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Introduction and Extended Abstract

Our objective is to study the moduli space Y = y(mn) of n-point configurations in the
m — 1 dimensional projective space P™-!. (We're working over a fixed field of characteristic
zero, which shall remain unmentioned almost always, except when it is essential to refer
to it). This means, Y is the geometric quotient of the n'® cartesian power of  ©ouiml ),
the (diagonal action of the) automorphism group PGL,, of the projective space; since the
problém is ‘trivial’ when n < m, we assume throughout that n > m. This is a special
case of an ancient problem (cf. Coble [Co]) wherein one further attaches to each of the n
points some given multiplicities (lately such ‘multiple points’ have been called “fat points”
in literature, — cf. Geramita [Ge] and Harbourne [Ha]). However, we shall see that the
sort of most ‘elementary’ information that we seek (in our “particular case”) along group-
theoretic, or rather invariant-theoretic lines, already involves difficulties that seem almost
insurmountable in the generality that is inherent in our problem, and very little existing
information in contemporary literature seems to be helpful; a notable exception is (some
initial sections in) a modern update of Coble’s work by Dolgachev and Ortland [DO] (that
we shall return to in course of the paper). These difficulties are basically of a combinatorial
nature, and we describe below our partial success in overcoming those for the m = 2 case. In
the course of our paper the reader shall encounter the sort of complications we’ve just hinted,
which may account for the neglect this problem has received (along the natural directions of
interest to us).

The algebraic description of the space Y is in terms of a certain ring @ of invariants,
inside the polynomial ring S in the set of nm variables X;;; this set of (commuting) variables
is identified with the entries of the generic matrix X = [X;;] having n rows and m columns,
so that the set of row-vectors in X provide us with the “generic n-point configuration”). To
define Q we first consider the graded subring R of S generated by the maximal minors (i.e.
by the determinants of the m x m submatrices) of X: To fix notations (that matter a lot in
this problem) once and for all, for an m-subset

I= <‘i1,i2,"',im >
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of the ‘row-index set’ [1, 7], let us denote by &; the corresponding maximal minor, where we
invariably view I as.a column-vector (this by itself is.perhaps the most important innovation
of this author, that is fundamental to our approach to the so-called “Young tableauz” theory
one needs to crucially rely upon); we shall treat these generators

{ & | terms of I in strictly increasing order }

as elements of the first degree in the grading of R, so that the d'™ degree homogeneous
component R4 of R is spanned by’ the d-fold products & := &;,.&,.---.&;, for I running
over d-tuples < I},I,,---,I4 >. Leaving apart a discussion of the internal structure and
significance of R (to which we do return soon), we may define now the graded ring @ as
consisting of all invariants in R under the ‘maximal torus’ Diag, N SL, of SL, (for the
natural action of GL, on R). Thus Q N Ry is precisely the zero-weightspace of the GL,-
module R4 (the latter is known to be irreducible, obviously of highest weight d times the
m'™ fundamental weight). [A direct and more elementary description of @ is the span of
those ‘monomials’ & (for I as above) for which each row-index between 1 to n occurs equally
often (amidst the multiset of all indices in the various columns of I).] In order that this
intersection be nonzero md should be precisely a (nonnegative) multiple of n, which is.the

same as d being a multiple of n" where n’ = —"—. For this reason it is good to set the
g ged (myn)

kth homogeneous component Q. of @ as the above intersection QN Ry for d = k.n'; however,
let us hasten to warn the reader that in our bid to present our results for the m = 2 case,
we shall be modifying this convention — at formula (1) onwards (by replacing the index-set
for the homogeneous (nonzero) components of @ by the set of (non-negative) half-integers -
instead of integers).

It is not hard to identify R with the homogeneous coordinate ring of the grassman-
nian Grass,,(n) of all m-dimensional subspaces of an n-dimensional vectorspace V', for its
canonical embedding in the projective space associated to the m'™ exterior power of V; this
rests on the observation that R is just the subring of invariants in S for the natural action
of SL,, (coming from the canonical action of GL,, on the span of the entries of X, viz. on
the degree 1 component of S). Then one is left with the natural action of GL,, on (each
homogeneous component of) R, and (as said above) each of these component GL,-modules
is irreducible. One knows that R is generated by its degree 1 component R;, subject only
to a well-known set of quadratic relations, originally due to Pliicker from the later decades
of the last century; these identities amount to a family of determinantal identities (discov-
ered by Sylvester) that are fundamental to this work (as well as in the general ‘tableaux
theory’ fleetingly mentioned below in this Abstract). One also has some neat formulae for
the dimensions of the various components Ry; apart from the formula of Weyl (available
for all irreducible representations), one has a lesser known formula of Philip Hall (for the
GL,-irreps, which has sometimes been attributed in literature to R. Stanley) from which the
dependence of dimR, as a function of the 3 parameters n, m,d becomes more transparent;
besides these there also exists a recasting by this author (in an unpublished privately an-
nounced work from 1993) which expresses the requisite dimension function as a ‘higher beta
function’ (a function of 3 variables), which readily impies a seemingly miraculous symmetry

- for the dimension function when recast as a function of 3 arguments m,n — m,d (asserting
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full symmetry for these 3 arguments). At any rate, it is safe to say that the structure of
the graded ring R is well-understood. By contrast, relatively very little is known about the
structure of the zero-weight ring Q (the sum of zero-weghtspaces from R). The first no-
table departure is the fact that (unlike R) @ is not always generated by the its lowest positive
degree component; our success in certain computations that we report below indicates that
this ‘pathology’ may never arise for m=2, but certainly (m,n) = (3,6) provides a low case
for this phenomenon). This (and many other rather ill-understood) ring-theoretic features
of @ account for the complications in the geometry of ¥ and its mysterious singularities;
one should note that thus the natural geometric embedding of Y that arises from Q is only
in a ‘weighted projective space’ which already acquires singularities from the natural cyclic
group actions.

There is another twist to viewing the components Qi of the ring Q, related to what
is sometimes called ‘noncommutative Invariant Theory’ (say as in the paper of Almkvist,
Dicks and Formanek [ADF]). It is captured by the following:

PROPOSITION: The space Qy is identifiable with the space of SL,,-invariants in the GL,,,-
module ®"(Sym*(nat,,)), where nat,,)) stands for the m-dimensional ‘birth-certificate’ rep-
resentation of GL,,, and Sym* (resp., ®") stands for the process of taking the k'* symmetric
power (resp., that of taking the n'" tensor power) of any given vectorspace. Further, this
identification respects the canonical action of the symmetric group S,, available in both cases.

Note that the said SL,, invariants in the tensor-space above, are nonzero if and only if m
divides nk, which is precisely the earlier condition we had for Q to be nonzero (emanating
from md = kn before).

This result ‘explains’ the nature of difficulties in our problem, viz. as coming from the
tough challenge offerred by the demands of the ‘noncommutative Invariant Theory’ — which
one may “define” (in a limited sense) as an investigation of SL,,-invariants in the tensar
algebra of the space of homogeneous forms (of given degree) in m (commuting) variables
(in analogy with the Classical 19*"-century Invariant Theory). For the tensors in m = 2
variables (i.e. for forms of degree 1) this was done in an expository and exploratory work of
this author [Ve] in 1982, which implies that dim @Q, (which is nonzero just when n is even)

equals the s'® Catalan number ﬁ(i‘) for n = 2s; and the analogous numerology for the
next case is given in [ADF] that gives the value of dim Q}, for (m = 2 and) k' = ged(2,n)
as given by the socalled ‘Motzkin sums’ (cf. [DS], which we discovered via entry # M2587

in [SP]):

n|o0

1 i [aR 0 I 11 w12 13 14
dim Qi |1 0

20384 95

1 1 3 6 15 36 91 232 603 1585 4213 11298 30537
However, it is quite hard to proceed further along these lines; but a different approach works
below (for the m = 2 case).

Our view in this study is mostly on understanding the combinatorics of the graded ring
Q, for which even an explicit clean and closed formula for the dimension N of Q; is lacking.



From general considerations it is clear that the N,'s form a family of Kostka numbers; more
precisely, if A (resp., 1) denotes the rectangular partition (i.e. a partition all whose (nonzero)
‘parts’ are equal) having m rows (resp., n rows) such that they have both equal and minimal
sizes (which forces A to have n’ columns, and u to have m’ columns, with n’ as defined
earlier and m' defined similarly to mean m), then N counts the number of (what we
call) ‘standard semi-tableaux’ (SST’s in short, that have often been called semi-standard
tableaux in literature) of shape k.A and content k.u (where to multiply a partition by an
integer k means replacing each ‘part’ by the same multiple). In this way we are able to define
a certain d-dimensional polytope P = P™" from which the entire sequence of numbers N; is
obtainable, where d is the number of ‘degrees of freedom’ one has in counting the said SST's:
it is not hard to argue that (cf. [DO]) d = (m — 1)(n — m — 1). [This method of calculating
Kostka numbers, i.e. of counting the number of SST’s for any given shape and content,
appears already in [DO], from which our interpretation of any Kostka number as the number
of integer points in a certain polytope follows transparently; however, this observation does
not seem to appear in the literature explicitly]. More precisely, P is naturally embedded in
R? (and is determined by explicitly known faces) such that Ny precisely equals the number
of integer points in k.P (the ‘dilatation’ of P by the factor k), or what is the same thing it
counts the number of rational points in P with denominator (a submultiple of) k. From the
‘Ehrhardt theory’ (cf. [St] or [Hi]) one knows then that the arithmetic function k ~» Nj is a
quasi-polynomial. However, we know (as is to be seen below in detail) that these functions
(one for each pair of values of (m,n)) are indeed polynomials when m = 2, and strongly
suspect that our underlying argument should carry over for all m. One also knows (4 priori)
that the degree of the polynomial must be d = (m — 1)(n — m — 1)); more precisely, one
knows the ‘leading term estimate’ for this function (from [DO] initially), that the value of
N is asymptotic to k¢ times the volume of the polytope P. While we report below, our
further progress mostly for the m = 2 case, let us mention here that we're unable to find a
suficiently closed formula even for the volume of P (our implicit formula for m = 2 below is
in the form of an alternating sum which we’ve been unable to simplify yet).

We have found it possible to supply a closed (albeit slightly cumbersome) formula
only for the m = 2 case (this was obtained jointly with S. R. Ghorpade of L.I.T. Bombay).
To state the result, we need to slightly modify our notation in the (present) m = 2 case, so
that our formulae become independent of the dichotomy of the 2 values of ged(m, n), i.e. do
not need distinction between the 2 cases of even and odd values of n. Thus, we make the
convention of grading the ring @ by (non-negative) half-integers in case n is even; with this
convention, the Ghorpade formula reads:

Lind . (n n—2)k+n—-353-2

we AR OQEETY)
where the ' in the sum means that j is to run only from 0 to n, where n, stands for
["—2—" |. It should be noted that each term in this sum is a polynomial in k of degree d =
(m—=1)(n—=m—1) =n -3 (remember m = 2); it is highly desirable to recast this sum in a
simpler form, which avoids lots of ‘cancellation of terms’ that is implicit in the formula.

At least for successive low values of n (with m = 2) this enables us express the Hilbert
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series of Q as a nice rational function which sheds a good deal of light on the structure of Q.
More precisely, let us write G,, for the generating function ¥z dimQ;.¢*, remembering that
by the ‘half-integer’ convention for k introduced above this misses from being the full GF
(= generating function) of @ when n is even (in that case only alternate terms are present
in this GF); to repair that damage, it makes sense to define the ‘full GF’ G (this notation
defined only for the n even case) to be the sum ¥, iz dimQy.¢**. [It may be noted that

the two GF’s, for n even, determine each other in a somewhat complicated manner.] Then
we have

s -

Vn S Vy
— -(T)J_H, and Gn - m,

where the ‘numerator’ v, (respectively, i, is a polynomial in g of degree (exactly) d (resp.
d — 1); we list them now:

G

vy = 1
Vy = 1+q
Vg = l+3q+q2

ve = 14+11g+11¢°+¢°

1+ 31¢g + 90> + 31¢* + ¢*

Vs 1+ 85¢ + 544(q° + ¢°) + 85¢* + ¢°

ve = 1+ 225(q+ ¢°) +2997(¢*> + ¢*) + 6559¢°, etc.;

vy

and

7 =1

s = l+q+¢°

s = 1+ 8¢+ 22¢°+8¢* +¢*

o = 1+ 34q + 295¢* + 565¢° + 295¢* + 34¢° + ¢°, etc.

It is very interesting to ponder on these tabulations, both for the numerology, and the
theoretical implications/suggestions contained therein. We do so under the following 2 heads
separately:

REMARK 1: These two tabulations are clearly equivalent to two ‘arrays’ (= bisequences,
or infinite matrices — which happen to be row-finite) of integers, which is obtained by listing
coefficients of various powers of ¢ in successive g-polynomials v, (and i7,) as entries of the n'"
row of the array. By looking at various columns one gets infinitely many interesting ‘integer
sequences’, and it is curious to note that none of the sequences we find in this manner seems
to have appeared in the existing literature. (One may take their absence in the famous
compendium [SP] of N. J. A. Sloane, as a safe proof of this assertion.) Further, it is good
to know that the sums of coefficients in each v, (as also in #,) — let’s call them o(n) (resp.
a(n)) possesses a nice conceptual interpretation: viz., the volume of the polytope P = P™"
(for m = 2) equals precisely v(n)/d! for odd n and #(n)/d! for even n (and the meaning of
v(n)/d! for even n is that it equals 2¢ x (n)/d!, i.e. is the volume of 2.P). Thus, we find
- that our combinatorics of determining the Hilbert function ‘numerators’ v, and 7, amounts
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to certain canonical g-refinements of these two crucial integer sequences (of which the latter
& is gotten form the former o by dividing alternate terms by successive odd powers of 2); let
us now look at a listing of the two integer sequences to larger range:

B |3, 44 D=0 7 8 9 10 11 12 13
on) |1 2 5 24 154 1280 13005 156800 2189725 34793472 620169186
a(n/2) 1 3 : 40 : 1225 4 67956

The next 5 values are given by .

7(14) = 5986134, 0o(15) = 266267950740, #(16) = 25.3.11.13.29.1933,
o(17) = 3.11.13.17.31.7129.100279, 7(18) = 3%.11.13.127.277663 .

As the reader may suspect, we tried to look at the prime factorization for the numbers
involved, only to see little pattern; except that by and large the largest prime factor is much
larger than the second-largest (we found a near-exception to this in »(21) for which the 2 top
primes are 4593569 and 9595199) and ‘repeated primes’ appear only for very small primes.
(Thus no o(n) for n < 25 is divisible by p? for a prime p > 17 and the top primes for
n = 23 and 25 are both 18-digits long.) .

REMARK 2: The apparent ‘symmetry’ in the 2 sets of polynomials (v and 7 above) is related,
of course, to the celebrated result of Hochster causing the ring R be Gorenstein (hence also
Cohen-Macaulay); that is so, because the 2-step process of taking invariants in S to get Q
(via R) can be cut short to identify Q directly as a suitable invariant subring of S under a
reductive algebraic group (viz. invariants under the joint action of two groups PGL,, and
the diagonal torus in SL,, noting that the two actions commute). Now it seems reasonable
to expect, in the present case of m = 2, that a ‘good’ s.0.p. (system of parameters, in the
standard sense of Commutative Algebra, cf. Stanley [St’]) for Q is furnished by picking a
suitable subset of a basis for the ‘first’ component (@, for odd n and Qrac12 for even n - this
uneasy distinction being due to our clumsy convention for better maneuvring elsewhere); and
if ' is the subring generated by our s.0.p. one expects also the finite free-module structure
of Q over Q' is read out precisely by the g-series v, (for odd n) or by &, (for even n).

While we have little to add in general (even towards the limited combinatorial objec-
tive like that for m = 2) for higher m, the case (m,n) = (3,6) deserves special commentary.
[The case (3,5) needs little commentary in view of the general observation that our problem,
for any given (m,n) (satisfying n > m), is symmetric in m and n — m; thus, ‘classifying’ 5
points in P! is the ‘same’ as doing that in P2 - which may look mysterious to the uninitiated
(cf. [DO]). Actually this duality is a ready consequence of the easy symmetry satisfied by
Grass,,(n) (under the exchange of m and n — m).] We find the GF for the Hilbert series of
Q given by

149 o0 1-¢*
(1-9f = (1-9°.(1-¢%)
This has profound implications already: Let us first note that on each component of Q@ =
Q™" (for arbitrary m,n) the symmetric group S, possesses a natural action, and @ is the
5-dimensional irreducible Sg-module corresponding to the partition A =< 2,2,2 >. [It is one




of those rare instances of an irreducible module M for the group W = S,,, which is not the
so-called natural or reflection representation of W (viz. that corresponding to the partition
<n—1, 1>) and yet the invariants for W in the algebra Sym®(M) is again a polynomial
algebra; this is because of the existence of an outer automorphism of W that conjugates the
representation at hand with the said reflection module, but one needs to verify this with the
character table (and the known action of the said exotic automorphism on the conjugacy
classes).] Then @ is a rank-2 free-module over the subalgebra Q' generated by @;, with
a patently nice (and rather canonical) basis {1, A}, where A is a very special element of
Q. which is the difference of two terms & and & coming from the two unique SST’s of
shape < 4,4,4 > (out of a total of 16 ( = dim Q,) SST’s of that shape) which do not lie
individually in Q, (but their sum does); then the square of A lies in Q' in accordance with
the GF obtained above; and besides A possesses another distinguishing feature, by way of
a very fundamental and simple geometric property — viz. its vanishing is a necessary and
sufficient condition for the 6 points (in our space of 6-point configurations inside P?) to lie
on a conic!

Thus, while we're unable to say very much on the geometry of Y, it seems we're able
to make a beginning at least, by unraveling some of the ring-theoretic mysteries of @ and
the associated combinatorics built into the problem.
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