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On three-dimensional rotational averages
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In theories which describe the response of freely rotating molecules to externally imposed stimuli it is
frequently necessary to average rotationally a product of direction cosines relating space-fixed and

molecular coordinate frames. In this paper a systematic method for deriving the required tensor averages
is presented, and results up to the seventh rank are explicitly shown. Where appropriate both reclucible
and irreducible expressions are given and their equivalence is demonstrated. Finally, some useful identities

relating rotational averages of different ranks are noted.

I. INTRODUCTION

In the study of several physical processes such as the
interaction of radiation with matter, experiments are
frequently performed upon matter in a fluid phase. In
order to relate the results of such experiments with the-
ory, it is necessary to take random orientation of the
molecules into account when deriving expressions for ob-
servables. This is usually accomplished by deriving the
relevant result for a system with fixed orientation and
then performing a rotational average. In general, the
first step leads to an expression for an observable T of
the form

T=A;, .. )

where P;,...; is the tensor associated with the response
of a molecule to external conditions represented by
Ai...i,» For example, in a dipole-allowed one-photon
absorption calculation where T refers to the transition
rate, A and P are second rank tensors related to the po-
larization of the radiation and the square of the transi-
tion moment, respectively. The tensor components of
A and P in Eq. (1) are specified with respect to a com-
mon frame, say a space-fixed frame. This frame is
usually chosen so that the components of the tensor A
can be expressed in a simple manner. For a randomly
oriented system it is convenient to re-express the com-
ponents of the molecular property tensor P with respect
to a molecule-fixed frame through the relation

i R

(2)

where [;,,, refers to the direction cosine of the angle be-
tween the space-fixed and molecule-fixed axes i, and ),.
The problem of obtaining the rotationally averaged result
for T then reduces to that of finding the rotational aver-
age of the direction cosine product Zm1 eoelyn,. For
this purpose it is convenient to specify the direction co-
sines in Eq. (2) in terms of Euler angles, so that Ui,
refers to the (7,,1,) element of the Euler angle matrix, !
Denoting the rotational average of [; ol by

(n)
L i - We have

S T T SO

n

LS Tl indn

1 2r 2r ;

B aps o, = —B—ﬂ—gfo fo } Lip "+ Lip,5iné do d6 dy,
(3)

where ¢, 6, and ¥ are the Euler angles relating the

space-fixed and molecule-fixed frames. For low values

of n these averages are easily worked out and are well

known; recent applications include studies on higher

multipole contributions to circular dichroism? and opti-
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cal rotation.® Results for high n, however, are in-
creasingly in demand for use in the theory of nonlinear
optical processes. For example, the lowest order cal-
culation on the hyper-Raman effect, which is a three-
photon process, calls for the sixth rank average, ‘® Cal-
culations® on the differential hyper-Raman scattering by
optically active molecules require rotational averages
for even higher n. The trigonometric averaging pro-
cedure, though simple to use for low n, can be tedious
for high n because a large number of integrals have to be
evaluated. It is further complicated by the problem of
reducibility, since for high » the tensor components are,
in general, linearly dependent. Hence, a straightforward
application of the trigonometric procedure to such cases
does not lead to unique expressions for the averages.

In this paper we present a systematic method of cal-
culating I'” which does not rely on the explicit integra-
tion of Eq. (3). Results up to z=7 are given, and the
relationship between the so-called reducible and irre-
ducible forms are discussed. Finally, we note a few
useful identities relating the rotational averages of dif-
ferent ranks.

Il. METHOD

Since I{7)..; 1, .-, iS rotationally invariant, it is pos-
sible to express it as a linear combination of isotropic
tensors. According to an important theorem of Weyl’
(see also Jeffreys®), each member of the sum is a prod-
uct of two isotropic tensors—one with Latin suffices and
the other with Greek suffices. An important feature of
these products is that the Latin and Greek indices do not
mix. For even n these isotropic tensors are products of
n/2 Kronecker deltas such as Biyige ** Oip g1, fOr 0dd n
they are products of one Levi-Civita antisymmetric ten-
sor and (- 3)/2 Kronecker deltas as for example
€ 110i50iq1g® °° Digejine LB each case isomers of these ten-
sors may be formed by permutation of the indices ;- -
and the total number of isomers is given by

-2

n! )
IV,,: 2_"/2(}1/—2)! (il eVen) (
nl s (4)
= 2@ D72, _3)/2)1 (n odd) | IR

Let us denote the »th member of the set of isomers in
the space-fixed frame by f*, and the corresponding

isomer in the molecular frame by g{”. We have sup-
pressed the tensor indices for convenience, I7)

T T

Copyright © 1977 American Institute of Physics



ﬂggq 87?’ Andrews and Thirunamachandran: Three-dimensional rotational averages 5027

TABLE I. The number of isotropic tensor isomers N, and and this may be done using Smith’s standard tableau
the size @, of the linearly independent basis set for rank z. method'® as outlined in the next section. The reader is .
referred to Ref. 10 for details.
n FR ] 4 5 6 i 8 9 10
N 4R 3 30 150 )05 | 1060 1260 945
A AR 15 36 91 232 603 Illl. SMITH’S METHOD OF BASIS SET ENUMERATION

E Qn - - =g -
We first define a partition of » as a sequence of posi-

ﬁ\‘j@l@ tive integers (#yn, - - n,) whose sum is n, with n, = n,..-

is then a linear combination of the productsfﬁ")gs‘"’: 2n,.. Corresponding to each partition we construct a
frame of n squares in rows and columns, with », squares

™= Z mtn)f!n)gfrr! . (5) in row 7 the first elements of each row lying directly un-
ras der one another. The partition (42) of n=6, for ex-

ample, corresponds to the frame shown in Fig. 1(a).

By entering the index numbers 1 to » in such a way that

they increase in every row from left to right, and in

The problem thus reduces to finding the numerical coef-
ficients m[)

Using the well-known relationships every column reading downwards, we obtain what is
5 (6) termed a standard tableau; there are usually a number
Oigighipylign, = Oapny s Eyas e I i )
172 21t of these with different index ordering for each frame,
(7 For a given »n, it is in general possible to construct

€ i lindiplia, =6, s
ettt g sty ety several frames; however, as Smith has shown, only

certain frames can be used in the construction of the

we write down the general equation : i ;
basis set. For convenience we discuss the even and

TPl o by =8 . (8) odd rank cases separately.,
A rotational average of Eq. (8) leads directly to Even vank. The construction of frames for even # is
ol B governed by two rules. First, the number of rows can-
c LS (9 not exceed the dimensionality of the tensor, which in
Combining Egs. (5) and (9) and multiplying by g w our case is three. Secondly, the frame columns must
have be in pairs with the two members of each pair having the
same length, i.e., the same number of squares (see
eréﬂ{frfﬂ* gitloiigin _gé")gz(") . (10) Fig. 2). The construction of standard tableaus from
ris these frames is straightforward. With each pair of
columns of a standard tableau is then associated a gen-
Let us denote the index-contracted product of two iso- eralized Kronecker deltal? ‘)
mers £ and £ by s, Then,
fimpin = gl g s (11) Bigiy*** Bi gy
Sla’ la=) ) (14)
and Eq. (10) yields the important result P .
M® = (™)1 (12) Bsgiy = ** Bigg
Here, M™ is the square matrix with elements m and where « to B are the successive entries down one col-
8™ is the square matrix with elements s Equatlon umn and y to § those down the other. For example, the
(12) holds provided the inverse of 8 exists. In order standard tableau shown in Fig. 1(b) is associated with the
to employ this method to find /™, it is therefore clearly  tensor 51“55‘3 Oiyip0i5160 4514 = O4yighipisOigi,- Itisusefulto
essential to use complete and linearly independent note that ea.chtype of frame used in constructing standard
basis sets of the isotropic tensors £ and g, By a tableaus is associated with a different representation, !*
simple group theoretical argument® it is easily shown and the restrictions upon the types of frame permitted
that the number of linearly independent tensor isomers here limit the number of different types to p(n/2, 3),
of rank » is given by which is the number of partitions of #/2 into at most
- three parts,!® The total number of standard tableaus
/ b alBr—na 1) % obtainable from these frames is precisely ®@, and the
@n= = (=211 0+ 11 e i (13) tensors they represent, or suitable linear combinations
e

M— S —

i where » assumes the value n/2 if # is even, and (n- 1)/24\-\“

if % is odd, “For n=2 to 10 the number of } isomers N, and

the size @, of the linearly independent set are tabulated

in Table I. From this table it is clear that for even 15 l 1{2]3 ‘ 4 |

n<6 or for odd n <3 the full set of isotropic tensor iso- 5|6

mers are linearly independent and therefore form a

suitable basis set. However, for even n>6 or odd n> 3 (a) (b) .J

the full set is overcomplete. We therefore need to select FIG. 1. (a) A typical frame, and (b) a typical standard tableau
a complete and linearly independent subset for our basis, of rank 6,
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FIG. 2. Frames for tensors of rank z.

L‘ of these tensors, constitute a complete and linearly in-
dependent set.

0dd vank. For odd n we have an additional rule that
the first column must contain three squares. The con-
struction of the rest of the frame with {z— 3) squares is
subject to the same rules as for the even n case dis-
cussed above, For example, when n=7 we have two pos-
sible frames (see Fig. 2). The first column of a stan-
dard tableau for odd n represents the antisymmetric ten-
SOT €; i gi, where a, B, and y are the entries in this
column, and the remaining pairs of columns are inter-
preted as generalized Kronecker deltas. The restric-
tions limit the number of permitted frames to p[ (- 3)/
2, 3], and the standard tableaus again represent a com-
plete set of @, linearly independent isotropic tensors.

Having outlined the procedure for determining suitable
basis sets for construction of $ and use in the matrix
inversion method to find 3™, we now explicitly evaluate
the rotational averages for ranks n=2 to 7; for conve-
nience, we again discuss the even and odd rank cases
separately.

IV. ROTATIONAL AVERAGES OF EVEN RANK

A. n=2

There is only one isotropic tensor of rank 2, namely,

] Therefore,

ipip*
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TABLE II. The isotropic tensor isomers of rank 6.

e fr(s) ” f'(G) ¥ fr(E}

1 Biyiy0igigOigiy 6 OingOigighigiy 11 04ipBigy, Gty

2 b5y 0ugi Oigig T 0;1y Otgig Oigiy 12 01115 0140, Oigiy

8 BigiyOigigOigiy 8 6,'1.-46;2;56:3%' 13 01 i g Oiglg Giyig

4 OuyigbugiyOigig 9 OGipiyOigigligis 1% igigiyi, Ougig

5 B4y 0igig0iysy 10 0;4i50igig Oigiy 19 8i4i g Oiyig Oigiy

gl =g, 8 (15)

1ialigip = %

which, together with Egs. (5) and (12), leads directly to
the well-known result

(2) =L
Iiliz;llkz I 36i1izéhlkz

(16)

B. n=4

The three independent isotropic tensors of rank 4 are

=05

1i2” i3y

a7

) _ 5

2 o

i)igigly

3 =84,1,0

114" ialg

Using them we find

9 3 3
g¥=[ 3 98 B (18)
=T Lk ()

hence

@
i1igigigitrorahy

0,i,0 T /o4 Sie=1

i3i4 6*1*2 5x3)\4

1
=== 5

30| Otigdiy =1 4

1214 _1
-1 4

6)« 1*3 51214 L

0111404514 -1 Oayag Oaphg

(19)

where T denotes transpose. This result has previously
been obtained in a similar form by Keilich, * Monson and
McClain, '* and Power and Thirunamachandran.

C. n=6

There are 15 tensor isomers for this case, as shown
in Table II, and these form a linearly independent set.
The matrix 8® may be constructed in the usual way,
and the inverse gives
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The result for I'® now follows from Eq. (5), and in this
form it has also been obtained by Kielich, * McClain, §
and Healy.?

We conclude this section by noting that in the results
discussed above, the number of independent coefficients
in the matrices M™ in each case equals the number of
permitted frames. This result is in general only appli-
cable if the full set of tensor isomers is used for the
basis.

V. ROTATIONAL AVERAGES OF ODD RANK
A. n=3

As for n=2, there is just one isotropic tensor of rank
3, namely, the Levi-Civita antisymmetric tensor

€iyigiye Thus,
§® €iyinig€iyiniy =6 21)
and
Litatanpars =F €ty - (22)
J
r€i1i2i35i4i5~ B s g -4 3. 4
€iyinig Oigig —% Bl =1 @
!i'{flagiai‘ijs;llazlaalﬂs = 3i0 €iyipig Oigiy -1 -1 e =
€irigig Oigis WS I S |
€iyigi5 Oigiy 1 P =g o Leby 3
__6;’114;‘5 6i2i3J | 0 14 =2 1 =1

This result is, however, also expressible in terms of
the overcomplete set of N, tensor isomers. We shall
refer to such results as reducible, to distinguish them

5029

IR R A
el s e
RS S B
SETE R IS
i SRS S
I T S S
s S TN
“F T 3.3 26}
ey [
Sl AR g g
Wn=a. X< 3
=3 7" VIR R
S
= MR R
2 -5 -5 -5 18|
|
B =5

This is the first instance where we have to choose a
linearly independent subset from the full isomer set, as
Q. < N, (see Table I). For n=5 there is only one allowed.
frame, corresponding to the partition (311), from which
six standard tableaus may be constructed, They corre-
spond to the tensors

Wi e 5

i1igig-igis
(5): T Py
fz €i11214613t5
3.
oyl 61112i561314 (
(5)—'6- A 23)
 BALh tyigigVigis
(5 _
b S I ECTI
+(5) _
Jo' = €410,

Using this basis set we find the following result for o
in agreement with Kielich'®:

0 €
Aphodg 61415

1 €xpipry 6,‘315

=1 Erpang Orgny (24)
1 €rprghy 6)‘2,‘5

-1

Epgrs 6,‘»4

i

| Ex10435 Ox 0y J

l
from the irreducible type involving only the €, isomers.
We shall also denote the tensors and matrices associ-

ated with such reducible results with primes henceforth,

J. Chem. Phys., Vol. 67, No. 11, 1 December 1977
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, For the fifth rank case the full set of ten tensor isomers i b T S ok (26)
(5) 2isisiriy =
consists of the six given in Eq. (23), with f/©*’ read as vy © _ 50, 9

L% and the four listed below, each of which is expres- fo = €igigigigiy=S2 s +fe 27)
~ible in terms of the original six tensors as shown: Tise= €igigisDiyip = is' _I;S‘ +_fé51 v (28)

- = 11’
,m L 5 7 s (@5) We can nc‘)w deduce' frm‘:}ﬂsymmetry (%onsu'ieratmns that

ipiglyYiyis =/1 the reducible matrix M can be written in the form

|

& by b = =8 L8 D i a9
b a b b 0 -b =b 0 b 0
b b g 0 b b 0 -=b-b 0

el A M g kel G4 1@ HIONESNH
MG - =g GO sk BE B 00 Ol (29)
Q=0 & -5 & a 6 0 b b
§=b @ b O 0 & b =58 "0
B4 A =il a0 B B gL Be=h

(RS Cry - AR TS« e - . R AR, S
0 D F tg=% b W—=>bb @ 1a@ §

where @ and b are undetermined coefficients. Explicit integration of Eq. (3) yields just one equation relating ¢ and
b, namely,

a+2b=1/30. (30)

This agrees with the observation that as the full set of tensor isomers is used, the number of independent coeffi-

cients must equal the number of allowed frames for n=5, i.e., one. The overcompleteness of the basis set pre-

~ludes unique solutions, and any pair of values satisfying Eq. (30) can be used to express I¥',  One such
C‘iir, a=1/30, =0, leads to the following particularly simple form?®:

(5) oy
el S R AP T - EE T« e gl e .-
Tijtpigigisnppags 30(6!112136‘4'56*1*2136*&5 €iintyOigis€apan Ongng ¥ €iyigiglini S pagdipndt €131 8051560003, 005

+ €i1izig0igig EanagnsOngng + €iigisOiats@apnansOrong ¥ €inigiglirisOrmangOaps + €igigisisiy Qmarsdapy

+ €igt4i 501y igErprgrsOrphg T EigigigdiyinEagrgrsOipng) - (31)
To demonstrate the equivalence'® of the irreducible form by writing down the standard tableaus corresponding to
(24) and the reducible form following from Eq. (29) we the frames {(331) and (511) shown in Fig. 2. These iso-
write mers are given in Table III. Construction of the matrix
i 8™ then leads directly to the result, Eq. (34), for M,
719 E} 5 and hence I” is obtained.
-
) (32)
g, = le sgfs’ TABLE IIl. The irreducible set of rank 7 isomers.
; ’ : * i i r £ r "
where the coefficients %, are easily obtained with the aid - -
i r . A 1 € i 61(‘511 13 € i1, Ou 4, Ot 25 € i, Bit, Big
of Eqs. (25)-(28). The reducible 10x 10 matrix M’® is 2% "t Ul : 37 "2 e
then related to the irreducible 6x6 matrix M'® through i . LR
g = 3 S 15 P 27 €1 1ty O1 00 1t
the equation T1dafg Pighy Clgly 1yfaly Oiglg Oty thaby gy Biyly
“ Lk 4 €iyigig Oty Oty 16 €iyigly Otai Oigiy 28 € yiges Biaty Sigty
P F =
M®™=H'M™H, (33) : €igigty Oigi Oty 17 €15t O114 Oigiy =) Eigtyts Oigly Bigty
where the matrix elements of the 10x6 matrix H are 6 iy Ougty Bigeg = E1yigiy Otaty Oigty =0 €t gty Siaty Bisty
h,. A straightforward multiplication shows that Eq. & €i ot Otyiy Oigiy 4 €iytgts Oaty Otgty o3 €ugtgty Biaty Sigts
(33) holds provided Eq. (30) is satisfied. 8 €iyigis Siyi; Oiyiy 20 €4 yigts 01t Oyt 32 €igd gty Otatg Oigiy
y i € yiais Oiyiz Ot 2 €i yigis Oigiy Orgig 3 €1yt yiy Oiat Bigts
‘ . =7 10 €4 yigig Oigiy O gty 22 €iyigig Oty Oigiy # €uyigiq Otaig Oigig
11 €iyigtg Digig Oigig 23 €1y3i Oigig Oigiq 35 €158y Oigiy Ouyig
i i i =1, it is pos- L . 5
Of the 105 isotropic tensor isomers for n="17, s po i3 Y 54 W 36 W

sible to choose a linearly independent set of 36 isomers
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. *Once again the result may be expressed in reducible

» form by adopting the overcomplete basis set comprising

the 105 isotropic tensor isomers. These may be grouped
into 35 sets of three, each set being associated with a
L:rticular epsilon; the three members of a given set dif-
r only in their pairing of indices in the Kronecker
deltas. The 35 epsilons are obtainable using the dic-
tionary order, i.e., €451, €ijigigr €ijigisye-- » FOT
each epsilon, three successive isomers of rank 7 are
obtained by multiplying by f{*, £, 7 of Eq. (17), re-
spectively, with the indices ¢,, i,, 45, 7, replaced by the
four unused indices in ascending order. For example,
the first three isomers are formed with the first ep-
silon and the unused indices 4, i5, 75, and i;; so we have

M _

- €11151301,i014i,
" _

J2 = € ipi00,0000, > o (35)
e

S = €api000,0,0000

The 105X 105 matrix M’ can now be written in block
diagonal form with one 3x 3 block for each epsilon, as
expressed by the direct product

MR el (36)

where E is the unit matrix of rank 35, and A is the 3x3
matrix

6 -1 -1
i
-1 6 -1 3

$13 (37)

A

) T | 6
g this form the seventh rank average result appears at-
tractively simple. However, it should be borne in mind
that in the application to a particular physical problem
the simplest result may follow from use of the irreduci-
ble form which involves a smaller number of basis ten-
sors. ' The equivalence of the reducible and irreducible
forms may be demonstrated in a manner analogous to
that described for 1®,

We conclude our discussion of the odd rank averages
by noting that the number of independent coefficients in
the reducible matrices M’™ is equal to the partition
plGn—3)/2, 3], which in turn equals the number of inde-
pendent coefficients for the average of even rank » - 3.
Moreover, there are N,_; isotropic tensor isomers of
rank »n for each of the epsilons, e.g., N,=3 isomers for
each of the 35 epsilons in the rank 7 case. Consequent-
ly, it is always possible to write a rotational average of
odd rank in a block diagonal form, where there is one
block for each epsilon and each block has the same set
of p[(n— 3)/2, 3] distinct coefficients. The reducible re-
sults given above for I and I'” are both in this diagonal
form.

VI. RELATIONS BETWEEN ROTATIONAL AVERAGES
OF DIFFERENT RANKS

We conclude with some useful identities involving the
relations between the rotational averages of different
ranks, First, using Eq. (6) we note that
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Em: s lin-z'\n-zl‘n-l'\n-llin‘\nﬁ{n-lfrtﬁ‘\n-lln: 3""1"1 i z‘n-z‘n-z p

(38)
which upon rotational averaging gives

I(-'l 2) : (39)

6% i rigagity A

1y(n)
31‘[ LS B 'Anain-lin

-llnz
Similarly, using Eq. (7), we can relate 1™ to 1" by

é_I(n? — 7in-3) ., (40)

i1 iniy R Elnoghnatin Dnenatin ~ Ly Tip-gid Ay

To relate I to I we start with the elementary rela-
tion

1 e
2lipoligng€igista€apang = lipy (41)

After multiplying both sides of this expression by a fur-
ther n - 2 direction cosines, rearranging indices, and
averaging, we find that

b

€

“ipegininslitl " Apegrndnet $inetinl pey et e

=137t (42)

B e ™
which in principle enables us to determine every rota-
tional average of rank lower than »n from the result for
I, It is important to note that the above expressions
involve index symmetry constraints, and hence they
cannot be used to generate higher order rotational aver-
ages from those already known. However, these identi-
ties do represent conditions which such results must ful-
fil, and this knowledge should prove useful in checking
new results.
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