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INTRODUCTION

A wide spectrum of endocrine disorders are characterized by health disparities, including 

metabolic,1 thyroid,2 and reproductive disorders.3 Although metabolic disease prevalence 

has increased across sociodemographic groups, minority racial/ethnic groups carry a 

greater disease burden.4 This difference is exacerbated by educational and socioeconomic 

disparities,5 reduced access to resources, and systemic oppression.6 Evidence indicates that 

vulnerable populations are disproportionately exposed to various environmental toxicants, 

including multiple endocrine-disrupting chemicals (EDCs).7 An analysis of EDC exposures 

and disease burden across racial/ethnic groups noted higher exposures among non-Hispanic 

Blacks and Mexican Americans relative to non-Hispanic Whites.8 Furthermore, per capita 

EDC-associated health care costs are higher among people of color. Of $340 billion in 
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US health care costs associated with EDCs, Black and Mexican American communities 

accounted for 31.4% of total expenditures while only comprising 26.1% of the population.8 

The disproportionate burden of hazardous chemical exposures borne by vulnerable 

communities is an environmental justice crisis with multigenerational consequences.9 This 

review highlights key data linking EDC exposures to endocrine health disparities.

HEALTH DISPARITIES IN ENDOCRINOLOGY

Metabolic Disorders

Projected to afflict 783 million adults by 2045, global diabetes prevalence has increased 

dramatically over recent decades.10 In the United States alone, 37.3 million people have 

diabetes; however, the disease burden is not uniform.11 Diabetes prevalence is markedly 

lower among non-Hispanic Whites compared with all other minority racial/ethnic groups. 

Critically, racial/ethnic minorities also suffer from higher diabetes-associated morbidity and 

mortality.12 Marked diabetes disparities are also noted by socioeconomic status (SES).13

In 2017, US adult obesity prevalence reached an astonishing 41.9%.14 Prevalence was 

highest among Hispanics/Latinos and non-Hispanic Blacks. Across all groups, prevalence 

increases with lower educational attainment. Although associations between obesity rates 

and SES remain somewhat murky, SES seems to predict body fat distribution, with 

those of lower SES accumulating fat more centrally, a characteristic associated with 

various metabolic comorbidities.13 Drivers of obesity disparities include differences in 

food availability arising from variations in the retail food environment that concentrate 

poor-quality resources in more disadvantaged areas,15 and neighborhood insecurity and a 

lack of green spaces16; more recently, chemical exposures have been implicated.17

Nonalcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by alcohol-

independent hepatic fat accumulation associated with inflammation, fibrosis, cirrhosis, liver 

failure, and hepatocellular carcinoma. By 2030, approximately 100.9 million US adults are 

projected to be afflicted by NAFLD.18 Importantly, NAFLD prevalence and complications 

exhibit notable disparities, with the greatest disease burden among Hispanics/Latinos.19 

Although men are disproportionately affected, evidence indicates that women may have 

higher rates of NAFLD-related complications.20 NAFLD disparities are also noted based on 

SES, with low-income populations experiencing greater prevalence, disease progression, and 

complications.21

Thyroid Disorders

Globally, 200 million people are affected by thyroid diseases,22 with incidence increasing 

with age, iodine deficiency, and radiation exposure.23 Thyroid nodules are more prevalent 

in women than men, with White individuals disproportionately affected.24 Importantly, 

epidemiologic evidence links thyroid nodules with the metabolic syndrome. While this 

association is observed in both sexes, women are at greater risk of developing thyroid 

nodules than men with the same metabolic disturbances.25 Although diagnostic bias 

may confound the associations, thyroid cancer is more prevalent among Whites, with 

socioeconomic factors predicting survival.25,26 Despite this, evidence suggests that Black 
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patients have lower survival rates regardless of screening or SES.27 In addition to disparities 

in thyroid cancer, Blacks are more likely to develop thyrotoxicosis than Whites,28 with 

disparities also present for hypothyroidism. Among those with subclinical hypothyroidism 

and comorbid congestive heart failure, Blacks have higher mortality rates than non-Blacks.29

Reproductive Disorders

Racial/ethnic and socioeconomic disparities characterize women’s health from menarche to 

menopause. For example, Hispanic/Latina and Black individuals reach menarche at younger 

ages than their White counterparts.30 Furthermore, early onset of menarche is associated 

with fibroid tumors and increased risk for breast and ovarian cancer.31 Among women with 

fibroids, racial minorities with lower SES had greater fibroid severity and decreased health-

related quality of life.32 In addition to earlier menarche, Black women reach menopause 

earlier than White women, and they experience longer menopausal transitions.33 Polycystic 

ovarian syndrome (PCOS) is an endocrine disorder characterized by ovarian cysts, menstrual 

irregularities, hyperandrogenism, infertility, and metabolic dysfunction. Women of lower 

SES are at greater risk of developing PCOS, and Black women with PCOS are more likely 

to develop metabolic complications.34

Among men, reproductive disparities are also notable. Compared with Whites, Black 

individuals were significantly more likely to have lower sperm volume and concentration 

with fewer motile sperm.35 These issues are likely exacerbated by the fact that Black 

populations are disproportionately burdened by metabolic disorders, which also negatively 

affect spermatogenic activity and semen quality.36

Adrenal Disorders

Disruptions in adrenal function adversely affect health and development in myriad ways. 

Compared with White men, Black men are more likely to exhibit dysregulated cortisol 

secretion patterns, which are linked to multiple adverse health outcomes.37 Furthermore, 

conditions of excess cortisol production are more prevalent among women.38 Primary 

hyperaldosteronism, the most common cause of secondary hypertension, is more common in 

Black populations.39 Androgen excess is linked to PCOS and other reproductive disorders 

in men and women, with prevalence varying by race/ethnicity and SES. Collectively, the 

available evidence points to race/ethnicity-, gender-, and income-based disparities across a 

spectrum of endocrine disorders; achieving health equity requires identifying and addressing 

the drivers of these differences.

ENDOCRINE-DISRUPTING CHEMICAL EXPOSURE DISPARITIES

Although various social and structural determinants of health contribute to disparities 

in endocrine health, less appreciated are the contributions of differential exposures to 

EDCs. The Endocrine Society defines EDCs as “an exogenous chemical, or mixture of 

chemicals, that can interfere with any aspect of hormone action.” More than 500 EDCs 

have been identified, including polychlorinated biphenyls (PCBs), bisphenols, phthalates, 

organochlorine (OC) pesticides, per/polyfluoroalkyl substances (PFASs), metals/metalloids, 

flame retardants, and air pollutants, among others. Critically, exposure to these chemicals 
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is not uniform across populations. Rather certain groups are disproportionately exposed, 

including various minority racial/ethnic groups, with noted gender-based disparities.8,40,41 

Those with low incomes or of lower SES are also disproportionately exposed.42 These 

exposure disparities are driven by multiple social factors, including dietary patterns, 

consumer product usage, living conditions, labor practices, and geography,41 all of which are 

driven by current and historical policies influenced by racist and classist power structures. 

Thus, environmental injustice drives exposure disparities. The following highlights key 

literature regarding notable EDC exposure disparities and adverse endocrine health effects 

(Fig. 1, Table 1).

Polychlorinated Biphenyls

PCBs are a class of persistent organic pollutants (POPs) historically used for a multitude 

of industrial applications. Although PCB production was banned in the US in 1979, they 

persist in the environment because of their long half-lives and continued leaching from 

older consumer products and industrial waste facilities. Their hydrophobicity and chemical 

stability results in accumulation in the fatty tissue of animals over time through consumption 

of contaminated food or prey, resulting in biomagnification at higher trophic levels of 

the food system. Consequently, human exposure continues through air, soil, food, and 

water sources. Following exposure, PCBs are associated with multiple adverse endocrine 

health effects. PCBs mimic the structure of thyroxine and interfere with thyroid hormone 

homeostasis.43 PCBs are also associated with metabolic dysfunction in human studies.44,45 

Specifically, a 2014 meta-analysis revealed that individuals exposed to the highest levels 

of PCBs had a two-fold higher risk of diabetes.46 In cellular and animal models, PCBs 

alter insulin release and insulin sensitivity, among other effects, resulting in a diabetic 

phenotype.47 Both epidemiologic and preclinical data also link PCBs with NAFLD.48

PCB exposure is not homogenous across racial/ethnic groups. Among US adults, Black 

individuals have significantly higher blood PCB levels than all other racial/ethnic groups, 

whereas among adolescents and young adults, Pacific Islanders and Native Americans have 

the highest levels.49 This disparity may be particularly important in the United States where 

PCB levels are generally higher in US-born individuals than immigrants.50 It is postulated 

that these PCB exposure patterns are primarily driven by dietary consumption and past 

exposures, but more evidence is needed.49 Lastly, occupation and housing are associated 

with higher PCB levels, and there are noted income-based disparities as well.51,52

Phthalates

Phthalates are a family of nonpersistent phthalic acid esters with short half-lives but 

numerous exposure sources. Often classified by their molecular weight, low-molecular-

weight phthalates are commonly used in personal care products and solvents, whereas 

high-molecular-weight phthalates serve as plasticizers in medical equipment and food 

packaging.53 These compounds leach from products, leading to exposure via ingestion, 

dermal contact, or inhalation.

Although phthalates are nonpersistent pollutants, continuous and repeated exposure can 

promote adverse health effects. In women, phthalates are associated with ovarian and uterine 
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dysfunction, contributing to the development of PCOS, uterine fibroids, and endometriosis 

through direct estrogenic effects.54 During pregnancy, maternal phthalate exposure is 

associated with placental disruption, pregnancy loss, and greater risk of preterm birth.55 

Phthalates also disrupt male sex steroid signaling, including antagonism of androgen 

receptor signaling. Consequently, phthalates are linked to hypospadias and male infertility.56 

Moreover, via interactions with various nuclear receptors, phthalates promote diabetogenic 

and obesogenic effects.43,44 Indeed, numerous epidemiologic studies associate phthalates 

and phthalate metabolites with increased diabetes risk.57 Lastly, phthalates disrupt enzymes 

involved in adrenal hormone production.58

Women are disproportionately expose to phthalates, likely a consequence of their greater 

use of personal care products. Among women, Black and Mexican American women 

have higher levels of almost all phthalates and phthalate metabolites.59 This may be the 

case because beauty products directly marketed to women of color contain higher levels 

of phthalates and other chemicals.60 Marketing strategies perpetuate European beauty 

standards among minority populations, leading to disproportionate use of skin lighteners, 

hair relaxers/straighteners, and odor reduction products known to contain EDCs.60 Similarly, 

inexpensive building materials, fast food, and consumer products are more likely to contain 

a variety of EDCs, including phthalates, placing those of low SES at greater risk of 

exposure.61,62

Bisphenols

Bisphenols, such as bisphenol A (BPA), are found in numerous consumer products, 

including the linings of food containers, plastics, thermal paper, and preservatives.63 Like 

phthalates, bisphenols are nonpersistent pollutants; however, humans are continuously 

exposed. BPA is a well-studied EDC that disrupts multiple signaling cascades, including 

estrogen receptors, growth factor receptors, and other pathways implicated in diabetes, 

cardiovascular disease, and cancer.64 As a xenoestrogen, BPA is linked to multiple 

reproductive disorders, including PCOS, cryptorchidism, and male infertility.56,65 Because 

of BPA’s disruption of metabolic pathways, human and preclinical studies have linked 

BPA exposure with increased metabolic disease risk, including obesity and diabetes.44,66 

The latter findings are supported by robust in vivo and in vitro data demonstrating BPA’s 

capacity to perturb metabolic homeostasis.64 Additionally, BPA is implicated in adrenal 

dysfunction through targeting of enzymes involved in the synthesis of glucocorticoids, 

mineralocorticoids, and androgens.58

Across the general population, women and those with lower incomes have greater BPA 

exposure.67 Women of color, especially Black women in the United States, have higher 

BPA levels.68,69 Furthermore, low-income families and those that received emergency food 

assistance have higher levels of BPA independent of other sociodemographic factors.70,71

Organochlorine Pesticides

Historically used throughout the world, OC pesticides are POPs that were banned 

in the United States in the 1970s. Despite their toxicity, several OC pesticides are 

still used in developing countries, including dichlorodiphenyltrichloroethane (DDT), 
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hexachlorocyclohexane, aldrin, and dieldrin.72 Because of their persistence and 

biomagnification, OC pesticides continue to contaminate soil, water, air, and fatty meat 

and fish.73 US biomonitoring data indicate near universal exposure to OC pesticides, such as 

DDT and its metabolites.74

Many studies have linked OC pesticides with endocrine dysfunction, including disruptions 

in thyroid hormone function and an increased risk of thyroid cancer.75–77 OC pesticides 

are also associated with other endocrine-related cancers, including prostate and breast.78,79 

Levels of multiple OC pesticides are associated with diabetes and obesity.46,80–82 Lastly, 

because of its lipophilicity, DDT accumulates in adrenal glands.58

Prospective studies show that OC pesticide levels are higher among Black and Asian 

women compared with White women.83,84 Furthermore, recently immigrated Hispanics/

Latinos have higher levels of OC pesticides than longer-term US residents of the same 

race/ethnicity, suggesting important international exposure disparities.7,50 Importantly, OC 

pesticide exposures vary based on occupation and income, with agricultural work an 

important exposure source.85

Air Pollutants

Air pollution includes atmospheric contamination by a wide array of chemical, biologic, and 

physical agents. The most common air pollutants include fine particulate matter less than 

10 μm and less than 2.5 μm in size (PM10 and PM2.5, respectively), ozone, and nitrogen 

dioxide (NO2), among others. Although outdoor air pollution is more widely appreciated, 

indoor air pollution is increasingly recognized to adversely impact health. Many studies 

have linked various air pollutants to endocrine disorders. Indeed, elevated PM and NO2 

exposures are associated with dysregulated glucose homeostasis and increased diabetes 

risk.86,87 Additionally, air pollution is implicated in the progression of childhood and 

adult obesity.88,89 This metabolic dysfunction is likely further exacerbated by associations 

between PM and other conditions, such as chronic liver disease.90 Lastly, although more 

evidence is needed, air pollution has been linked to male infertility, including reduced sperm 

motility and impaired gametogenesis.91,92

Critically, air quality varies geographically. Minority communities are disproportionately 

situated in areas with higher levels of multiple air pollutants, with exposures amplified 

by low-income status.93,94 Additionally, minority communities are more likely to live 

in geographic areas with higher levels of traffic-related air pollution, which contributes 

significantly to NO2 exposure and more toxic forms of PM.95,96 Black and Hispanic/Latino 

communities have been noted to have some of the highest air pollution exposures.97 With 

the implementation of federal environmental policies, absolute air quality in the US has 

improved since 1990; however, racial/ethnic exposure disparities persist under the influence 

of income inequality and historical discriminatory policies.7,98 Moreover, lower income 

status is consistently shown to predict exposure to higher air pollution levels independent of 

race, ethnicity, or sex.99
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Per- and Polyfluoroalkyl Substances

PFASs encompass a diverse family of synthetic chemicals widely used in manufacturing 

and consumer products, including food packaging, cookware, and outerwear among others. 

Considered “forever chemicals,” PFASs are another class of POPs with long half-lives that 

contaminate food, water, soil, and air. Various PFASs are associated with multiple adverse 

endocrine effects. These include links to diabetes, obesity, NAFLD, and reproductive 

dysfunction.100,101

Importantly, PFAS exposures vary across populations. Black and Hispanic/Latino 

populations have been noted to have significantly higher PFAS levels compared with 

Whites.102,103 Although some studies suggest that PFAS levels have begun to decline, this 

is not true across all racial/ethnic groups. For example, individuals of Chinese descent were 

found to have almost no decline in PFAS levels between 1999 and 2011.104 Beyond race/

ethnicity, lower SES and food insecurity are also linked to PFAS exposures, potentially 

as a consequence of food packaging and chemicals in less expensive personal care 

products.103,105 A recent report by the National Academies recommends PFAS testing in 

those likely to have a history of elevated exposures, including those based on occupation 

and place of residence.106 Such expanded testing may further illuminate PFAS exposure 

disparities.

Toxic Metals/Metalloids

Toxic metal/metalloid exposures include organic and inorganic forms of several elements, 

including arsenic, cadmium, and lead. These elements leach naturally into groundwater 

via geochemical processes; however, environmental exposures are enhanced via historical 

and current anthropogenic activities. Climate change also increases exposure to toxic metals/

metalloids. Arsenic exposure threatens the health of millions of people worldwide, with 

exposure occurring through contaminated food and water, tobacco use, and industrial 

activities among other processes.107 Cadmium contaminates food, water, and tobacco; it 

is also found in plastics, dyes, and fertilizers.108 In addition to occupational contact, lead 

exposure occurs through lead-containing products, including some cosmetics and jewelry, 

and via inhalation and ingestion from contaminated foods, lead plumbing, lead-based paints, 

and the largely historical use of leaded gasoline.109

Toxic metals/metalloids are linked to multiple acute and chronic adverse health effects 

through a variety of mechanisms, including oxidative stress, inflammation, and endocrine 

disruption.110 Despite similar mechanisms of toxicity, metals/metalloids may uniquely target 

certain organ systems. With respect to metabolic disease, arsenic and cadmium are noted to 

disrupt metabolic physiology, promoting the development of insulin resistance and diabetes, 

with somewhat conflicting evidence regarding their obesogenic properties.111 Both alone 

and in combination with other toxic metals, lead is associated with diabetes.112 These metals 

are also implicated in other endocrine conditions including thyroid disruption, infertility, and 

other reproductive disorders.113–115

There are important racial disparities in toxic metal/metalloid exposures. For example, 

lead is a major public health threat in the US, and there is extensive evidence that Black 
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and Hispanic/Latinx families are more highly exposed, especially those who live in low-

income areas.116 Additionally, in utero and postnatal lead biomarkers are higher in Black 

children.117 Regions with higher groundwater arsenic levels tend to be home to greater 

minority populations, especially Hispanics/Latinxs.118 Exposures also vary across countries 

as more recently immigrated individuals have higher toxic metal/metalloid levels than 

individuals who have lived in the US for longer.119 Lastly, regardless of race/ethnicity, lower 

SES is associated with increased risk of heavy metal exposures, including lead, cadmium, 

and arsenic.120

Brominated Flame Retardants

Added to consumer products, such as furniture, insulation, plastics, and electronics, flame 

retardants are synthetic chemicals used to prevent the initiation or spread of fires.121 The 

most widely used brominated flame retardants (BFRs) are polybrominated diphenyl ethers 

(PBDEs) and polybrominated biphenyls. BFRs are persistent pollutants that accumulate 

in the environment and in human tissue, with contaminated dust the major source of 

BFR exposures, especially in North America.122 BFRs are associated with various adverse 

endocrine health effects, including diabetes, obesity, altered thyroid function, cancer, and 

reproductive dysfunction.123

Studies have shown that lower income individuals and low-income housing residents had 

higher exposures to PBDEs, especially children.124,125 There are also significant gender 

disparities in BFR exposures. Among young adults in China, women had PBDE levels 

three-times higher than those of men.122 Racial/ethnic disparities in BFR exposures are also 

noted, with Black and Hispanic/Latinx populations having the highest PBDE exposures.126

SUMMARY

Multiple social and structural determinants of health undoubtedly contribute to the marked 

racial/ethnic-, gender-, and socioeconomic-based disparities in endocrine health; however, 

the contribution of environmental injustice is vastly underappreciated. Indeed, those groups 

disproportionately burdened by endocrine disorders are often exposed to higher levels of 

various EDCs, including PCBs, phthalates, bisphenols, OC pesticides, air pollutants, PFASs, 

toxic metals/metalloids, and BFRs. Furthermore, the contribution of disparate exposures to 

health disparities is likely underestimated because of a paucity of data examining the adverse 

effects of combined EDC exposures. As such, health equity requires interventions to address 

environmental injustice. Such approaches must include a complementary array of individual 

action and public policy,127 the latter of which is inadequately used.128 Based on the 

Developmental Origins of Health and Disease hypothesis that posits long-term health risks 

imposed by stressors during sensitive developmental windows (including EDC exposures), 

it is essential that interventions be targeted to those most vulnerable, including pregnant 

mothers and infants, among others. However, it is also critical to recognize that EDC 

exposures and their disproportionate burden on low income and communities of color is a 

systemic problem for which individual action is insufficient. Rather, policy interventions are 

required, including robust efforts to identify EDCs before they enter commerce, eliminate 

EDCs already in use, mitigate contaminated sites, and develop socially just policies that 
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end the discriminatory siting of polluting industries. Vigorously pursued, such efforts have 

the potential to improve endocrine health equity while reducing the burden of disease for 

everyone.
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KEY POINTS

• Vulnerable populations carry a disproportionate burden of multiple endocrine 

disorders and their associated comorbidities and medical costs.

• Racial/ethnic minorities, those with low incomes, and other disadvantaged 

groups are disproportionately exposed to various endocrine-disrupting 

chemicals (EDCs) linked to adverse endocrine health effects.

• Achieving endocrine health equity requires comprehensive efforts to eliminate 

environmental injustice.
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CLINICS CARE POINTS

• Health care providers should recognize that EDC exposures may amplify 

endocrine disease risk and incorporate occupational and environmental 

history-taking into their practices to identify modifiable patient-specific 

environmental risk factors.

• Patients should be offered strategies to reduce their exposures to EDCs (Table 

2).

• Although not yet broadly endorsed, clinicians should follow 

recommendations of professional organizations and consider measuring EDCs 

in patients likely to have a history of high-level exposures, as recently 

recommended for PFASs.

• Health care providers should advocate for incorporation of environmental 

health into clinical practice guidelines, public policies that promote 

environmental health, and improved environmental health literacy among the 

health care workforce and patients.
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Fig. 1. 
Summary of endocrine-disrupting chemicals with known exposure disparities and their 

effects on the endocrine system. These manifestations may be direct effects or downstream 

consequences of hypothalamic and/or pituitary dysfunction. BFRs, brominated flame 

retardants; OC Pesticides, organochlorine pesticides; PCBs, polychlorinated biphenyls; 

PFAS, per/polyfluoroalkyl substances. (Created with BioRender.com.)
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Table 1

Endocrine-disrupting chemical exposure disparities

Endocrine Disruptor More Highly Exposed Groups Endocrine Impacts

Polychlorinated biphenyls Non-Hispanic Black populations49

Pacific Islanders and Native Americans49

US-born individuals50

Immigrant women119

Low income51

Thyroid dysfunction43

Obesity44

Diabetes45,47

Adrenal dysfunction10,58

NAFLD48

Phthalates Women60

Non-Hispanic Black populations59

Mexican Americans59

Low income61

Male infertility56

Diabetes43,44

Obesity129,130

Bisphenols Women67

Low income67,70,71

Non-Hispanic Black populations68,69

Polycystic ovarian syndrome65

Male infertility56

Obesity44

Diabetes66

Adrenal dysfunction58

Organochlorine pesticides Non-Hispanic Black populations83

Asian populations84

Women84

Immigrants7,50

Low income85

Thyroid dysfunction75–77

Diabetes46,80,81

Obesity81,82

Adrenal dysfunction58

NAFLD131

Air pollution Non-Hispanic Black populations93,94

Hispanic/Latinx Americans97

Low income93,94,98,99

Diabetes86,87

Obesity88,89

Infertility91,92

Per- and polyfluoroalkyl substances Women103

Chinese populations104

Black populations102

Hispanic/Latinx populations102

Low income103,105

Diabetes100

Obesity100

Reproductive dysfunction100

NAFLD101

Toxic metals Black populations116,117

Hispanic/Latinx Americans116,118

Low income116,120

Immigrants119

Diabetes111,132

Reproductive dysfunction113

Infertility114

Thyroid dysfunction115

Brominated flame retardants Low income124,125

Women122

Non-Hispanic Black populations126

Hispanic/Latinx populations126

Diabetes123

Obesity123

Thyroid dysfunction123

Reproductive dysfunction123
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Table 2

Proposed strategies to reduce EDC exposures

Exposure Source Interventions

Personal and home 
care

  1. Wash hands regularly using fragrance- and antibiotic-free soaps.
  2. Regularly clean floors and remove dust using a damp cloth.
  3. Eliminate or drastically reduce use of household chemicals, including cleaning supplies, pesticides, and solvents.
  4. Choose electrical appliances and lawncare equipment.
  5. Forbid smoking indoors.
  6. Do not burn trash or yard waste.
  7. Read product labels and avoid items containing parabens, bisphenols, and phthalates.
  8. Minimize use of products packaged or stored in plastics.
  9. Avoid cosmetics with synthetic fragrances, phthalates, or toxic metals. Choose instead those labeled as “no synthetic 
fragrance,” “scented with essential oils,” or “phthalate-free.”
10. Minimize handling of receipts.

Food and 
beverages

  1. Prioritize eating locally grown fresh or frozen foods.
  2. Ensure adequate intake of calcium, iron, and iodine and other essential vitamins and minerals.
  3. Consume a diversified diet that is high in fiber.
  4. Consult local guidance regarding safe sport fish consumption.
  5. Trim fat from meat and skin from fish. Cook meat and fish on a rack to allow fat to drain.
  6. Avoid canned, processed, and fast foods.
  7. Store food in glass, stainless steel, or porcelain containers.
  8. Avoid heating foods in plastic containers.
  9. Consider testing your water and using a water filter.
10. Determine whether a lead service line provides water to your home and pursue local programs to remove and replace 
it.

Travel and 
transportation

1. Schedule outdoor activities, including exercise, at low traffic times and away from busy roads.
2. Check local air quality and avoid outdoor activities when air pollution levels are high.
3. Pick efficient travel routes that limit time in traffic.
4. Substitute driving with active transportation (walking, cycling, and public transportation).
5. Encourage local school councils to reduce school bus emissions, including “No Idling Zones.”

Industrial 
activities and 
urban design

1. Advocate for sustainable development, including renewable energy, walkability, bike lanes, and public transit.
2. Promote the expansion of green spaces and tree planting and the elimination of synthetic turf fields and the use of 
pesticides.
3. Demand transparency in product labeling and access to real-time data on local industrial emissions to empower 
individual actions.

Adapted from Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the 
Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne). 2019;10:33. Published 2019 Feb 4.
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