucia correctly theorized that tides were due to the attraction of the Moon, and that their height depends on the Moon's position relative to the Sun. In the same century, Aristarchus computed the size and distance of the Moon from Earth, obtaining a value of about twenty times the Earth radius for the distance. These figures were greatly improved by Ptolemy (90–168 AD): his values of a mean distance of 59 times the Earth's radius and a diameter of 0.292 Earth diameters were close to the correct values of about 60 and 0.273 respectively. Archimedes (287–212 BC) invented a planetarium calculating motions of the Moon and the known planets.
During the Middle Ages, before the invention of the telescope, the Moon was increasingly recognised as a sphere, though many believed that it was "perfectly smooth". In 1609, Galileo Galilei drew one of the first telescopic drawings of the Moon in his book and noted that it was not smooth but had mountains and craters. Telescopic mapping of the Moon followed: later in the 17th century, the efforts of Giovanni Battista Riccioli and Francesco Maria Grimaldi led to the system of naming of lunar features in use today. The more exact 1834-6 of Wilhelm Beer and Johann Heinrich Mädler, and their associated 1837 book , the first trigonometrically accurate study of lunar features, included the heights of more than a thousand mountains, and introduced the study of the Moon at accuracies possible in earthly geography. Lunar craters, first noted by Galileo, were thought to be volcanic until the 1870s proposal of Richard Proctor that they were formed by collisions. leading to the development of lunar stratigraphy, which by the 1950s was becoming a new and growing branch of astrogeology. the first man-made object to escape Earth's gravity and pass near the Moon was Luna 1; the first man-made object to impact the lunar surface was Luna 2, and the first photographs of the normally occluded far side of the Moon were made by Luna 3, all in 1959.
The first spacecraft to perform a successful lunar soft landing was Luna 9 and the first unmanned vehicle to orbit the Moon was Luna 10, both in 1966. Two pioneering robotic spacecrafts of rover type landed on the Moon in 1970 and 1973 as a part of Soviet Lunokhod programme.
Scientific instrument packages were installed on the lunar surface during all the Apollo missions. Long-lived instrument stations, including heat flow probes, seismometers, and magnetometers, were installed at the Apollo 12, 14, 15, 16, and 17 landing sites. Direct transmission of data to Earth concluded in late 1977 due to budgetary considerations, but as the stations' lunar laser ranging corner-cube retroreflector arrays are passive instruments, they are still being used. Ranging to the stations is routinely performed from earth-based stations with an accuracy of a few centimetres, and data from this experiment are being used to place constraints on the size of the lunar core.
The European spacecraft Smart 1, the second ion-propelled spacecraft, was in lunar orbit from 15 November 2004 until its lunar impact on 3 September 2006, and made the first detailed survey of chemical elements on the lunar surface. China has expressed ambitious plans for exploring the Moon, and successfully orbited its first spacecraft, Chang'e-1, from 5 November 2007 until its controlled lunar impact on 1 March 2008. In its sixteen-month mission, it obtained a full image map of the Moon. Between 4 October 2007 and 10 June 2009, the Japan Aerospace Exploration Agency's Kaguya (Selene) mission, a lunar orbiter fitted with a high-definition video camera, and two small radio-transmitter satellites, obtained lunar geophysics data and took the first high-definition movies from beyond Earth orbit. India's first lunar mission, Chandrayaan I, orbited from 8 November 2008 until loss of contact on 27 August 2009, creating a high resolution chemical, mineralogical and photo-geological map of the lunar surface, and confirming the presence of water molecules in lunar soil. The Indian Space Research Organisation plans to launch Chandrayaan II in 2013, which is slated to include a Russian robotic lunar rover. The U.S. co-launched the Lunar Reconnaissance Orbiter (LRO) and the LCROSS impactor and follow-up observation orbiter on 18 June 2009; LCROSS completed its mission by making a planned and widely observed impact in the crater Cabeus on 9 October 2009, while LRO is currently in operation, obtaining precise lunar altimetry and high-resolution imagery.
Other upcoming lunar missions include Russia's Luna-Glob: an unmanned lander, set of seismometers, and an orbiter based on its Martian Phobos-Grunt mission, which is slated to launch in 2012. Privately funded lunar exploration has been promoted by the Google Lunar X Prize, announced 13 September 2007, which offers US$20 million to anyone who can land a robotic rover on the Moon and meet other specified criteria.
NASA began to plan to resume manned missions following the call by U.S. President George W. Bush on 14 January 2004 for a mission to the Moon by 2020. The Constellation program was funded and construction and testing begun on a manned spacecraft and launch vehicle, and design studies for a lunar base. However, that program has been placed in jeopardy by the proposed 2011 budget, which will cancel Constellation in favour of NASA pursuing space technology and heavy-lift rocketry research. India has also expressed its hope for its first ever manned mission to the Moon by 2020.
The Moon has been the subject of many works of art and literature and the inspiration for countless others. It is a motif in the visual arts, the performing arts, poetry, prose and music. A 5,000-year-old rock carving at Knowth, Ireland, may represent the Moon, which would be the earliest depiction discovered. In many prehistoric and ancient cultures, the Moon was personified as a deity or other supernatural phenomenon, and astrological views of the Moon continue to be propagated today. The contrast between the brighter highlands and darker maria create the patterns seen by different cultures as the Man in the Moon, the rabbit and the buffalo, among others. The Moon has a long association with insanity and irrationality; the words lunacy and loony are derived from the Latin name for the Moon, Luna. Philosophers such as Aristotle and Pliny the Elder argued that the full Moon induced insanity in susceptible individuals, believing that the brain, which is mostly water, must be affected by the Moon and its power over the tides, but the Moon's gravity is too slight to affect any single person. Even today, people insist that admissions to psychiatric hospitals, traffic accidents, homicides or suicides increase during a full Moon, although there is no scientific evidence to support such claims.
;Cartographic resources
;Observation tools See when the next new crescent moon is visible for any location.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.