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Abstract

A hex tree is an ordered tree of which each vertex has updegree 0, 1, or 2, and an
edge from a vertex of updegree 1 is either left, median, or right. We present a refined
enumeration of symmetric hex trees via a generalized binomial transform. It turns out
that the refinement has a natural combinatorial interpretation by means of supertrees.
We describe a bijection between symmetric hex trees and a certain class of supertrees.
Some algebraic properties of the polynomials obtained in this procedure are also studied.
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1 Introduction

An ordered tree is a rooted tree where the order of the subtrees at each vertex is significant.
The updegree of a vertex in an ordered tree is the number of edges incident with the vertex that
lead away from the root. A sequence A = (an)n≥0 of numbers defines a class TA of ordered
trees by assigning the weight an to each vertex of updegree n. A weight an = 0 means that
there are no vertices of updegree n. We call the generating function A(z) =

∑
n≥0 anz

n and
the ordered trees in TA a degree function and A-trees, respectively. As usual, the weight of
an A tree is the product of the weights of all edges. If T (z) =

∑
n≥0 tnz

n where tn is the sum
of the weights of A-trees with n edges, then T satisfies the functional equation

T = A ◦ (zT ). (1)

Many interesting classes of ordered trees are defined by degree functions with nonnegative
integer coefficients. For instance, the degree functions corresponding to the usual ordered
trees, k-ary trees, Motzkin trees, hex trees, Riordan trees, and Schröder trees are 1

1−z , 1+z
k,
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1 + z + z2, 1 + 3z + z2, 1
1−z − z, and 1+z

1−z respectively. The weight an is sometimes regarded
as the possible number of colors or types for the edges from a vertex of updegree n when
an ≥ 0.

A hex tree has been introduced by Balaban and Harary [1]. It depicts an edge-rooted
polyhex called a catafusene [5] in organic chemistry, where a hexagon and an edge shared
by two connected hexagons are represented by a vertex and an edge in the tree respectively.
Note that hexagons cannot share more than one edge. To be precise, a hex tree is an ordered
tree of which each vertex has the updegree 0, 1, or 2, and an edge from a vertex of updegree
1 is either left, median, or right; see Fig. 1.
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Figure 1. (a) All possible chemical bonds of two benzenoids; and (b) an edge-rooted catafusene with the
corresponding hex tree.

Harary and Read [9] derived the generating functions for the numbers of both rooted and
unrooted catafusenes. In particular, the generating function H =

∑
n≥0 hnz

n for the number
of hex trees with n edges is given by

H =
1− 3z −

√
1− 6z + 5z2

2z2
= 1 + 3z + 10z2 + 36z3 + 137z4 + · · · (A002212).

The label A002212 refers to that item in [13]. The generating function H can be expressed

as H = 1
1−z ·

(
C2 ◦ z

1−z

)
where C =

∑
n≥0Cnz

n = 1−√
1−4z
2z is the generating function for the

Catalan numbers. This implies that (hn)n≥0 is the binomial transform of the shifted Catalan
numbers i.e., hn =

∑n
j=0Cj+1

(
n
j

)
.

Cyvin et. al. [5, 6] presented explicit formulas for the number of certain unrooted poly-
hexes belonging to several different symmetries. We say that a hex tree is symmetric if it is
symmetrical with respect to the vertical line through the root. It is known that the num-
ber sn of symmetric hex trees with even (or odd) number of edges is equal to the binomial
transform of the Catalan numbers i.e., sn =

∑n
j=0Cj

(n
j

)
. Equivalently, if S =

∑
n≥0 snz

n,

S =
1

1− z
·
(
C ◦ z

1− z

)
= 1 + 2z + 5z2 + 15z3 + 51z4 + 188z5 + · · · (A007317). (2)

In the present paper, we enumerate the symmetric hex trees according to the number
of median edges by representing (2) as a matrix-vector equation and taking a power of the
Pascal matrix. The theory of the Riordan group simplifies computation in this procedure.
It turns out that the numbers obtained from the generalization can be interpreted in terms
of supertrees. A bijection between the symmetric hex trees and a certain class of supertrees
will be given. Further, we study some algebraic properties of polynomials that arise in the
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refined enumeration of symmetric hex trees. Specifically, we observe the generating functions,
explicit formulas, recurrence relations, and behavior of the zeros of the polynomials. In the
last section, we pose some open questions and give several conjectures.

2 The symmetric hex trees and the stem supertrees

The identity (2) can be expressed as the following matrix-vector equation involving the Pascal
matrix P : ⎡⎢⎢⎢⎢⎢⎢⎣

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

· · ·

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
5
14
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
5
15
51
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We consider a generalized binomial transform of the Catalan numbers by replacing P
with P x for an indeterminate x:⎡⎢⎢⎢⎢⎢⎢⎢⎣

p0(x)
p1(x)
p2(x)
p3(x)
p4(x)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
:=

⎡⎢⎢⎢⎢⎢⎢⎣

1
x 1
x2 2x 1
x3 3x2 3x 1
x4 4x3 6x2 4x 1

· · ·

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
5
14
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + x

2 + 2x+ x2

5 + 6x+ 3x2 + x3

14 + 20x+ 12x2 + 4x3 + x4

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

This gives the polynomials

pn(x) =
n∑

j=0

1

j + 1

(
2j

j

)(
n

j

)
xn−j (4)

of which the specialization when x = 1 counts the symmetric hex trees. As we shall see in
the next theorem, the coefficient matrix of (pn(x))n≥0 gives a refinement of symmetric hex
trees. [xj] denotes an operator that extracts the coefficient of xj.

Theorem 2.1 Let pn(x) be the polynomial defined by (4). Then [xj ]pn(x) counts the sym-
metric hex trees with 2n edges each of which contains exactly 2j median edges.

Proof. Let S = S(x, z) be the generating function for the symmetric hex trees with 2n edges
each of which contains 2j median edges. Any nonempty symmetric hex tree with 2j median
edges has one of the following forms:

The first form has the generating function xzS. For the second form, we show that
[znxj](C ◦ z

1−xz ) counts the hex trees with n− 1 edges having j median edges for n ≥ 1 and

0 ≤ j ≤ n − 1. A simple computation shows [znxj ](C ◦ z
1−xz ) =

(n−1
j

)
Cn−j. Incomplete

binary trees are A-trees with A = 1 + 2z + z2, i.e., a vertex of degree 1 has a left or right
edge. Solving (1) we get the generating function C2 = 1

z (C − 1) for incomplete binary trees.
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A symmetric

hex tree with

2j − 2 median edges

A hex tree with

j − 1 median edges

and its mirror image
�

� � �

Hence there are Cn−j incomplete binary trees with n− j − 1 edges. We can obtain a desired
hex tree by inserting j median edges at n− j vertices of the incomplete binary tree allowing
repetitions in

(
n−1
j

)
ways. Thus there are

(
n−1
j

)
Cn−j such hex trees.

Consequently, we obtain

S = 1 + xzS +
∑
n≥1

⎛⎝n−1∑
j=0

(
n− 1

j

)
Cn−jx

j

⎞⎠ zn = xzS +

(
C ◦ z

1− xz

)
,

which implies

S =
1

1− xz
·
(
C ◦ z

1− xz

)
=
∑
n≥0

pn(x)z
n. (5)

We note that the refinement of hex trees (not necessarily symmetric) according to the
number of median edges can be found in [9] while that of symmetric hex trees is unknown in
authors’ knowledge.

On the other hand, the generating function for the polynomials pn(x) involves a compo-
sition of two generating functions as shown in (5). Several combinatorial interpretations for
a composition of two functions have been described in [8]. The recursive structure of ordered
trees yields a supertree interpretation. A supertree1 is a tree such that an ordered tree grows
up from each vertex of a tree τ . We call the tree τ a base tree. Thus any class of supertrees
is formed by a pair of classes of base trees and growing up trees. A stem is a rooted tree
each of whose vertices has updegree 1 except the two terminal vertices, i.e., the root and the
leaf. The height of a stem is the number of edges in the stem. We define a stem supertree
to be a supertree with only stems growing up from each vertex of a usual ordered tree. It
immediately follows from (5) that [xj ]pn(x) counts the stem supertrees with n edges in which
the sum of the heights of all stems is j; for example, see Fig. 2.

� �
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�

�

�

�

�

�

Figure 2. The stem supertrees with 2 edges counted by p2(x) = 2 + 2x+ x2. A base tree consists of the
solid edges and the stems consist of the double edges.

1We note that this supertree is different from the one [4] arising in Phylogenetics. Supertrees are sometimes
called multidimensional trees (for example, see [2]).
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Theorem 2.2 There is a bijection between symmetric hex trees with 2n edges each of which
contains 2� median edges and stem supertrees with n edges in which the sum of the heights
of stems is �, where n, � ≥ 0.

Proof. Let S(n, �) and C(n, �) be the sets of symmetric hex trees with 2n edges each of which
contains 2� median edges, and stem supertrees with n edges in which the sum of the heights
of stems is �, respectively. The bijection is a map from C(n, �) to S(n, �) consisting of three
steps. Let T be an element of C(n, �) with the base tree τ .

Step 1. Convert to a partially labeled ordered tree: first, label each vertex of the base tree τ by
height of the stem growing up from the vertex. Then delete the stem. We then obtain a
usual ordered tree T1 some of whose vertices are labeled, where the total sum of labels
is �. See T1 in Fig. 3.

Step 2. Symmetrization: In order to make the tree symmetric, we make use of a bijection be-
tween (complete) binary trees and usual ordered trees. There are a variety of bijections
between binary trees and usual ordered trees. Here we define a map ψ to be the inverse
of the de Bruijin-Morselt bijection [7] that maps a planted binary tree to a planted or-
dered tree after some modification. A tree is said to be planted if its root has updegree
1. The map ψ is as follows: given an ordered tree T1, every nonroot vertex v of T1
becomes a point on the left edge of a pair of edges with common parent pv. The parent
pv is the left child of the parent of the right sibling (a vertex that has the same parent)
of v in T1. If v is a child of v′ then the pv is the right child of the parent of pv′ . Let τ̂
be the resulting binary tree. Then ψ maps the label of a nonroot vertex v in T1 to the
left child of pv in τ̂ , and the label of the root of T1 to the root of τ̂ .

In general, τ̂ is not necessarily symmetric with respect to the vertical line through the
root. From bottom to top, compare the children of every vertex at the same level. If
the distribution of children is symmetric then do nothing. If it is not symmetric then
at each vertex, leave the left edge and move the right edge with all subsequent edges
to the symmetric position of the parent of the left edge. All subsequent edges of the
left edge remain, and the label of a vertex, if exists, stay with the left edge. Continuing
the procedure at each level, from left to right, we end up with a symmetric hex tree s0
with no median edges; see s0 in Fig. 3.

Step 3. From a binary tree to a hex tree: the final step is inserting median edges symmetrically
according to the labels of vertices of s0. If the root has a label j then attach the stem
of length 2j at the root toward the bottom. The end point of the stem becomes the
root of a new symmetric hex tree s. If a nonroot vertex v has a label j then attach the
stem of length j at v toward the top, and do the same procedure at the vertex in the
symmetric position to v.

Clearly, the number of median edges in s is double the number of edges in all stems, which
is equal to the sum of the heights of stems in T . Thus s belongs to S(n, �) as shown in Fig.
3.

The inverse map can be similarly obtained by reversing each step.

Remark. In the first step of the inverse map, we assign the label � to a vertex v whenever
we delete 2� median edges in symmetric position. The vertex v is the lowest vertex in the
deleted median edges, and is adjacent to a left edge.
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Figure 3. From T ∈ C(12, 6) to s ∈ S(12, 6).

3 Properties of the polynomials pn(x)

In this section, we explore some algebraic properties of the polynomials pn(x) defined by (2).
We begin with an extension of the vector [p0(x), p1(x), . . .]

T to a matrix with polynomial
entries.

The functional equation (1) connects the class TA of trees and a structured matrix defined
by two formal power series. Let g and f be elements of the ring of formal power series C[[z]]
over the complex field satisfying g(0) �= 0, f(0) = 0, and f ′(0) �= 0. A Riordan matrix
[12] (g, f) is an infinite lower triangular matrix in which the generating function for the kth

column is g · fk, k ≥ 0. The Pascal matrix P =
(

1
1−z ,

z
1−z

)
is the typical example of a

Riordan matrix. If we multiply a column vector [h0, h1, h2, . . .]
T with the generating function

h =
∑

n≥0 hnz
n by a Riordan matrix (g, f), the generating function for the resulting column

vector is g · (h ◦ f). This is called the fundamental theorem for Riordan matrices (FTRM,
briefly), and enables us to compute the usual matrix multiplication of two Riordan matrices
in terms of generating functions as follows:

(g, f) ∗ (h, �) = (g · (h ◦ f), � ◦ f). (6)

The set of all Riordan matrices forms a group under this operation, called the Riordan group.
The identity is (1, z), and the inverse of (g, f) is (1/(g ◦ f̄), f̄) where f̄ is the compositional
inverse of f . It is known [10] that a Riordan matrix (g, f) = [rn,k] is associated to two
sequences A = (an)n≥0 and Z = (zn)n≥0 with a0 �= 0 such that rn+1,k+1 =

∑
j≥0 ajrn,k+j
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and rn+1,0 =
∑

j≥0 zjrn,j, or equivalently

g =
g(0)

1− z(Z ◦ f) and f = z(A ◦ f).

Letting T = f/z in the second equation, we have (1). This suggests a combinatorial inter-
pretation for an arbitrary Riordan matrix by means of ordered forests of ordered trees of two
kinds. A tree is planted if its root has degree 1. The weight of an ordered forest is defined as
the product of the weights of all components.

Theorem 3.1 Let R = (g, f) be a Riordan matrix, and A and B be the analytic solutions of
the functional equations f = z(A ◦ f) and g = B ◦ (zg) respectively. Then the (n, k)-entry of
R is the sum of the weights of ordered forests of 1 B-tree and k planted A-trees with n edges,
where B-tree precedes all planted A-trees.

Proof. The series A is the generating function for the A-sequence. Since g(0) �= 0, the
functional equation g = B ◦ (zg) has the analytic solution B. The series g and f/z are the
generating functions for the sum of the weights of B-trees and planted A-trees, respectively.
Since the generating function for the kth column of R is g ·fk, the result immediately follows
from the combinatorial interpretation for a product of two generating functions (see [8, 14]).

The interpretation given by Theorem 3.1 looks somewhat complicated, but if g = 1 then
every entry of (1, zT ) is interpreted by just ordered forests of A-trees. In particular, A = 1

1−z
gives the Riordan matrix (1, zC) where C is the generating function for the Catalan numbers.

We notice that the polynomials pn(x) form the leftmost column of the Riordan matrix

P x(1, zC)P =

⎡⎢⎢⎢⎢⎢⎣
1

1 + x 1
2 + 2x+ x2 3 + 2x 1

5 + 6x+ 3x2 + x3 9 + 9x+ 3x2 5 + 3x 1
14 + 20x+ 12x2 + 4x3 + x4 28 + 36x+ 18x2 + 4x3 20 + 20x+ 6x2 7 + 4x 1

· · ·

⎤⎥⎥⎥⎥⎥⎦. (7)

What are the other polynomials? Let pn,k(x) be the (n, k)-entry of P x(1, zC)P . For each
k ≥ 0, we obtain a sequence of polynomials defined by the generating function

Fk := Fk(x, z) =
∑
n≥k

pn,k(x)z
n =

1

1− xz
·
(
zkC2k+1 ◦ z

1− xz

)
, (8)

which is the generating function for the kth column of P x(1, zC)P . It can be easily shown
from C = 1+ zC2 that the generating function F0 for pn,0(x) = pn(x) satisfies the functional
equation

(1− xz)F0 = 1 + z(1− xz)F 2
0 .

For k ≥ 1, the generating function Fk for pn,k(x) is given by Fk = zk(1− xz)kF 2k+1
0 .

The coefficient matrix of (pn,k(x))n≥k for each k can be expressed in terms of the expo-
nential Riordan matrix [15]. An exponential Riordan matrix 〈g, f〉 is defined as an infinite
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lower triangular matrix in which the exponential generating function for the kth column is
1
k!g · fk. It can be readily shown that 〈g, f〉 = E−1(g, f)E where E = diag( 1

0! ,
1
1! ,

1
2! , . . .).

The Pascal matrix P is the only matrix which can be expressed as both Riordan and
exponential Riordan matrices:

P =

(
1

1− z
,

z

1− z

)
= 〈ez, z〉 .

Lemma 3.2 For k ≥ 0, pn,k(x) is a polynomial of degree n− k given by∑
n≥k

pn,k(x)
zn

n!
= e(2+x)z (Ik(2z)− Ik+1(2z))

where Ik(z) =
∑

j≥0
(z/2)2j+k

j!(j+k)! is the modified Bessel function of the first kind.

Proof. It suffices to express the ordinary generating function (8) for the kth column of
P x(1, zC)P as an exponential generating function. It follows from C2k+1 =

∑
n≥0

2k+1
n+2k+1

(2n+2k
n

)
zn

that the exponential generating function for ( 2k+1
n+2k+1

(2n+2k
n

)
)n≥0 is e2z (Ik(2z)− Ik+1(2z)).

By the FTRM, we have

1

1− xz
· (zkC2k+1 ◦ z

1− xz
) =

(
1

1− xz
,

z

1− xz

)
∗ zkC2k+1.

The right-hand side can be computed in the exponential Riordan group as follows:

〈exz, z〉 ∗ e2z (Ik(2z) − Ik+1(2z)) = e(2+x)z (Ik(2z) − Ik+1(2z)) .

The resulting exponential generating function is the one for the kth column of P x(1, zC)P .

By Lemma 3.2, the coefficient matrix of the polynomial sequence (pn,k(x))n≥k is

Dk

〈
z−ke2z (Ik(2z) − Ik+1(2z)) , z

〉
(9)

where Dk is the diagonal matrix with the main diagonal entries
((k

k

)
,
(k+1

k

)
,
(k+2

k

)
, . . .

)
.

It follows from (9) and Ik(2z) − Ik+1(2z) =
∑

n≥0(−1)n
(
n+k
�k/2�

)
zn+k

(n+k)! that

pn,k(x) =

n−k∑
j=0

(
n−k−j∑
�=0

(−1)�2n−k−j−�

(
n− j

k + �

)(
k + �


�/2�

))(
n

j

)
xj.

On the other hand, it follows from (8) that

pn,k(x) =

n∑
j=k

2k + 1

j + k + 1

(
2j

j − k

)(
n

j

)
xn−j =

n−k∑
j=0

2k + 1

n+ k − j + 1

(
2n− 2j

n− k − j

)(
n

j

)
xj.

Comparing the coefficient of xj in pn,k(x), we obtain the following identity after a change of
variables:

n−k∑
�=0

(−1)�2n−k−�

(
n

k + �

)(
k + �


�/2�

)
=

2k + 1

n+ k + 1

(
2n

n+ k

)
.
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Proposition 3.3 Let (an)n≥0 be the A-sequence of a Riordan matrix (1, zT ). Then the A-
sequence (ãn)n≥0 and the Z-sequence (z̃n)n≥0 of P x(1, zT )P y are given by

ãn =

n−1∑
k=1

ak+1

(
n− 2

k − 1

)
(−y)n−k−1 and z̃n = y

n∑
k=1

ak

(
n− 1

k − 1

)
(−y)n−k,

where ã0 = a0, ã1 = x+ a0y + a1 and z̃0 = x+ a0y.

If T = C i.e., an = 1 for all n ≥ 0 then it follows that ãn = (1−y)n−2 and z̃n = y(1−y)n−1.
In particular, y = 1 gives the A-sequence (1, x+2, 1, 0, 0, . . .) and Z-sequence (x+1, 1, 0, 0, . . .).
This implies that pn,k(x) satisfy the recurrence relations

pn+1,0(x) = (x+ 1)pn,0(x) + pn,1(x),

pn+1,k+1(x) = pn,k(x) + (x+ 2)pn,k+1(x) + pn,k+2(x).

We note that the polynomials pn,k(x) in a fixed column do not satisfy a three term
recurrence relation. However, using the explicit formula (4) for pn,k(x), we obtain the three
term recurrence relation for the polynomials in a fixed row.

Lemma 3.4 For n ≥ 2 and k ≥ 0,

pn,k(x) =
k + 1

n− k

((
x+ 2− n+ 1

(k + 1)(k + 2)

)
pn,k+1(x) +

n+ k + 3

k + 2
pn,k+2(x)

)
.

Proof. Making use of (4) with a little computation gives

n− k

k + 1
pn,k(x)−

(
x+ 2− n+ 1

(k + 1)(k + 2)

)
pn,k+1(x)

=
n∑

j=0

[
(n+ k − j + 2)(n − k)(2k + 1)

(n− k − j)(n − k − j − 1)(k + 1)
− 2j(2k + 3)(2n − 2j + 1)

(n− k − j)(n − k − j − 1)(n + k − j + 3)

−
(
2− n+ 1

(k + 1)(k + 2)

)](
2n − 2j

n− k − j

)(
n

j

)
xj

=
n∑

j=0

n+ k + 3

k + 2
· 2k + 5

n+ k − j + 3

(
2n − 2j

n− k − j

)(
n

j

)
xj =

n+ k + 3

k + 2
pn,k+2(x).

Lemma 3.4 also gives some information on the zeros of polynomials pn,k(x).
Given a polynomial f(x) and f1(x) := f ′(x), the Euclidean algorithm for seeking the

greatest common divisor of f and f1 yields:

f = q1f1 − f2,

f1 = q2f2 − f3,

· · ·
fm−2 = qm−1fm−1 − fm,

fm−1 = qmfm.
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The sequence f, f1, . . . , fm is called the Sturm sequence of f . Sturm’s theorem (see, for exam-
ple, [11]) asserts that if ω(x) is the number of sign changes in the sequence f(x), f1(x), . . . , fm(x)
then the number of distinct roots of f in an interval (a, b] is equal to ω(a) − ω(b), where
f(a) �= 0, f(b) �= 0 and a < b.

By making use of Lemma 3.4 we obtain

Lemma 3.5 Let f
(j)
n,k(x) be the Sturm sequence of pn,k(x) i.e., for j ≥ 1

f
(j)
n,k(x) = q

(j+1)
n,k (x)f

(j+1)
n,k (x)− f

(j+2)
n,k (x),

where f
(1)
n,k(x) := p′n,k(x) = (n− k)pn−1,k(x) and q

(1)
n,k = 1

n(x+ 1). Then for j ≥ 2,

f
(j)
n,k(x) =

⎧⎨⎩ (−1)�
j
2 � 1

n+1

(
n+1
1 · 2

n−2 · n+3
3 · 4

n−4 · · · · · n+j−1
j−1

)
pn−1,k+j−1(x) if j is even;

(−1)�
j
2 �n

(
1

n−1 · n+2
2 · 3

n−3 · n+4
4 · · · · · n+j−1

j−1

)
pn−1,k+j−1(x) if j is odd,

q
(j)
n,k(x) =

⎧⎨⎩ −(n+ 1)n
(

1
n−1 · n−2

2 · · · · · j−1
n−j+1

)(
1

n+1 · n+2
2 · · · · · j−1

n+j−1

)(
x+ 2− n

(j−1)j

)
if j is even;

1
(n+1)n

(
n−1
1 · 2

n−2 · · · · · j−1
n−j+1

)(
n+1
1 · 2

n+2 · · · · · j−1
n+j−1

)(
x+ 2− n

(j−1)j

)
if j is odd.

We note that since the degree of f
(j)
n,k(x) decreases by 1 at each step, the Sturm sequence

of pn,k(x) consists of n− k + 1 nonzero polynomials.

Theorem 3.6 The polynomial pn,k(x) has no real zero if n− k is even, and has exactly one
real zero x0 if n− k is odd. Moreover, −2 < x0 ≤ −1.

Proof. Let a be an integer. Since pn,k(x) has positive coefficients, pn,k(a) > 0 for a ≥ 0. If
a = −1, [pn,k(−1)] = (R, zM) where R and M are the generating functions for the Riordan
numbers (A005043) and the Motzkin numbers (A001006) respectively. So pn,k(−1) > 0
except p1,0(−1) = 0. We now show that for a ≤ −2,{

pn,k(a) > 0 if n− k is even;
pn,k(a) < 0 if n− k is odd.

(10)

We proceed by induction on n− k. It follows from Lemma 3.4 that

pn,k(a) =
k + 1

n− k

((
a+ 2− n+ 1

(k + 1)(k + 2)

)
pn,k+1(a) +

n+ k + 3

k + 2
pn,k+2(a)

)
.

If n−k is even (odd, resp.) then by the induction assumption, pn,k+1(a) < 0 and pn,k+2(a) > 0
(pn,k+1(a) > 0 and pn,k+2(a) < 0, resp.). Since a+2 ≤ 0, we obtain pn,k(a) > 0 (pn,k(a) < 0,
resp.).

For a polynomial f(x), define

sgn(f(a)) =

{
1 if f(a) > 0,

−1 if f(a) < 0.

Let f
(j)
n,k(x) be the Sturm sequence of pn,k(x) determined by Lemma 3.5, j = 0, 1, . . . , n − k,

and let ωn,k(a) be the number of sign changes in the Sturm sequence when x = a. Then

10



sgn(f
(j)
n,k(a)) = (−1)�j/2�sgn(pn−1,k+j−1(a)). Since pn,k(a) > 0 for a ≥ −1, (sgn(f

(j)
n,k(a))) =

((−1)�j/2�) = (1, 1,−1,−1, 1, 1,−1,−1, . . .). Hence ωn,k(a) = 
n−k
2 �. If a ≤ −2, it follows

from (10) that

sgn(f
(j)
n,k(a)) =

{
(1,−1,−1, 1, 1,−1,−1, . . .) if n− k is even;
(−1, 1, 1,−1,−1, 1, 1, . . .) if n− k is odd.

and thus ωn,k(a) = �n−k
2 
. Consequently we obtain ωn,k(a)− ωn,k(a+1) ≡ 0 for a �= −2 and

ωn,k(−2)− ωn,k(−1) =

{
0 if n− k is even;
1 if n− k is odd.

The Sturm’s theorem asserts that pn,k(x) has no real zero when n−k is even, and has exactly
one real zero in the interval (−2,−1] when n− k is odd.

For example, let us consider p5,0(x) = x5 +5x4 +20x3 +50x2 +70x+42. It follows from
Lemma 3.5 that

p5,0(x) =
1

5
(x+ 1)p′5,0(x)− (−p4,1(x))

p′5,0(x) = −5

4

(
x− 1

2

)
· (−p4,1(x))−

(
−35

4
p4,2(x)

)
−p4,1(x) =

16

105

(
x+

7

6

)
·
(
−35

4
p4,2(x)

)
− 16

9
p4,3(x)

−35

4
p4,2(x) = −945

256

(
x+

19

12

)
· 16
9
p4,3(x)−

945

64

16

9
p4,3(x) =

4096

8505

(
x+

7

4

)
· 945
64

Hence the Sturm sequence of p5,0(x) is[
p5,0(x), 5p4,0(x),−p4,1(x),−

35

4
p4,2(x),

16

9
p4,3(x),

945

64

]
and the sign changes in the Sturm sequence are

a p5,0(a) 5p4,0(a) −p4,1(a) −35
4 p4,2(a)

16
9 p4,3(a)

945
64 #(sign changes)

−3 − + + − − + 3
−2 − + + − − + 3
−1 + + − − + + 2
0 + + − − + + 2

The sign changes in the Sturm sequence for a ≤ −3 and for a ≥ 0 are the same as those for
a = −2 and for a = −1, respectively. Thus p5,0(x) has exactly 3 − 2 = 1 real zero in the
interval (−2,−1). In fact, p5,0(x) has the real zero x � −1.47781939.

Theorem 3.7 All the zeros of the polynomial pn,k(x) are distinct.

Proof. Let R(f, g) be the resultant [11] of two polynomials f and g. We make use of the
following known facts :

11



(a) If f = gq + r then R(f, g) = bdegf−degrR(r, g) where b is the leading coefficient of g.

(b) f and g have a common divisor if and only if R(f, g) = 0.

Using (a) and the Sturm sequence of pn,k, an induction on n − k shows R(pn,k, p
′
n,k) �= 0.

By (b), pn,k and p′n,k do not have a common divisor. Fix k. We now proceed an induction
on n to show that all the zeros of pn,k are distinct. Since (pn,k)n≥k is an Appell sequence,
p′n,k = (n− k)pn−1,k. By the induction assumption, all the zeros of pn−1,k are distinct. Since
pn,k and pn−1,k do not have a common zero, all the zeros of pn,k are distinct.

More generally, we conjecture that the polynomials pn,k(x) are irreducible over the field
of rational numbers.

4 Discussion

We have explored a refinement of symmetric hex trees and a bijection to certain supertrees.
The polynomials arising in the refinement are extended to the Riordan matrix P x(1, zC)P =
[pn,k(x)] as in (7). We note that not only pn,0(x) but also the whole entries pn,k(x) can be
interpreted as certain ordered forests of hex trees. A supertree is said to be planted if no
trees grow at the root. A little modification of the bijection introduced in Theorem 2.2 yields
a bijection between the planted stem supertrees and the planted hex trees. Specifically, we
modify the symmetrization step and the final step as follows: we go through a planted stem
supertree from the bottom to the top. After Step 1, the two edges from the root corresponds
to a stem from the root, and a pair of edges from the same vertex v correspond to the left
edge if v is the left child, and to the right edge if v is the right child. Labeling is the same as
that of the bijection in Theorem 2.2. Whenever we meet a vertex with a label j, we insert j
median edges from the vertex. This modified bijection maps a planted stem supertree with
n edges in which the sum of the heights of stems is � to a planted hex tree with n edges and
� median edges. For example, see Fig. 4.

�

�

�

�

�
��

� �

�
� �

�

� � �

�

�
�

�

�

�
�

↔

Figure 4. An ordered forest of 1 stem supertree and 2 planted stem supertrees, and the corresponding
ordered forest of 1 symmetric hex tree and 2 hex trees.

This yields a combinatorial interpretation for the polynomials pn,k(x) in terms of both
certain ordered forests of hex trees and ordered forests of stem supertrees. In particular, as
mentioned in the proof of Theorem 3.6, x = −1 gives the Pascal conjugation of (1, zC):

(R, zM) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 1
1 1 1
1 3 2 1
3 6 6 3 1
6 15 15 10 4 1
15 36 40 29 15 5 1

· · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where R = 1+z−√
1−2z−3z2

2z(1+z) and M = 1−z−√
1−2z−3z2

2z are the generating functions for the
Riordan numbers and the Motzkin numbers, respectively.

We end this paper with some conjectures concerning the zeros of polynomials pn,k. It
turns out that they reveal an interesting behavior besides some properties we have observed.

(a) (b)

Figure 5. The zeros of the polynomial (a) p71,0(x), (b) p50,2(x) and the conjectured limiting curves.

Fig. 5 suggests that the zeros of pn,k(x) accumulate to a curve that resembles a quadratic
one. In order to guess the equations for the curves, let us consider the polynomials rn,k(x) :=
xn−kpn,k(x

−1) which have the same coefficients with pn,k(x) but in reverse order.

(a) (b)

Figure 6. The zeros of the polynomial (a) r71,0(x), (b) r50,2(x), and the conjectured limiting curves.

Based on Fig. 6, one may guess that the zeros of rn,k(x) tend to accumulate to a circle
or an ellipse. The centroid of the zeros of rn,k(x) is

− 1

n− k

[xn−k−1]rn,k(x)

[xn−k]rn,k(x)
= − 1

n− k

[x1]pn,k(x)

[x0]pn,k(x)
= − 1

n− k
·
2k+1
n+k

(
2n−2
n−k−1

)(
n

n−1

)
2k+1
n+k+1

( 2n
n−k

)(n
n

) = −n+ k + 1

4n− 2
→ −1

4

as n→ ∞, for a fixed k.
Conjecture 1. For a fixed k, the zeros of rn,k(x) accumulate to the ellipse(

x+ 1
4 +

1
4n

)2(
1
4 +

1
n

)2 +
y2(

1
4 + 1

n−1

)2 = 1.

13



The ellipses in Conjecture 1 converge to the circle centered at (−1
4 , 0) with radius 1

4 . The
reflection of the ellipse with respect to the unit circle centered at the origin gives the following
conjecture on the zero behavior of pn,k(x).
Conjecture 2. For a fixed k, the zeros of pn,k(x) accumulate to the curve(

x
x2+y2 + 1

4 + 1
4n

)2
(
1
4 +

1
n

)2 +

(
y

x2+y2

)2
(
1
4 +

1
n−1

)2 = 1.

Remark. It seems that not only the zeros of pn,k(x) for fixed n and k tend to accumulate to
some curve, but also the zeros of all pn,k(x) for a fixed k tend to form certain fountain-shaped
curves, see Fig. 7. They also exhibit a complex version of interlacing [3].

Figure 7. The zeros of polynomials pn,0(x) for n = 1, . . . , 20. Each color depicts the zeros of a different
polynomial.
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