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Abstract

Applications of the Goulden-Jackson cluster method to counting Dyck

paths by occurrences of subwords

A dissertation presented to the Faculty of the
Graduate School of Arts and Sciences of Brandeis

University, Waltham, Massachusetts

by Chao-Jen Wang

Goulden and Jackson introduced the cluster method for counting words avoiding a

prescribed set of subwords in [14, 15]. Noonan and Zeilberger [17] generalized it

and wrote many Maple programs to implement the method and its extensions. We

count Dyck paths according to the number of occurrences of certain patterns, using

a variation of the Goulden-Jackson cluster method. We will give several examples

of counting Dyck paths by occurrences of subwords and show how to use the cluster

method to compute generating functions for those examples. Then we show more

applications to count paths with bounded height by occurrences of subwords and

more applications to count r−Dyck paths.
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CHAPTER 1

Introduction

We first give some definitions and describe the general Goulden-Jackson cluster

method with examples in Chapter 1. Then we give several examples of counting Dyck

paths by occurrences of subwords and show how to use the cluster method to compute

generating functions for those examples in Chapter 2. We apply the cluster method

to count paths with bounded height by occurrences of subwords in Chapter 3. We

show more applications to count r−Dyck paths in Chapter 4.

A Dyck path is a path in the first quadrant which begins at the origin. It ends

at (2n, 0) and consists of steps (1, 1), called rises, and (1,−1), called falls. We will

refer to n as the semilength of the path. It is well-known that the number of all Dyck

paths of semilength n is the nth Catalan number

cn =
1

n+ 1

(
2n

n

)
.

The Catalan number generating function is

C(x) =
∑

n

cnx
n =

1−
√

1− 4x

2x
.

We can encode each rise by a letter U for an up step and each fall by a letter D for

a down step, obtaining the encoding of a Dyck path by a Dyck word.

A Motzkin path is a path in the first quadrant which begins at the origin. It ends

at (n, 0) and consists of steps (1, 1), (1, 0), and (1,−1). Here n is the length of the

path. The number of all Motzkin n-paths (paths with length n) is the nth Motzkin
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CHAPTER 1. INTRODUCTION

number mn. The Motzkin number generating function is

M(x) =
∑

n

mnx
n =

1− x−
√

1− 2x− 3x2

2x2
.

We can encode (1, 1) by a letter U for an up step, (1,−1) by a letter D for a down

step, and (1, 0) by a letter F for a flat step, obtaining the encoding of a Motzkin path

by a Motzkin word.

Goulden and Jackson introduced the cluster method for counting words avoiding

a prescribed set of subwords in [14, 15]. Noonan and Zeilberger [17] generalized it

and wrote many Maple programs to implement the method and its extensions. See

also Stanley [19, Ch. 4, Ex. 14], Kupin and Yuster [16], and the references given

there. We first illustrate the approach and describe the general Goulden-Jackson

cluster method with an example:

Let w = w1w2 · · ·wn be a word in an alphabet A = {a1, a2, . . . , ak} and let A∗

be the set of words made up by letters in A. Define the length of w as l(w) = n. A

marked subword of w is a pair (i, v) such that

v = wiwi+1 · · ·wi+l(v)−1

where l(v) ≥ 2. Here i indicates where the marked subword starts in w and v is the

subword. A marked word is a word w together with a (possibly empty) set of marked

subwords of w.

For example, the word abbaba together with the set of marked subwords

{(1, abb), (3, ba), (5, ba)}

is a marked word which we represent as

a b b a b a
�� �
���
���
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CHAPTER 1. INTRODUCTION

We can concatenate marked words in the obvious way. For example, concatenating

a b a b a b a a b a b a b a
���
 ���
 ���
���
and gives

A marked word is a cluster if it is not a concatenation of two nonempty marked

words.

A marked word is the same as a word in the set of single letters and clusters. We

can define f(t) as the generating function for a set of marked words.

Given a set S of words of length at least 2, we may consider the generating function

f(t) =
∑

w

wtn(w)

where the sum runs over all words w ∈ A∗ and n(w) is the number of occurrences of

marked words in S in w. We think of the letters as noncommuting variables and t as

commuting with these variables. It is easier to compute

f(1 + t) =
∑

w

w(1 + t)n(w)

=
∑

w

w
∑

k

(
n(w)

k

)
tk

=
∑

w

w
∑
T⊆B

t|T |

where B is the set of occurrences of words in S in w.

So f(1+ t) is the sum of the weights of the marked words whose marked subwords

are in S, where the weight of a marked word w is the underlying word times tm(w),

where m(w) is the number of marked subwords in w.

Therefore, we have

f(1 + t) = (1− a1 − a2 − · · · − ak − L(t))−1

3



CHAPTER 1. INTRODUCTION

where A = {a1, a2, . . . , ak} is an alphabet and L(t) is the generating function for

clusters.

More generally, we can use different weights for different words. By the same

reasoning, we have the following result:

Theorem 1. Let A = {a1, a2, . . . , ai} be an alphabet . Let S = {v1, v2, . . . , vk} be

a set of words of length at least 2. Let f(t1, t2, . . . , tk) be the generating function for

counting words in A∗ by occurrences of v1, v2, ..., vk. where we assign the weight tj to

vj. Then

f(1 + t1, 1 + t2, . . . , 1 + tk) = (1− a1 − a2 − · · · − ai − L(t1, t2, . . . , tk))−1

where L(t1, t2, . . . , tk) is the generating function for clusters.

For example, we want to count all words in {a, b, c}∗ by occurrences of ab (weighted

t1) and occurrences of bc (weighted t2). Let f(t1, t2) be the generating function

f(t1, t2) =
∑

w

wti1t
j
2

where i and j represent the number of occurrences of ab and bc in w. Consider

f(1 + t1, 1 + t2) =
∑

w

w(1 + t1)
i(1 + t2)

j.

This counts all words in {a, b, c}∗ in which some occurrences of ab may be marked

and some occurrences of bc may be marked. For example, a given word w = ababc

could contribute different marked words:

a b a b c w together with empty set.

a b a b c
�
 �	 w together with {(1, ab)}.

a b a b c
�
 �	 w together with {(3, ab)}.

4



CHAPTER 1. INTRODUCTION

a b a b c
�
 �	�
 �	 w together with {(1, ab), (3, ab)}.

a b a b c
�
 �	 w together with {(4, bc)}.

a b a b c
�
 �	 �
 �	 w together with {(1, ab), (4, bc)}.

a b a b c
�
 �	�
 �	 w together with {(3, ab), (4, bc)}.

a b a b c
�
 �	�
 �	�
 �	 w together with {(1, ab), (3, ab), (4, bc)}.

Because ababc contains two occurrences of ab and one occurrence of bc, its coef-

ficient in the sum of the weights of the markings of ababc is (1 + t1)
2(1 + t2), which

corresponds to the eight marked words above.

On the other hand, all of the marked words are made of letters and clusters:

a, b, c, a b , b c , a b c
�
 �	�
 �	�
 �	�
 �	

Thus,

f(1 + t1, 1 + t2) = (1− a− b− c− abt1 − bct2 − abct1t2)−1. (1)

Therefore, we can get the real generating function f(t1, t2) by replacing t1 with

t1 − 1 and t2 with t2 − 1 in equation (1). So

f(t1, t2) = (1− a− b− c− ab(t1 − 1)− bc(t2 − 1)− abc(t1 − 1)(t2 − 1))−1 .

We can use the same method for counting more general sets of words. We can

always reduce a problem of counting a set of words by occurrences of subwords to a

problem of counting marked words. This approach will be useful whenever we can

count the corresponding marked words.

We will apply the method to counting Dyck words. Suppose S = {UU,UDU},

and w is restricted to Dyck words, then a marked Dyck word could be

U U U D U U D U U D U U
�� �
�� �
�� �
 �� �
�� �
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CHAPTER 1. INTRODUCTION

It is not true that every concatenation of clusters is a marked Dyck word, so we

need to do more work to count marked Dyck words by replacing each cluster with

a new step. In this example, there are single down steps D, single up steps U , and

clusters consisting of UU and UDU . So the problem reduces to counting paths with

a more general set of steps that never go below the x-axis.

There is one complication. If, for example, S contains the word DU then we

replace it with a flat step F , but this step cannot occur at height 0. This problem

is no longer reduced to a problem of counting Motzkin paths. Instead, it reduces to

a problem of counting Motzkin paths with no flat step at height 0. There are some

special cases that are easier than the general case:

(1) Each cluster is equivalent to an up step U , a down step D, or a flat step F ,

and there is no restriction on where they occur. So the problem is equivalent

to counting Dyck paths or Motzkin paths. Examples are {UUD}, {UD},

{UDU}, etc.

(2) Each cluster is equivalent to an up step U , a down stepD, or a flat step F , but

there are some restrictions on where they occur. We can derive generating

functions for this case from some quadratic equations related to the Catalan,

Motzkin or Narayana generaing function. Examples are {DU} (cannot occur

at height 0), {DDU} (cannot occur at height 1 or 0), etc.

(3) The clusters are equivalent to steps that can go up by an arbitrary amount

or down by at most 1 (or vice-versa). We can derive generating functions

for this case from some functional equations which are sometimes quadratic

or even of higher degree. So we may apply Lagrange inversion [20, Ch. 5,

Page. 38] to solve them. Examples are {UU}, {DD}, {UUU}, etc.

6



CHAPTER 2

Examples of Counting Dyck Paths by Occurrences of

Subwords

In the following examples, we compute a generating function g for counting Dyck

paths by occurrences of subwords in which each marked word is counted with a weight

1+ t and then we compute the real generating function h with a weight t by replacing

t with t− 1 in g.

2.1. Occurrences of UUD

Count Dyck paths by occurrences of UUD. For example, a marked Dyck word

could be

U D U U D U U D D D
�� �


We assign to such a marked word the weight xitj, where the semilength is i and

there are j marked occurrences of UUD. To count all these marked words, we replace

each occurrences of UUD by a new up step U ′. So our example would be replaced

with

U D U ′ U U D D D

Note that the original word is a marked Dyck word if and only if the new word

(when U ′ is replaced by U) is a Dyck word. In this example, UUD is the only cluster.

Since the occurrence of U in a Dyck path equals that of its semilength, we can count

modified Dyck words where U has the weight x, D has the weight 1, and U ′ has the

weight x2t. Equivalently, we can count ordinary Dyck paths where each up step is

7



CHAPTER 2. OCCURRENCES OF SUBWORDS

weighted by x + x2t. We set u1 = x + x2t and d1 = 1, where u1 is the generating

function for reducing up steps. Then we count Dyck paths with up steps weighted by

u1 and down steps weighted by d1. To count these, we use a well-known decomposition

called the first return decomposition.

Every nonempty Dyck path can be decomposed at the first return to x-axis. Every

nonempty Dyck path can be factored as UG1DG2 where U is an up step, D is a down

step, and G1, G2 are (possibly empty) Dyck paths. See Figure 2.1.

t���
�
��

t
@
@
@@�

�@
@
@@

t t���
�@

@
@@�

�@
@t

G1

U

G2

D

Figure 2.1. The first return decomposition for Dyck paths

So the generating function g(x, t) with a weight 1 + t satisfies

g = 1 + u1gd1g

where 1 represents the empty path, and u1gd1g represents the decomposition for

nonempty Dyck paths. Replacing u1 by x+ x2t, and d1 by 1, we get

g = 1 + (x+ x2t)g2.

Solving for g, we get

g =
1−

√
1− 4x(1 + xt)

2x(1 + xt)

= C(x+ x2t).

8



CHAPTER 2. OCCURRENCES OF SUBWORDS

As described in the introduction, g counts Dyck words where every occurrence of

UUD is weighted by 1 + t. So the generating function h for Dyck words weighted by

tj where j is the number of occurrences of UUD, is obtained by replacing t with t−1

in g. So we get the real generating function h in which every occurrence of UUD is

weighted by t:

h(x, t) =
1−

√
1− 4x(1− x+ xt)

2x(1− x+ xt)

= 1 + x+ (1 + t)x2 + (1 + 4t)x3

+ (1 + 11t+ 2t2)x4 + (1 + 26t+ 15t2)x5 + · · ·

Here the coefficients are sequence A091156 in the Online Encyclopedia of Integer

Sequences [18], where they are described as the number of Dyck paths of semilength

n, having k long ascents (i.e, ascents of length at least 2). It is easy to see that every

Dyck path having k long ascents has exactly k occurrences of UUD, since every long

ascent must be followed by a down step D.

In particular, for t = 0, we have

h(x, 0) =
1

1− x

= 1 + x+ x2 + x3 + · · ·

This is the generating function of UUD-free Dyck paths (i.e. Dyck paths with no

occurrences of UUD) with semilength weighted by x. The only UUD-free Dyck paths

are of the form (UD)n. Therefore, the coefficients of powers of x in h(x, 0) are all 1.

9



CHAPTER 2. OCCURRENCES OF SUBWORDS

2.2. Occurrences of UDU

Suppose we now count Dyck paths by occurrences of UDU . The occurrences of

UDU are weighted by t. In this example, we use the same approach as in the case

of occurrences of UUD in section 2.1. We need to find the clusters first, since the

clusters are no longer trivial.

In this case, the clusters are marked Dyck words of the form U(DU)i for i =

1, 2, 3, . . . :

UDU ,UDUDU ,UDUDUDU , . . .
�� �
�� �
�� �
�� �
�� �
�� �


So the cluster generating function L(t) is

udut+ ududut2 + udududut3 + · · · =
∑
i≥1

u(du)iti

=
u2dt

1− udt

where u and d are commuting variables.

We count these modified Dyck words where U has the weight x, D has the weight

1, and the cluster generating function is
x2t

1− xt
. Since these clusters reduce to up

steps, we can set u1 = x+
x2t

1− xt
=

x

1− xt
to get that the generating function g(x, t)

with a weight 1 + t satisfies

g = 1 + u1gd1g

= 1 +

(
x

1− xt

)
g2 (2)

where u1 represents reducing up steps and d1 represents reducing down steps.

10



CHAPTER 2. OCCURRENCES OF SUBWORDS

Notice that any functional equation of this from

g = 1 + ag2

has the solution

g =
1−
√

1− 4a

2a
= C(a).

Therefore, by equation (2), we get

g(x, t) = C

(
x

1− xt

)

=

1−

√
1− 4

(
x

1− xt

)
2

(
x

1− xt

)
=

1− xt−
√

(1− 4x− xt)(1− xt)
2x

.

Using the cluster method, we replace t by t−1, and we get the real generating function

h(x, t) =
1 + x− xt−

√
(1− 3x− xt)(1 + x− xt)

2x

= 1 + x+ (t+ 1)x2 + (2 + 2t+ t2)x3 + (4 + 6t+ 3t2 + t3)x4 + · · ·

Here the coefficients are sequence A091869 in the Online Encyclopedia of Integer

Sequences [18]. Some related statistics have been studied by Sun [21].

In particular, for t = 0, we have

h(x, 0) =
1 + x−

√
(1− 3x)(1 + x)

2x

=
1 + x−

√
1− 2x− 3x2

2x

= 1 + x+ x2 + 2x3 + 4x4 + 9x5 + 21x6 + 51x7 + 127x8 + · · ·

11



CHAPTER 2. OCCURRENCES OF SUBWORDS

This is the generating function of UDU -free Dyck paths with semilength weighted

by x. Subtracting 1 from it and dividing by x gives the generating function for

Motzkin numbers as shown by Donaghey and Shapiro [11]. So the number of UDU -

free Dyck paths with semilength n is mn−1, the (n− 1)th Motzkin number.

We can also verify that

h(x, t) = 1 +
x

1− xt
M

(
x

1− xt

)
(3)

where M(x) =
1− x−

√
1− 2x− 3x2

2x2
, the Motzkin number generating function.

Expanding the right side of equation (3), we have

1 +
x

1− xt
M

(
x

1− xt

)
= 1 +

1−
(

x

1− xt

)
−

√
1− 2

(
x

1− xt

)
− 3

(
x

1− xt

)2

2

(
x

1− xt

)
= 1 +

1− xt− x−
√

(1− xt)2 − 2x(1− xt)− 3x2

2x

=
1 + x− xt−

√
(1− 3x− xt)(1 + x− xt)

2x

= h(x, t).

Using equation (3), we can get an explicit formula for the coefficients of h(x, t) so

that

h(x, t) = 1 +
x

1− xt
M

(
x

1− xt

)
= 1 +

∑
i≥0

mi
xi+1

(1− xt)i+1

= 1 +
∑
i≥0

mix
i+1
∑
k≥0

(
i+ k

k

)
(xt)k

12



CHAPTER 2. OCCURRENCES OF SUBWORDS

= 1 +
∑

i≥0,k≥0

(
i+ k

k

)
mix

i+k+1tk

= 1 +
∑

n≥1,0≤k≤n−1

(
n− 1

k

)
mn−k−1x

ntk

where mi is the ith Motzkin number.

A bijective proof for this formula has been given by Callan [3].

2.3. Occurrences of UD

Count Dyck paths by occurrences of UD. For example, a marked Dyck word could

be

U D U U D U U D D D
�� �
 �� �


We assign to such a marked word the weight xitj where the semilength is i and

there are j marked occurrences of UD. To count all these marked words, we replace

each occurrence of UD by a new flat step F . So our example would be replaced with

F U U D U F D D

Note that the original word is a marked Dyck word if and only if the new word

(when UD is replaced by F ) is a Motzkin word. In this example, UD is the only

cluster. We count these modified Motzkin words where U has the weight x, D has

the weight 1, and F has the weight xt. Every nonempty Motzkin path can start with

a flat step F or an up step U . It can be decomposed into FG or UG1DG2, where

G,G1, G2 are Motzkin paths. See Figure 2.2.

So the generating function g(x, t) with a weight 1 + t satisfies

g = 1 + fg + ugdg (4)

13
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t t�� @
@ �

�@
@t

G

F

or

t���
�t @

@ �
�@

@
@@

t t�� @
@ �

�@
@t

G1

U

G2

D

Figure 2.2. Two cases of decompositions for such path

where f represents reducing flat steps, u represents reducing up steps, and d represents

reducing down steps. In this case, f represents a UD, u represents a single up step

U , and d represents a single down step D.

Replacing f by xt, u by 1, and d by x, we solve equation (4) to get

g =
1− xt−

√
(1− xt)2 − 4x

2x
.

Using the cluster method, we replace t by t − 1 in g and get the real generating

function

h(x, t) =
1 + x− xt−

√
(1 + x− xt)2 − 4x

2x
. (5)

In particular, for t = 0, we have h(x, 0) = 1. This is the generating function

of Dyck paths with no peak, UD. As we know, the empty path is the only Dyck

path with no peak. Note that h is a generating function for the Narayana numbers

N(n, k) = 1
n

(
n
k

)(
n

k−1

)
satisfying

h(x, t) = 1 +
∞∑

n,k=1

N(n, k)xntk. (6)

14



CHAPTER 2. OCCURRENCES OF SUBWORDS

2.4. Occurrences of DU

Now we look at an example of type 2. Suppose we count Dyck paths by occurrences

of DU weighted by t. We use the same approach as the case of occurrences of UD

in section 2.3. However, here we want to count Motzkin paths with no flat steps

at height 0. So a generating function g(x, t) with a weight 1 + t for counting these

modified Motzkin paths where U has the weight x, D has the weight 1, and F (when

DU is replaced by F ) has the weight xt, satisfies

g = 1 + fg + ugdg (7)

where f , u, and d are commuting variables. This is the same as equation (4) in section

2.3. In this case, f represents DU , u represents a single up step U , and d represents

a single down step D. However, DU cannot occur at height 0. So the problem can

reduce to one of counting Motzkin paths with no flat step at height 0.

Let g be the generating function for counting Motzkin paths with no height re-

striction. Let g1 be the generating function for counting Motzkin paths with no flat

step at height 0. Every nonempty Motzkin path with no flat step at height 0 can be

factored as UGDG1 at the first return, where G is a Motzkin path with no height

restriction and G1 is a Motzkin path with no flat step at height 0. See Figure 2.3.

t���
�t @

@ �
�@

@
@@

t t
G

U D
�
�@
@�
�

�
�@

@
@@t

G1

Figure 2.3. Every nonempty Motzkin path with no flat step at height
0 can be factored as UGDG1 at the first return
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CHAPTER 2. OCCURRENCES OF SUBWORDS

Then g1 satisfies

g1 = 1 + ugdg1.

So we can write

g1 =
1

1− ugd
. (8)

Replacing f by tx, u by 1, and d by x, we solve equation (7) to get

g =
1− xt−

√
(1− xt)2 − 4x

2x
.

Then we substitute this for g in equation (8) and solve for g1. We get

g1 =
1

1− xg
=

2

1 + xt+
√

(1− xt)2 − 4x
.

Using the cluster method, we replace t by t−1 in g1 to get the real generating function

h1(x, t) =
2

1 + x(t− 1) +
√

(1− x(t− 1))2 − 4x

=
1 + x(t− 1)−

√
(1− x(t− 1))2 − 4x

2xt
. (9)

In particular, for t = 0, we have

h1(x, 0) =
2

1− x+ 1− x

=
1

1− x

= 1 + x+ x2 + x3 + · · ·

This is the generating function of Dyck paths with no valley, DU . The only

possible Dyck paths with no valley are of the form UnDn. Therefore, all coefficients

16
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of h1(x, 0) are 1. Note that h1(x, t) is also a generating function for the Narayana

numbers:

From equation (9), (5) and (6), we have

th1 − t+ 1 = h = 1 +
∞∑

n,k=1

N(n, k)xntk.

So,

h1 = 1 +
∞∑

n,k=1

N(n, k)xntk−1. (10)

We can see (10) directly, since a nonempty path with k peaks has k − 1 valleys.

2.5. Occurrences of DDU

Suppose we now count Dyck paths by occurrences of DDU weighted by t. In this

example, the only cluster, DDU , can be reduced to a down step. Using the same

approach as in the case of occurrences of UUD in section 2.1, we can start from a

generating function g with no height restriction and with a weight 1+t which satisfies

g = 1 + u1gd1g (11)

where u1 = u and d1 = d+ddut, a single down step D or a reducing down step DDU .

Because there is a height restriction that DDU can only start from a height not less

than 2, we can elevate g by using the same approach from equation (8) in section 2.4

to get a generating function g1 under the height restriction and with a weight 1 + t

which satisfies

g1 =
1

1− ugd
. (12)

In equation (11), we replace u by x, and d by 1 to get

g = 1 + x(1 + xt)g2.

17



CHAPTER 2. OCCURRENCES OF SUBWORDS

Solving for g,

g = C(x(1 + xt))

=
1−

√
1− 4x(1 + xt)

2x(1 + xt)
.

This is the same g as in section 2.1. We can substitute this for g in equation (12) to

get

g1 =
1

1− xg

=
2(1 + xt)

1 + 2xt+
√

1− 4x(1 + xt)
.

Replacing t by t− 1 in g1, we get the real generating function

h1(x, t) =
2(1 + x(t− 1))

1 + 2x(t− 1) +
√

1− 4x(1 + x(t− 1))
.

In particular, for t = 0, we have

h1(x, 0) =
2− 2x

1− 2x+
√

1− 4x+ 4x2

=
1− x
1− 2x

= 1 +
x

1− 2x

= 1 +
∞∑

n=1

2n−1xn. (13)

This is the generating function of DDU -free Dyck paths with semilength weighted

by x. There are 2n−1 different DDU -free Dyck paths with semilength n. We can see

equation (13) directly, since the DDU -free Dyck paths can be written as the form

Ua1DUa2DUa3D · · ·Uak−1DUakDn−k−1

18
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where ai are positive integers, and
k∑

i=1

ai = n. Therefore, the number of the DDU -free

Dyck paths with semilength n is equal to 2n−1, the number of compositions of n, if

n ≥ 1. See Callan [5].

We can also verify that

h1(x, t) = 1 +
x

1− 2x
C

(
x2t

(1− 2x)2

)
(14)

where C(x) =
1−
√

1− 4x

2x
, the Catalan number generating function.

Expanding each side of equation (14), we have for the left-hand side

h1(x, t) =
2(1 + x(t− 1))

1 + 2x(t− 1) +
√

1− 4x(1 + x(t− 1))

=
2(1 + x(t− 1))

(
1 + 2x(t− 1)−

√
1− 4x(1 + x(t− 1))

)
(1 + 2x(t− 1))2 − (1− 4x(1 + x(t− 1)))

=
2(1 + x(t− 1))

(
1 + 2x(t− 1)−

√
1− 4x(1 + x(t− 1))

)
4xt(1 + x(t− 1))

=
1 + 2x(t− 1)−

√
1− 4x(1 + x(t− 1))

2xt

and the right-hand side

1 +
x

1− 2x
C

(
x2t

(1− 2x)2

)
= 1 +

x

1− 2x

1−

√
1− 4

(
x2t

(1− 2x)2

)
2

(
x2t

(1− 2x)2

)

= 1 +

1−

√
1− 4x2t

(1− 2x)2

2xt

1− 2x

19
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= 1 +
1− 2x−

√
(1− 2x)2 − 4x2t

2xt

=
1 + 2x(t− 1)−

√
1− 4x(1 + x(t− 1))

2xt

= h1(x, t).

We can get an explicit formula for the coefficients of h1(x, t) so that

h1(x, t) = 1 +
x

1− 2x
C

(
x2t

(1− 2x)2

)
= 1 +

x

1− 2x

∑
k≥0

ckt
k

(
x2

(1− 2x)2

)k

= 1 + x
∑
k≥0

ckt
k2−2k (2x)2k

(1− 2x)2k+1

= 1 + x
∑
k≥0

ckt
k2−2k

∑
n≥0

(
n

2k

)
(2x)n

= 1 + x
∑

n≥0,k≥0

2n−2k

(
n

2k

)
ckx

ntk

= 1 +
∑

n≥1,k≥0

2n−2k−1

(
n− 1

2k

)
1

k + 1

(
2k

k

)
xntk

where ck is the kth Catalan number.

There is a bijective proof for this formula given by Callan [3]. Some related

problems have been studied by Deutsch [8] and Sun [22].

2.6. Occurrences of DD

Now we look at an example of type 3. In these problems, we need to count

paths with steps that go up by 1 and down by any amount. We cannot use the

approach of applying the first return decomposition (see Figure 2.1), so we use another

decomposition.
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We consider paths with steps U , D0, D1, . . . , Di where U is an up step and

Dj is a step that goes down by j. Every nonempty such path can be factored as

G1UG2UG3 · · ·UGi+1Di, where each Gj is a path which ends on the same height as

the height of its starting point and never goes below the height. See Figure 2.4.
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G1

U

G2

U
U

G3 · · ·
Gi+1

Di

Figure 2.4. Decomposition for such path

So the generating function for such paths g satisfies

g = 1 +
∞∑
i=0

uigi+1di = 1 + g
∞∑
i=0

(ug)idi (15)

where u represents a single up step and di represents a step that goes down by i.

Now consider the special case of counting Dyck paths by occurrences of DD

weighted by t. Look at the generating function for all possible reducing down steps,

including a single down step and clusters consisting of DD’s:

D, DD, DDD , ...
�� �
�� �
�� �


So, the generating function for reducing down steps di is

d+ d2t+ d3t2 + · · · = d

1− dt
.

This is a problem in which we count paths reduced to paths with steps up by 1, and

down by any amount. We may keep track of the height of paths. Let

φ(z) =
∞∑
i=0

zidi =
dz

1− dzt
.
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Then, we have

g = 1 + gφ(ug).

Replacing u by x and d by 1, we have

g = 1 +
xg2

1− xgt
.

Solving for g, we get the generating function g with a weight 1 + t

g =
1 + xt−

√
(1− xt)2 − 4x

2x(t+ 1)
.

Using the cluster method, we replace t by t−1, and we get the real generating function

h with a weight t

h(x, t) =
1 + x(t− 1)−

√
(1− x(t− 1))2 − 4x

2xt
. (16)

From equations (9) and (16), we can see that the generating functions are the

same for counting paths by occurrences of DD and DU , as is well known [7, 8].

2.7. Occurrences of DDD

Now we can look at another example of type 3. Suppose we count Dyck paths by

occurrences of DDD weighted by t. We can use the same approach as in the case

of occurrences of DD in section 2.6. The generating function g with a weight 1 + t

satisfies

g = 1 +
∞∑
i=0

uigi+1di = 1 + g
∞∑
i=0

(ug)idi. (17)

The reducing down steps are a single down step and clusters consisting of DDD’s

D ,DDD ,DDDD,DDDDD, ...
�� �
�� �
�� �
�� �
�� �
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So, the generating function for reducing down steps di is

d+
d3t

1− dt− d2t
.

Let

φ(z) = dz +
d3z3t

1− dzt− d2z2t
=
∞∑
i=0

zidi

where di is the contribution from reducing steps that go down by i.

From equation (17), we have

g = 1 + gφ(ug).

Replacing u by x and d by 1, we have

φ(ug) = xg +
x3g3t

1− xgt− x2g2t
.

So,

g = 1 + g

(
xg +

x3g3t

1− xgt− x2g2t

)
.

This looks cubic, but turns out to be quadratic.

Solving for g, we get the generating function g with a weight 1 + t

g =
1 + xt−

√
1− 2xt+ x2t2 − 4x+ 4x2t

2x(t+ 1− xt)
.

Using the cluster method, we replace t by t−1, and we get the real generating function

h with a weight t

h(x, t) =
1 + xt− x−

√
1− 2xt+ x2t2 − 2x+ 2x2t− 3x2

2x(t− xt+ x)
. (18)
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In particular, for t = 0, we have

h(x, 0) =
1− x−

√
1− 2x− 3x2

2x2

= 1 + x+ 2x2 + 4x3 + 9x4 + 21x5 + 51x6 + 127x7 + · · ·

This is the generating function of DDD-free Dyck paths with semilength weighted

by x. This is also the generating function for the Motzkin numbers. There is a

bijection from UUU -free Dyck n-paths to Motzkin n-paths given by Callan [3]. It

is easy to see that DDD-free Dyck n-paths have the same distribution as UUU -free

Dyck n-paths when writing a path in reverse order.

2.8. Occurrences of UUD and UDD

Now we will give an example of counting Dyck paths according to the occurrences

of two subwords. Suppose they are UUD weighted by s and UDD weighted by t. In

this case, the only nontrivial cluster consisting of UUD and UDD is UUDD. This is

an example of type 2. So we use the same approach as in the case of UD in section

2.3. The generating function g with weights 1 + s and 1 + t satisfies

g = 1 + fg + u1gd1g

= 1 + u2d2stg + (u+ uuds)g(d+ uddt)g

where f = u2d2st represents a flat step, u1 = u + uuds represents up steps, d1 =

d+ uddt represents down steps.

Replacing u by x and d by 1, and solving for g, we get

g =
1− x2st−

√
1− 2x2st+ x4s2t2 − 4x− 4x2s− 4x2t− 4x3st

2x(1 + xs)(1 + xt)
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=
1− x2st−

√
(1− x2st)2 − 4x(1 + xs)(1 + xt)

2x(1 + xs)(1 + xt)
.

Using the cluster method, we replace s by s − 1 and t by t − 1, and get the real

generating function h with weights s and t

h =
1− x2(s− 1)(t− 1)−

√
(1− x2(s− 1)(t− 1))2 − 4x(1− x+ xs)(1− x+ xt)

2x(1− x+ xs)(1− x+ xt)
.

In particular, letting s = t gives

h(x, t, t) =
1 + x− xt−

√
(1 + x− xt)2 − 4x

2x(1− x+ xt)

= 1 + x+ (1 + t2)x2 + (1 + 4t2)x3 + (1 + 10t2 + 2t3 + t4)x4 + · · ·

Here the coefficients are sequence A127155 in the Online Encyclopedia of Integer

Sequences [18], where they are described as the number of Dyck paths of semilength

n having a total of k long ascents and long descents. It is easy to see that every Dyck

path having a total of k long ascents and long descents has a total of k occurrences

of UUD and UDD, since every long ascent is followed by a down step D and every

long descent is preceded with an up step U .

2.9. Occurrences of UU and UDD

Now we give another example to count Dyck paths according to the occurrences

of the given subwords UU weighted by s and UDD weighted by t. The semilength

is weighted by x. This is an example in which we count paths reduced to paths with

steps down by 1 or up by any amount. See Figure 2.5.

We consider paths with steps D1, U0, U1, . . ., Ui where D1 is the reducing down

step that goes down by 1 and Uj is the step that goes up by j. Every nonempty such

path can be factored as UiG1D1G2D1G3 · · ·GiD1Gi+1, where each Gj is a path which
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ends on the same height as that of its starting point and never goes below the height.

See Figure 2.5.
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G3 · · ·
Gi+1Ui

Figure 2.5. Decomposition for such path

So the generating function g with weights 1+s for UU and 1+ t for UDD satisfies

g = 1 +
∞∑
i=0

uig
i+1d1

i

where ui represents reducing steps that go up by i, and d1 represents reducing down

steps that go down by 1. The generating function for reducing down steps, including

only a single down step and a UDD is

d1 = d+ uddt.

Therefore, we can see that the clusters consisting of UU and UDD are of the form U j

for j = 2, 3, 4, . . . or UkDD for k = 1, 2, 3, . . . . So the generating function for reducing

up steps, including a single up step and the clusters consisting of UU and UDD, is

obtained by subtracting d1 from the generating function of all possible reducing steps:

u+ d+ uddt+
u2s

1− us
(1 + ddt)− d1 = u+

u2s

1− us
(1 + ddt)

=
u+ u2d2st

1− us
.

So, let

φ(z) =
∞∑
i=0

uiz
i =

uz + u2d2st

1− uzs
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where z is the weight for height.

Then we have

g = 1 + gφ(gd1).

Replacing u by x, d by 1, and d1 by 1 + xt, we get

φ(gd1) = φ((1 + xt)g) =
x(1 + xt)g + x2st

1− x(1 + xt)gs
.

So,

g = 1 +

(
x(1 + xt)g + x2st

1− x(1 + xt)gs

)
g.

Simplifying , we get a quadratic equation

x(1 + xt)(s+ 1)g2 − (1 + xs)g + 1 = 0.

Solving for g, we get the generating function g with weights 1 + s and 1 + t

g =
1 + xs−

√
(1 + xs)2 − 4x(1 + xt)(s+ 1)

2x(1 + xt)(s+ 1)
.

Using the cluster method, we replace s by s − 1 and t by t − 1, and get the real

generating function h with weights s and t

h(x, s, t) =
1− x+ xs−

√
1− 2xs− 2x+ x2s2 + 2x2s+ x2 − 4x2st

2xs(1− x+ xt)
. (19)

Notice that h satisfies

1− (1− x+ xs)h+ xs(1− x+ xt)h2 = 0.

Then, we have

h− xsh2 = 1 + xh− xsh− x2sh2 + x2sth2
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h(1− xsh) = (1− xsh)(1 + xh) + x2sth2.

So, h also satisfies

h = 1 + xh+
x2sth2

1− xsh
. (20)

It would be interesting to find a direct proof of (20). We can do this using a decom-

position of Deutsch [6]. See Figure 2.6.
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Figure 2.6. Deutsch’s decomposition for Dyck paths

Let G be a nonempty Dyck path. Suppose there are exactly k consecutive down

steps after the last up step inG. ThenG can be factored uniquely asG1UG2U · · ·GkUD
k,

where each Gj is a Dyck path. Let h be the generating function for counting all Dyck

paths. Then this decomposition shows that h satisfies

h = 1 +
∞∑

k=1

(hu)kdk.

Now we count Dyck paths according to the occurrences of UU weighted by s and

UDD weighted by t. If k = 1, the occurrences of UU and UDD in G are the same as

those in G1. If k ≥ 2, then every UU or UDD in each Gj occurs in G. Moreover, for

1 ≤ j ≤ k−1 the U between Gj and Gj+1 is followed by another U , giving additional

k − 1 occurrences of UU and there is one extra UDD from the last up step followed

by at least two down steps.
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So the generating function h with weights s for UU and t for UDD satisfies

h = 1 + hud+
∞∑

k=2

sk−1t(hu)kdk

Replacing u by x and d by 1, we get

h = 1 + xh+
x2sth2

1− xsh
.

We can apply Lagrange inversion [20, Ch. 5, Page. 38] to get an explicit formula

for the coefficients of h(x, s, t).

Theorem 2. Let h(x, s, t) be the generating function for counting Dyck paths by

occurrences of UU(weighted s) and UDD(weighted t). Then

h(x, s, t) =
∑
n,i,j

1

n+ 1

(
n+ 1

i+ 1, j, n− i− j

)(
i− 1

i− j

)
xnsitj

where the sum runs over all nonnegative integers for n, i, and j.

Proof. In order to apply Lagrange inversion, we can add a dummy variable z to

equation (20) getting

h = z

(
1 + xh+

x2sth2

1− xsh

)
.

By Lagrange inversion [20, Ch. 5, Page. 38], we have

[zn]hk =
k

n
[yn−k]

(
1 + xy +

x2sty2

1− xsy

)n

=
k

n
[yn−k]

∑
i,j,m

i+j+m=n

(
n

i, j,m

)
(xy)m

(
x2sty2

1− xsy

)j

=
k

n
[yn−k]

∑
i,j,m,l

i+j+m=n
2j+m+l=n−k

(
n

i, j,m

)
(xy)m(x2sty2)j

(
j + l − 1

l

)
(xsy)l
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=
k

n

∑
i,j,m,l

i+j+m=n
2j+m+l=n−k

(
n

i, j,m

)
xm(x2st)j

(
j + l − 1

l

)
(xs)l.

Replacing n with i + j + m and l with n − k − 2j −m = i − k − j, we get a power

series for hk in z,

h(x, s, t, z)k =
∑
i,j,m

k

i+ j +m

(
i+ j +m

i, j,m

)(
i− k − 1

i− k − j

)
xm(x2st)j(xs)i−k−jzn.

If we set z = 1,

h(x, s, t)k =
∑
i,j,m

k

i+ j +m

(
i+ j +m

i, j,m

)(
i− k − 1

i− k − j

)
xm(x2st)j(xs)i−k−j

=
∑
i,j,m

k

i+ j +m

(
i+ j +m

i, j,m

)(
i− k − 1

i− k − j

)
xi+j+m−ksi−ktj.

Replacing the variables, i by i+ k, and m by n− i− j, we get

h(x, s, t)k =
∑
n,i,j

k

n+ k

(
n+ k

i+ k, j, n− i− j

)(
i− 1

i− j

)
xnsitj.

In particular for k = 1, we have

h(x, s, t) =
∑
n,i,j

1

n+ 1

(
n+ 1

i+ 1, j, n− i− j

)(
i− 1

i− j

)
xnsitj. (21)

Here, for all nonnegative integers n, i, and j, the coefficient of xnsitj is nonzero and

equal to

1

n+ 1

(
n+ 1

i+ 1, j, n− i− j

)(
i− 1

i− j

)
for n ≥ i+ j and i ≥ j and is 0 otherwise. �
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In equation (19), setting s = t gives

h(x, t, t) =
1− x+ xt−

√
1− 2xt− 2x+ 2x2t+ x2 − 3x2t2

2xt(1− x+ xt)

= 1 + x+ (1 + t2)x2 + (1 + 3t2 + t3)x3 + (1 + 6t2 + 4t3 + 3t4)x4 + · · ·

This is counting Dyck paths by the sum of occurrences of UU and UDD (weighted

t). Here the coefficients are sequence A124926 in the Online Encyclopedia of Integer

Sequences [18].

In particular, we can find the generating function for Dyck paths with the same

semilength and sum of occurrences of UU and UDD by setting s = t and letting

i = n− j in equation (21). We obtain

∑
n,j

1

n+ 1

(
n+ 1

j

)(
n− j − 1

n− 2j

)
xntn

Here the coefficients are sequence A005043 in the Online Encyclopedia of Integer

Sequences [18]. They are called the Riordan numbers (or ring numbers). Let rn be

the n-th Riordan number defined by

rn =

bn
2
c∑

j=1

1

n+ 1

(
n+ 1

j

)(
n− j − 1

n− 2j

)

with r0 = 1.

The Riordan numbers count Motzkin paths containing no flatsteps at ground level.

Deutsch [18] gave the interpretation that the Riordan number is equal to the number

of Dyck paths of semilength n with no ascents of length 1 (an ascent in a Dyck path

is a maximal string of up steps).

It is known that

rn + rn+1 = mn (22)
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where mn is the nth Motzkin number. We can give a combinatorial interpretation to

equation (22).

We know that mn counts UDU -free Dyck paths with semilength n + 1 by the

result in section 2.2. We can also see that a Dyck path with the same semilength and

sum of occurrences of UU and UDD is equivalent to a Dyck path with no UDU that

does not end in UD, because every U must be followed by U or DD.

Consider UDU -free Dyck paths with semilength n + 1. We can separate them

into two cases.

(1) Paths that end with UD: Removing the UD at the end gives Dyck n-paths

with no UDU that do not end with UD. These are counted by rn. It is

impossible to get Dyck n-paths with no UDU that do end with UD, since

we start from UDU -free Dyck paths with semilength n + 1. They are not

allowed to end with UDUD.

(2) Paths that don’t end with UD: These are counted by rn+1.

2.10. Occurrences of UUU and UDD

Now count Dyck paths according to the occurrences of two subwords, UUU

weighted by s and UDD weighted by t. The semilength is weighted by x. We

use the same approach as in the case in section 2.9. The generating function g with

weights 1 + s for UUU and 1 + t for UDD satisfies

g = 1 +
∞∑
i=0

uig
i+1d1

i

where ui represents reducing steps that go up by i, and d1 represents reducing down

steps that go down by 1. The generating function for reducing down steps, including
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only a single down step and a UDD is

d1 = d+ uddt.

Therefore, we can see that the clusters consisting of UUU and UDD are of the form

U j for j = 3, 4, 5, . . . or UkDD for k = 1, 3, 4, 5, . . .. So, the generating function

for reducing up steps, including a single up step and the clusters consist of UUU

and UDD, is obtained by subtracting d1 from the generating function of all possible

reducing steps:

u+ d+ uddt+
u3s

1− us− u2s
(1 + ddt)− d1 = u+

u3s(1 + ddt)

1− us− u2s

=
u− u2s+ u3d2st

1− us− u2s
.

So, let

φ(z) =
∞∑
i=0

uiz
i =

uz − u2z2s+ u3d2zst

1− uzs− u2z2s
.

Then we have

g = 1 + gφ(gd1).

Replacing u by x, d by 1, and d1 by 1 + xt, we get

φ(gd1) = φ((1 + xt)g) =
x(1 + xt)g − x2(1 + xt)2g2s+ x3(1 + xt)gst

1− x(1 + xt)gs− x2(1 + xt)2g2s
.

So,

g = 1 +

(
x(1 + xt)g − x2(1 + xt)2g2s+ x3(1 + xt)gst

1− x(1 + xt)gs− x2(1 + xt)2g2s

)
g.

Simplifying, we get a quadratic equation

x(1 + xt)(xs− s− 1)g2 − (1 + xs+ x2st)g + 1 = 0.
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Solving for g, we get the generating function g with weights 1 + s and 1 + t

g =
1 + xs+ x2st−

√
(1 + xs+ x2st)2 − 4x(1 + xt)(xs− s− 1)

2x(1 + xt)(xs− s− 1)
.

Using the cluster method, we replace s by s − 1 and t by t − 1, and get the real

generating function h with weights s and t

h(x, s, t) =

1− x+xs+ x2(s− 1)(t− 1)−√
(1− x+ xs+ x2(s− 1)(t− 1))2 − 4x(1− x+ xt)(xs− x− s)

2x(1− x+ xt)(xs− x− s)
.

2.11. Occurrences of DUkDU

Barnabei, Bonetti, and Silimbani [1, Proposition 7] showed that the two statistics,

number of occurrences of DDD and number of occurrences of DUkDU , where k is

any positive integer, are equidistributed on Dyck n-paths.

We have already found the generating function for the number of occurrences of

DDD in equation (18) in section 2.7. Now we use the cluster method to count Dyck

paths according to the occurrences of DUkDU weighted by t, where k is any positive

integer. The semilength is weighted by x. This is also an example in which we count

paths reduced to paths with steps down by 1, and up by any amount. We use the

same decomposition as used in Figure 2.5.

The clusters consisting of DUkDU are

DUk1DUk2 · · ·DUkj · · ·DU where kj is any positive integer and j = 1, 2, 3, . . .
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So the generating function for reducing up steps, including a single up step and the

clusters consisting of DUkDU is

u+
d

u

1− u
dut

1− d u

1− u
t

= u+
u2d2t

1− u− udt
.

So, let

φ(z) =
∞∑
i=0

uiz
i = uz +

u2d2t

1− uz − udt

where z is the weight for height. The generating function g(x, t) with a weight 1 + t

for DUkDU satisfies

g = 1 +
∞∑
i=0

uig
i+1di

where ui represents reducing steps that go up by i, and d represents a single down

step. Then we have

g = 1 + gφ(gd).

Replacing u by x, and d by 1, we get

φ(gd) = φ(g) = xg +
x2t

1− xg − xt
.

So,

g = 1 + g

(
xg +

x2t

1− xg − xt

)
.

Solving for g, we get the generating function g with weights 1 + t

g =
1− xt−

√
1− 2xt+ x2t2 + 4x2t− 4x

2x
. (23)

However, there is a height restriction whereby the clusters consisting of DUkDU

cannot occur at height 0. By elevating g, we get a generating function g1(x, t) under
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the restriction which satisfies

g1 =
1

1− ugd
. (24)

Replacing u by x and d by 1 in equation (24), we substitute for g to get g1. We get

g1 =
1

1− xg
=

2

1 + xt+
√

1− 2xt+ x2t2 + 4x2t− 4x
.

Using the cluster method, we replace t by t− 1 and get the real generating function

h1(x, t) for occurrences of DUkDU

h1(x, t) =
2

1 + xt− x+
√

1− 2xt+ x2t2 − 2x+ 2x2t− 3x2

=
2
(
1 + xt− x−

√
1− 2xt+ x2t2 − 2x+ 2x2t− 3x2

)
4xt− 4x2t+ 4x2

=
1 + xt− x−

√
1− 2xt+ x2t2 − 2x+ 2x2t− 3x2

2x(t− xt+ x)
. (25)

From equation (18) and (25), we can see that the generating functions for the number

of occurrences of DDD and the number of occurrences of DUkDU , where k is any

positive integer, are the same.

2.12. Occurrences of UUU and UD

Now we want to count Dyck paths according to the occurrences of two subwords,

UUU weighted by s and UD weighted by t. The semilength is weighted by x. This

is also an example of type 3. In this problem, we need to count paths with steps that

go down by 1 or up by any amount. We use the same approach as applied in section

2.9. We can see that the clusters consisting of UUU and UD are of the form U j for

j = 3, 4, 5, . . . or UkD for k = 1, 3, 4, 5, . . . So, the generating function for reducing
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up steps, including a single up step and the clusters consist of UUU and UD, is

u+
u3s

1− us− u2s
+ udt+

u3dst

1− us− u2s
= (u+ udt)

(
1 +

u2s

1− us− u2s

)
=

(u+ udt)(1− us)
1− us− u2s

.

So the generating function g for such path with weights 1 + s for UUU and 1 + t

for UD satisfies

g = 1 +
∞∑
i=0

uig
i+1di

where ui represents reducing steps that go up by i, and d represents down steps that

go down by 1. So, let

φ(z) =
∞∑
i=0

uiz
i =

(uz + udt)(1− uzs)
1− uzs− u2z2s

. (26)

Then we have

g = 1 + gφ(gd).

Replacing u by x, d by 1, we get

g = 1 + g
(xg + xt)(1− xgs)

1− xgs− x2g2s
.

Simplifying, we get a quadratic equation

x(1 + s− xs− xst)g2 − (1 + xs− xt)g + 1 = 0.

Solving for g, we get the generating function g with weights 1 + s and 1 + t

g =
1 + xs− xt−

√
(1 + xs− xt)2 − 4x(1 + s− xs− xst)
2x(1 + s− xs− xst)

=
1 + xs− xt−

√
1− 2xs− 2xt+ x2s2 + 2x2st+ x2t2 + 4x2s− 4x

2x(1 + s− xs− xst)
. (27)
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We replace s by s− 1, t by t− 1 in equation (27) and get the real generating function

h with weights s for UUU and t for UD

h(x, s, t) =
1 + xs− xt−

√
1− 2xs− 2xt+ x2s2 + 2x2st− 4x2t+ x2t2

2x(s+ xt− xst)
.

In particular, letting s = t gives

h(x, t, t) =
1−
√

1− 4xt− 4x2t+ 4x2t2

2x(t+ xt− xt2)

= 1 + tx+ (t+ t2)x2 + (4t2 + t3)x3 + (2t2 + 11t3 + t4)x4

+ (15t3 + 26t4 + t5)x5 + · · ·

Here the coefficients are sequence A091156 with rows reversed in the Online Encyclo-

pedia of Integer Sequences [18]. In section 2.1 we counted Dyck paths by UUD and

got these coefficients in reverse order. We can see that the number of Dyck n-paths

having exactly k occurrences of UUD is equal to the number of Dyck n-paths having

a total of n − k UUU and UD, since the sum of the numbers of UUD, UUU , and

UD is always equal to the semilength n in a Dyck path.

2.13. Occurrences of UUU and DU

Now count Dyck paths according to the occurrences of two subwords, UUU

weighted by s and DU weighted by t. This is an example of counting paths with

steps that go down by 1 or up by any amount.

The clusters are almost the same as those in section 2.12. We can see that the

clusters consisting of UUU and DU are of the form U j for j = 3, 4, 5, . . . or DUk

for k = 1, 3, 4, 5, . . . . However, we cannot use the same decomposition as the one in

section 2.12. It is not allowed to have a cluster of the form DUk for k = 1, 3, 4, 5, . . .

at height 0.
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We discuss a more general path–counting problem as presented in section 2.9. We

count paths reduced to paths with steps down by 1 or up by any amount. Let us

consider the path with a step that goes up by i is weighted vi if it starts on the x-axis

and ui if it starts at height > 0. Every nonempty such path with these weights can

be factored as UiG1DG2D · · ·GiDG
′, where G′ is a path with these weights and each

Gj is a path with no height restriction(Ui is only weighted by ui). See Figure 2.7.
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G1

D
G2

D
D

Gi
· · ·

G′Ui

Figure 2.7. Decomposition for such path

Let g′ be the generating function for these paths. Then

g′ = 1 +
∞∑
i=0

vi(gd)ig′.

Let

ψ(z) =
∞∑
i=0

viz
i.

Then

g′ = 1 + ψ(gd)g′.

So

g′ =
1

1− ψ(gd)
. (28)

Now we apply these formulas to the problem of counting such paths by UUU and

DU . We can see that the clusters consisting of UUU and DU are of the form U j

for j = 3, 4, 5, . . . or DUk for k = 1, 3, 4, 5, . . . So applying the results of previous
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paragraph, we have

φ(z) =
∞∑
i=0

uiz
i =

(uz + dut)(1− uzs)
1− uzs− u2z2s

and the generating function g for each Gj which satisfies

g = 1 + gφ(gd).

From equation (26), we can see that the generating function g is the same as the g

in section 2.12 (UUU and UD). However, it is not allowed that DUk occur at height

0. So ψ(z) counts only clusters whose underlying is of the form U j for j = 3, 4, 5, . . .

as applied in section 2.7 with D replaced by U . So, the generating function for these

reducing up steps is

u+
u3s

1− us− u2s
.

Then

ψ(z) =
∞∑
i=0

viz
i

= uz +
u3z3s

1− uzs− u2z2s
.

By equation (28) and replacing u by x and d by 1, we have

g′ =
1

1− ψ(gd)

=
1

1−
(
xg +

x3g3s

1− xgs− x2g2s

)
=

1− xgs− x2g2s

1− xg − xgs
. (29)
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We substitute g in equation (27) for g in equation (29) and simplify to get g′ :

g′ =

1 + xs+ xt+2xst− 2x2st− 2x2st2

−
√

1− 2xs− 2xt+ x2s2 + 2x2st+ x2t2 + 4x2s− 4x

2x(1 + t)(1 + s− xs− xst)
.

We replace s by s − 1 and t by t − 1, and get the real generating function h with

weights s for UUU and t for DU

h(x, s, t) =

1− xs− xt−2x2t+ 2x2t2 + 2xst+ 2x2st− 2x2st2

−
√

1− 2xs− 2xt+ x2s2 + 2x2st− 4x2t+ x2t2

2x(s+ xt− xst)

= 1 + x+ (1 + t)x2 + (3t+ s+ t2)x3 + (4ts+ 2t+ 6t2 + s2 + t3)x4 + · · ·

Marilena Barnabei, Flavio Bonetti, and Matteo Silimbani [2] obtained the same

generating function by a different approach.
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Counting Dyck Paths with Bounded Height

In the following examples, we apply the cluster method to count paths with

bounded height by occurrences of subwords.

3.1. Occurrences of UD

We want to count Dyck paths of height at most k, by occurrences of peaks UD

weighted by t. We can use the same approach as in section 2.3. We can replace each

peak by a new flat step F . Then this problem is equivalent to the problem of counting

modified Motzkin paths of height at most k with no flat step at height k. It is not

allowed to have a flat step at height k in these modified Motzkin paths, otherwise

there will be a peak reaching height k + 1 in the original Dyck paths.

Let gk(x, t) be the generating function for such Motzkin paths with flat steps

weighted t which correspond to peaks weighted 1 + t. We can use the same decom-

position as in Figure 2.2 even with bounded heights. Then gk satisfies

gk+1 = 1 + fgk+1 + ugkdgk+1 and g0 = 1

where f represents a flat step F , u represents a single up step U , and d represents a

single down step D. This can be written as

gk+1 =
1

1− f − ugkd
. (30)
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Then gk can be written as a continued fraction

gk =
1

1− f − u
1

1− f − u
1

1− f − u
. . .

1− f − u
1

1− f − ug0d
d

d

d

d

We define pk by the linear recurrence equation. We will show that gk = pk/pk+1.

pk+2 = (1− f)pk+1 − udpk with p0 = 1, p1 = 1 (31)

Let

Gk =
pk

pk+1

.

Dividing both sides of equation (31) by pk+1, we get

1

Gk+1

= 1− f − udGk with G0 = 1.

Comparing this with equation (30) shows that Gk = gk. Then let

P (z) =
∞∑

k=0

pkz
k.

We can solve equation (31) to get

P (z) =
1 + z − (1− f)z

1− (1− f)z + udz2.
(32)
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We replace f by xt, u by x, and d by 1 to get

P (z) =
1 + z − (1− xt)z

1− (1− xt)z + xz2
.

Using the cluster method, we replace t by t− 1 to get

P̂ (z) =
1 + z − (1− x(t− 1))z

1− (1− x(t− 1))z + xz2

= 1 + z + (1− xt)z2 + (1− 2xt− x2t+ x2t2)z3 + · · ·

=
∞∑

k=0

p̂kz
k.

Then the real generating function hk for Dyck paths with heights at most k and

weight t for UD is given by

hk(x, t) =
p̂k

p̂k+1

.

The formula for counting Dyck paths of bounded height as a quotient of these poly-

nomials is well known.

The first few values for p̂k are

p̂0 = 1

p̂1 = 1

p̂2 = 1− xt

p̂3 = 1− 2xt− x2t+ x2t2

p̂4 = 1− 3xt− 2x2t+ 3x2t2 − x3t+ 2x3t2 − x3t3

p̂5 = 1− 4xt− 3x2t+ 6x2t2 − 2x3t+ 6x3t2 − 4x3t3 − x4t+ 3x4t2 − 3x4t3 + x4t4.
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We can find an explicit formula for p̂k. We start from subtracting 1 from P̂ (z), then

we get

P̂ (z)− 1 =
1− xz + xtz

1− z − xz + xtz + xz2
− 1

=
z − xz2

1− z − xz + xz2 + xtz

=
z(1− xz)

(1− z)(1− xz) + xtz

=
z

(1− z)
· 1

1 +
xtz

(1− z)(1− xz)

=
z

1− z

∞∑
i=0

(−1)i (xtz)i

(1− z)i(1− xz)i

=
∞∑
i=0

(−1)i xitizi+1

(1− z)i+1(1− xz)i

=
∑
i,l,m

(−1)ixitizi+1

(
i+ l

l

)
zl

(
i+m− 1

m

)
(xz)m

=
∑
i,l,m

(−1)i

(
i+ l

l

)(
i+m− 1

m

)
xi+mtizi+1+l+m.

Replacing the variables, m by n− i and l by k − n− 1, we get

P̂ (z)− 1 =
∑
n,i,k

(−1)i

(
i+ k − n− 1

i

)(
n− 1

n− i

)
xntizk.

So, for k ≥ 1, we have

p̂k =
k−1∑
n=0

n∑
i=0

(−1)i

(
i+ k − n− 1

i

)(
n− 1

n− i

)
xnti.
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Note that setting t = 1 gives

p̂k =
k−1∑
n=0

n∑
i=0

(−1)i

(
i+ k − n− 1

i

)(
n− 1

n− i

)
xn

=
k−1∑
n=0

n∑
i=0

(
n− k
i

)(
n− 1

n− i

)
xn

=
k−1∑
n=0

(
2n− k − 1

n

)
xn

=
k−1∑
n=0

(−1)n

(
−2n+ k + 1 + n− 1

n

)
xn

=
k−1∑
n=0

(−1)n

(
k − n
n

)
xn

=

b k
2
c∑

n=0

(−1)n

(
k − n
n

)
xn.

Let us look more closely at the case of Dyck paths of height at most 2. Here we

have

h2(x, t) =
p̂2

p̂3

=
1− xt

1− 2xt− x2t+ x2t2

=
1

1− xt
· 1

1− x2t

(1− xt)2

=
∞∑

n=0

(x2t)n

(1− xt)2n+1

=
∞∑

n=0

x2ntn
∞∑
i=0

(
2n+ i

i

)
xiti

=
∑
n,i

(
2n+ i

i

)
x2n+itn+i.
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Replacing the variables l by 2n+ i and m by n+ i, we get

h2(x, t) =
∑
l,m

(
l

2l − 2m

)
xltm. (33)

We can give a combinatorial interpretation for equation (33). We can start from a

Dyck path with semilength l and exactly m peaks and height at most 2. We add an

extra down step in front of it and an extra up step after it. The modified path can

be decomposed as

(DU)i1(UD)i2(DU)i3(UD)i4 · · · (DU)i2k+1

where each is is a positive integer and i1 +i2 + · · ·+i2k+1 = l+1. Conversely, any path

with such a decomposition is a modified path from a Dyck path with semilength l and

height at most 2. See Figure 3.1. We call the components (DU)i2j+1 odd components

and components (UD)i2j even components. We can think of counting these paths as

counting compositions of l + 1 with 2k + 1 parts. We know that the number of such

paths is the the number of compositions of l + 1 with 2k + 1 parts, which is
(

l
2k

)
.

For example, the corresponding composition for the path in Figure 3.1 is

9 = 3 + 2 + 2 + 1 + 1.

We want to find the connection between k, l and the number m of peaks. An odd

component (DU)i contributes i to the semilength and i− 1 to the number of peaks.

On the other hand, an even component (UD)j contributes j to the semilength and

also j to the number of peaks. So the difference between the sum i1 + i2 + · · ·+ i2k+1

and the number of peaks is k+1, the number of odd components. Therefore, we have

l+ 1−m = k+ 1. So k = l−m and thus, the number of Dyck path with semilength
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Figure 3.1. Decomposition for modified paths

l and m peaks and height at most 2 is(
l

2k

)
=

(
l

2l − 2m

)
.

3.2. Occurrences of UDU

Count Dyck paths with bounded height by occurrences of UDU weighted by t.

We can use the same approach as in section 2.2. This problem is equivalent to the

problem of counting modified Dyck paths of height at most k.

Let gk(x, t) be the generating function for such paths with bounded height k. The

clusters are of the form U(DU)i for i = 1, 2, 3, . . .
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So, the cluster generating function is

udut+ ududut2 + udududut3 + · · · = u2dt

1− udt
.

Since these clusters reduce to up steps, we can set u1 = u+
u2dt

1− udt
=

u

1− udt
to get

the generating function gk(x, t) with a weight 1 + t which satisfies

gk+1 = 1 + u1gkdgk+1 and g0 = 1.

This can be written as

gk+1 =
1

1− u1gkd
. (34)

Then gk can be written as a continued fraction

gk =
1

1− u1

1

1− u1

1

1− u1

. . .

1− u1

1

1− u1g0d
d

d

d

d

We want to find gk and we can use a similar approach as in section 3.1. Define pk

by the linear recurrence equation as equation (31). So setting f = 0 and replacing u

with u1 in equation (32), we get gk = pk/pk+1 where

P (z) :=
∑

pkz
k =

1

1− z +
x

1− xt
z2
.
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This continued fraction is the same as the previous one in section 3.1 with f = 0 and

u replace with u1. So

gk =
pk

pk+1

and

P (z) =
∞∑

k=0

pkz
k.

Then we can solve a linear recurrence equation by substituting 0 for f and u1 for u

in equation (32) to get

P (z) =
1

1− z + u1dz2
.

We replace u1 by
x

1− xt
and d by 1 to get

P (z) =
1

1− z +
x

1− xt
z2
.

Using the cluster method, we replace t by t− 1 in P (z) to get

P̂ (z) =
∞∑

k=0

p̂kz
k

=
1

1− z +
x

1− xt+ x
z2

= 1 + z +
1− xt

1− xt+ x
z2 +

1− xt− x
1− xt+ x

z3 + · · ·

Then the real generating function hk for Dyck paths with heights at most k and

weight t for UDU is given by

hk(x, t) =
p̂k

p̂k+1

where p̂k is given by the coefficient of P̂ (z).
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The first few values for p̂k are

p̂0 = 1

p̂1 = 1

p̂2 =
1− xt

1− xt+ x
= 1− x

1− xt+ x

p̂3 =
1− xt− x
1− xt+ x

= 1− 2

(
x

1− xt+ x

)
p̂4 =

1− 2xt+ x2t2 − x+ x2t− x2

(1− xt+ x)2
= 1− 3

(
x

1− xt+ x

)
+

(
x

1− xt+ x

)2

p̂5 =
1− 2xt+ x2t2 − 2x+ 2x2t

(1− xt+ x)2
= 1− 4

(
x

1− xt+ x

)
+ 3

(
x

1− xt+ x

)2

We can find an explicit formula for p̂k:

P̂ (z) =
1

1− z +
x

1− xt+ x
z2

=
∞∑
l=0

(
−xz2

1− xt+ x
+ z

)l

=
∑
l,m

(
m

l

)
(−1)lz2l

(
x

1− xt+ x

)l

zm−l

=
∑
l,m

(−1)l

(
m

l

)(
x

1− xt+ x

)l

zm+l.

Replacing the variables, m by k − l, we get

P̂ (z) =
∑
l,k

(−1)l

(
k − l
l

)(
x

1− xt+ x

)l

zk.
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For the coefficients of P̂ (z), if l >
k

2
, we have

(
k − l
l

)
= 0.

So, we have

p̂k =

b k
2
c∑

l=0

(−1)l

(
k − l
l

)(
x

1− xt+ x

)l

.

In particular, for k = 2, we have

h2(x, t) =
p̂2

p̂3

=
1− xt

1− xt− x

= 1 +
x

1− x(t+ 1)

= 1 +
∞∑

n=1

xn(t+ 1)n−1

= 1 +
∞∑

n=1

n−1∑
m=0

(
n− 1

m

)
xntm. (35)

We can give a combinatorial interpretation for equation (35). We can start from a

Dyck path with semilength n and exactly m occurrences of UDU and height at most

2. We can use the same decomposition as Figure 3.1. We add an extra down step in

front of the path and an extra up step after it. The modified path can be decomposed

as

(DU)i1(UD)i2(DU)i3(UD)i4 · · · (DU)i2k+1

where each is is a positive integer and i1 + i2 + · · ·+ i2k+1 = n+ 1.

Conversely, any path with such a decomposition is a modified path from a Dyck

path with semilength n and height at most 2. We can think of counting these paths
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as counting compositions of n + 1 with 2k + 1 parts. We know that the number of

such paths is the the number of compositions of n + 1 with 2k + 1 parts, which is(
n
2k

)
.

Then, we want to find the connection between k, n and the number m of occur-

rences of UDU . An even component (UD)j contributes j to the semilength and j−1

to the occurrences of UDU .

On the other hand, an odd component (DU)i contributes i to the semilength and

i− 1 to the occurrences of UDU except the last odd component. Therefore, we can

separate into two cases.

If i2k+1 = 1, the last odd component (DU)i2k+1 contributes i2k+1 to the semilength

and i2k+1 − 1 to the occurrences of UDU . So the difference between the sum i1 +

i2 + · · ·+ i2k+1 and the number of occurrences of UDU is 2k+ 1. Therefore, we have

n+ 1−m = 2k+ 1. The compositions we are counting are compositions of n+ 1 with

2k + 1 parts in which the last part is 1. Deleting the last part gives a composition of

n with 2k parts, and here are
(

n−1
2k−1

)
of them.

So 2k = n−m and(
n− 1

2k − 1

)
=

(
n− 1

n−m− 1

)
=

(
n− 1

m

)
.

Note that this only applies when n−m is even.

If i2k+1 ≥ 2, the last odd component (DU)i2k+1 contributes i2k+1 to the semilength

but i2k+1 − 2 to the occurrences of UDU , since the last UDU in the modified path

is not in the original path. So the difference between the sum i1 + i2 + · · · + i2k+1

and the number of UDU is 2k + 2. Therefore we have n + 1 − m = 2k + 2. The

compositions we are counting are compositions of n + 1 with 2k + 1 parts in which
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the last part is at least 2. Subtracting 1 from the last part gives a composition of n

with 2k + 1 parts, and here are
(

n−1
2k

)
of them.

So 2k = n−m− 1 and(
n− 1

2k

)
=

(
n− 1

n−m− 1

)
=

(
n− 1

m

)
.

Note that this only applies when n−m is odd.

Thus, combining the results of these two cases, we get that the number of Dyck

path with semilength n and m occurrences of UDU and height at most 2 is(
n− 1

m

)
.
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Applications to r-Dyck paths

In the following examples, we apply the cluster method to count paths with up

steps U that go up by 1 and down steps D that go down by an arbitrary number, r.

We define an r-Dyck path to be a path with up steps U that go up by 1 and down

steps D that go down by r.

4.1. Occurrences of UD

We count r-Dyck paths by occurrences of UD (weighted t). In this case, the only

cluster is UD. We may use the same approach as section 2.6. We consider paths

with steps that go up by 1, U , down by r, Dr, and down by r − 1, Dr−1. Here a U

in such a path corresponds to a U in a r-Dyck path, weighted by x, a Dr in such a

path corresponds to a D in a r-Dyck path, weighted by 1, and a Dr−1 in such a path

corresponds to a UD in a r-Dyck path, weighted by t. So, by equation (15) that we

obtained in section 2.6, the generating function for such paths g satisfies

g = 1 + ur−1grdr−1 + urgr+1dr.

Replacing u by x, dr by 1, and dr−1 by xt, we get

g = 1 + xr−1grxt+ xrgr+1

= 1 + xrgrt+ xrgr+1.
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CHAPTER 4. APPLICATIONS TO r-DYCK PATHS

Using the cluster method, we replace t by t− 1 and get the real generating function

h(x, t) which satisfies

h = 1 + xrhr(t− 1) + xrhr+1. (36)

Let

h = 1 + tH.

We substitute this in equation (36) to get

1 + tH = 1 + xr(1 + tH)r(t− 1) + xr(1 + tH)r+1

tH = xr(1 + tH)r(t− 1 + 1 + tH)

H = xr(1 + tH)r(1 +H).

Set

xr = z.

By Lagrange inversion [20, Ch. 5, Page. 38], we have

[zn]Hk =
k

n
[yn−k]((1 + ty)r(1 + y))n

=
k

n
[yn−k](1 + ty)nr(1 + y)n

=
k

n
[yn−k]

∑
i,j

(
nr

i

)
tiyi

(
n

n− j

)
yj

=
k

n
[yn−k]

∑
i,j

i+j=n−k

(
nr

i

)(
n

n− j

)
tiyi+j

=
k

n

∑
i

(
nr

i

)(
n

i+ k

)
ti.
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So, we get

Hk =
∑
n,i

k

n

(
nr

i

)(
n

i+ k

)
tizn

=
∑
n,i

k

n

(
nr

i

)(
n

i+ k

)
xnrti.

For k = 1, we have

H(x, t) =
∑
n,i

1

n

(
nr

i

)(
n

i+ 1

)
xnrti.

Then we have

h(x, t) = 1 + tH

= 1 +
∑
n≥1

∑
i≥0

1

n

(
nr

i

)(
n

i+ 1

)
xnrti+1.

For r = 2, these numbers are A108767 or A120986 in the Online Encyclopedia of

Integer Sequences [18]

4.2. Occurrences of UU and UDD

Count r-Dyck paths by occurrences of UU (weighted s) and UDD (weighted

t), since we got an interesting result for r = 1 in section 2.9. We may use the

same approach as section 2.9 to find the generating function. However, we can find

a similar equation to equation (20) for the generating function by using Deutsch’s

decomposition. See Figure 4.1.

t t��t t��t t��t t��A
A
A
A
A

t
t
t

G1

U

G2

U
U

U
D...
D

· · ·
Gkr

Figure 4.1. Deutsch’s decomposition for r-Dyck paths
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Let G be a nonempty r-Dyck path. Suppose there are exactly k consecutive down

steps after the last up step inG. ThenG can be factored uniquely asG1UG2U · · ·GkrUD
k,

where each Gj is a r-Dyck path. Let h be the generating function for counting all

r-Dyck paths. Then this decomposition shows that h satisfies

h = 1 +
∞∑

k=1

(hu)krdk.

Now we assign weights s for occurrences of UDD and t for occurrences of UDD. If

k = 1, the occurrences of UU in G are the same as those in G1 to Gr, but for the

occurrences of UU in G, the U between Gj and Gj+1 is followed by another U for

1 ≤ j ≤ r, giving additional r − 1 occurrences of UU . If k ≥ 2, then every UU or

UDD in each Gj occurs in G. Moreover, for 1 ≤ j ≤ kr − 1, the U between Gj and

Gj+1 is followed by another U , giving additional kr − 1 occurrences of UU . There is

also one extra UDD from the last up step followed by at least two down steps. So

the generating function h with weights s for UU and t for UDD satisfies

h = 1 + sr−1(hu)rd+
∞∑

k=2

skr−1t(hu)krdk.

Replacing u by x and d by 1, we get

h = 1 + sr−1(xh)r +
s2r−1t(xh)2r

1− sr(xh)r
. (37)

Let

H = sxh.

We multiply both sides of equation (37) by sx and substitute H for sxh

H = x

(
s+Hr + t

H2r

1−Hr

)
.
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By Lagrange inversion [20, Ch. 5, Page. 38], we have

[xn]Hk =
k

n
[yn−k]

(
s+ yr + t

y2r

1− yr

)n

=
k

n
[yn−k]

∑
i,j,l

n=i+j+l

(
n

i, j, l

)
si

(
t
y2r

1− yr

)j

(yr)l

=
k

n
[yn−k]

∑
i,j,l,m

n=i+j+l

(
n

i, j, l

)
sitjylry2jr

(
j +m− 1

m

)
(yr)m

=
k

n
[yn−k]

∑
i,j,l,m

n=i+j+l

(
n

i, j, l

)(
j +m− 1

m

)
sitjylr+2jr+mr.

For this to be nonzero, n− k must be a multiple of r. Let n− k = pr. Thus

[xn]Hk =
k

pr + k
[ypr]

∑
i,j,l,m

pr+k=i+j+l

(
pr + k

i, j, l

)(
j +m− 1

m

)
sitjylr+2jr+mr

=
k

pr + k
[yp]

∑
i,j,l,m

pr+k=i+j+l

(
pr + k

i, j, l

)(
j +m− 1

m

)
sitjyl+2j+m

=
k

pr + k

∑
i,j,l,m

pr+k=i+j+l
p=l+2j+m

(
pr + k

i, j, l

)(
j +m− 1

m

)
sitj

=
k

pr + k

∑
i,j,l

pr+k=i+j+l

(
pr + k

i, j, l

)(
p− j − l − 1

p− l − 2j

)
sitj

=
k

pr + k

∑
i,j

(
pr + k

i, j, pr + k − i− j

)(
p− pr − k + i− 1

p− pr − k + i− j

)
sitj.

So

Hk =
∑
i,j,p

n=pr+k

k

pr + k

(
pr + k

i, j, pr + k − i− j

)(
p− pr − k + i− 1

p− pr − k + i− j

)
xnsitj.
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For k=1, we have

H =
∑
i,j,p

n=pr+1

1

pr + 1

(
pr + 1

i, j, pr + 1− i− j

)(
p− pr + i− 2

p− pr + i− j − 1

)
xpr+1sitj.

Therefore, the generating function for r-Dyck paths counting by occurrences of UU

(weighted s) and UDD (weighted t) is

h(x, s, t) =
∑
i,j,p

1

pr + 1

(
pr + 1

i, j, pr + 1− i− j

)(
p− pr + i− 2

p− pr + i− j − 1

)
xprsi−1tj

=
∑
i,j,p

1

pr + 1

(
pr + 1

i+ 1, j, pr − i− j

)(
p− pr + i− 1

p− pr + i− j

)
xprsitj (38)

Here, for all nonnegative integers p, i, and j, the coefficient of xprsitj is nonzero and

equal to

1

pr + 1

(
pr + 1

i+ 1, j, pr − i− j

)(
p− pr + i− 1

p− pr + i− j

)
for pr ≥ i+ j and i ≥ j and is 0 otherwise.

In particular for r = 1, equation (38) reduces to equation (21) which counts for

Dyck paths by occurrences of UU and UDD.

60



Bibliography

[1] Marilena Barnabei, Flavio Bonetti, and Matteo Silimbani, The distribution of consecutive pat-
terns of length 3, arXiv:0904.0079.

[2] Marilena Barnabei, Flavio Bonetti, and Matteo Silimbani, The descent statistic on 123- avoiding
permutation, arXiv:0910.0963.

[3] David Callan, Two bijections for Dyck path parameters, arXiv:math.CO/0406381, 2004.
[4] David Callan, Bijections from Dyck paths to 321-avoiding permutations revisited,

arXiv:0711.2684, 2007.
[5] David Callan, Some bijections and identities for the Catalan and Fine numbers, Sem. Lothar.

Combin. 53 (2004/06), Art. B53e, 16 pp.
[6] Emeric Deutsch, Dyck path enumeration, Discrete Mathematics 204 (1999), 167–202.
[7] Emeric Deutsch, A bijection on Dyck paths and its consequences, Discrete Mathematics 179

(1998), 253–256.
[8] Emeric Deutsch, An involution on Dyck paths and its consequences, Discrete Mathematics 204

(1999), 163–166.
[9] Emeric Deutsch and Louis W. Shapiro, A bijection between ordered trees and 2-Motzkin paths

and its many consequences, Discrete Mathematics 256 (2002), 655–670.
[10] Emeric Deutsch and Louis W. Shapiro, A survey of the Fine numbers, Discrete Mathematics

241 (2001), 241–265.
[11] Robert Donaghey and Louis W. Shapiro, Motzkin numbers. J. Combin. Theory Ser. A 23

(1977), 291–301.
[12] Ira M. Gessel, A factorization for formal Laurent series and lattice path enumeration, J. Combin.

Theory Ser. A 28 (1980), 321–337.
[13] Ira M. Gessel and Sangwook Ree, Lattice paths and Faber polynomials, Advances in Combin.

Methods and Appl. to Probability and Statistics, Birkhäuser Boston, 1997, pp. 3–13
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