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BACKGROUND: The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consor-
tium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding
raised expectations for epigenome-wide association studies (EWAS) of other exposures.
OBJECTIVE: We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future
recommendations.
METHODS: We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-
analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals,
other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure
biomarkers.

RESULTS: Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the
field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for
birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, die-
tary glycemic index, particulate matter with aerodynamic diameter <10 lm and <2:5 lm, nitrogen dioxide, mercury, cadmium, arsenic, electronic
waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker
creation.

DISCUSSION: Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS
could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures
themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with
improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic under-
standing of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/
EHP12956

Introduction

Prenatal Exposures That Impact Health and Epigenetics
Environmental exposures, including chemicals and other exoge-
nous factors, are prevalent and heterogenous. The United States
produces and uses more than 85,000 different chemicals,1 includ-
ing more than 100 regularly detected in pregnant people’s biospe-
cimens.2 Levels of numerous chemicals are higher among
pregnant Black andHispanic people and those of lower educational
attainment,3 representing an equity issue. Many chemicals cross
the placenta, influencing fetal cellular function (Figure 1A). The
prenatal period of rapid and exquisitely timed cellular differentiation
and expansion confers heightened susceptibility to exposures. For
example, in utero exposure to lead impairs neurodevelopment,7 ar-
senic is associated with impaired lung function and increased cardi-
ovascular mortality,8 cigarette smoke causes reduced birth weight
and reduced infant lung function,9 and folic acid deficiency causes
neural tube defects.10 Exposures during pregnancy may impact the

developing embryo/fetus with consequences for postnatal life,11

known as the Developmental Origins of Health and Disease
(DOHaD) hypothesis.12 Investigating the totality of diverse pre-
natal exposures, termed the exposome,13 with later health and
disease is an evolving area of etiological, prevention, and policy
research. Specific and accurate retrospective markers of expo-
sures experienced years prior to health outcomes are unfortu-
nately rare, limiting available data for most prenatal exposures to
prospective collection efforts.

Epigenetic marks may represent one such useful persistent bio-
marker of exposure, and potentially amechanistic link between expo-
sures and lagged health effects. Epigenetic mechanisms are essential
for normal development: Errors in epigenetic processes can result in
serious developmental disorders.14 DNA methylation, a type of epi-
genetic mark, is typically observed at cytosine residues upstream of
guanine residues (CpG sites). Although other molecules, such as his-
tones, can bemethylated, henceforth we refer to DNAmethylation as
“methylation.” During normal reproduction and development, two
major waves ofmethylation reprogramming occur shortly after fertil-
ization and during gametogenesis.15 Cells maintain their differenti-
ated lineage in part because of their methylation patterns.16 Prenatal
environmental exposures can leave epigeneticmarks.

Environmental epigenetics was pioneered through clever model
system research.17 For example, in the Agouti mouse model,18 pre-
natal exposures including bisphenol A,19 dietary methyl donors,20

and lead21 caused persistent methylation changes in offspring, dem-
onstrating that diverse prenatal environmental exposures can impact
offspring epigenetics. In humans, theDutchHungerWinter is a clas-
sic example linking prenatal exposures to postnatal health andmeth-
ylation. Nazi blockades of food supplies produced famine in the
Netherlands during the years 1944–1945. People pregnant then bore
children with increased rates of cardiovascular, metabolic, and
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psychiatric disorders.22 Timing and degree of prenatal exposure to
this famine were also associated with adult methylation differences.23

Early-life epigenetic changes that persist into later life may provide
biomarkers of prenatal exposures and/or a potential mechanism of
later health effects.

Scope of This State-of-the-Science Review
This review of the current state of the science is motivated by excit-
ing recent advances in both exposure and methylation assessment
investigations in the field of prenatal environmental epigenetic
epidemiology. Environmental exposures during pregnancy are

Figure 1. (A) Sources of prenatal exposures can include (clockwise from top left) dietary intake from food and supplements, pollution, psychosocial stress,
and smoking and alcohol drinking behaviors. Exposures enter the pregnant person’s body typically through inhalation, ingestion, or dermal absorption. Once in
the body, exposures are distributed and metabolized. They can interact with DNA in various tissues, including placental and fetal tissues. These are the major
categories of exposure during pregnancy that were assessed for association with DNA methylation in this review article. (B) Common sources of information
for exposure assessment include questionnaires, spatial sensors linked to participant residential history generally followed by exposure modeling, as well as
blood- and urine-based exposure biomarkers. These methods are used by environmental health scientists to quantify individual levels of exposure to chemicals
and to estimate the relevant time frame the exposure measure is applicable. (C) When we test for a relationship between an environmental exposure and DNA
methylation, typically using multivariable regression methods, this is a test of association. Association tests do not indicate causation,4 because causal inference
requires additional assumptions.5 In the case of environmental exposures and DNA methylation, a reverse causation scenario would mean the DNA methylation
influences the exposure level. Although it is possible that for a given exposure level, differential methylation at genes essential for metabolism could influence
measured concentrations of the contaminant (internal dose), methylation is unlikely to be causally related to being exposed. For this reason, reverse causation
is less of a concern in studies of exogenous environmental exposures than in EWAS of disease or physiologic traits.6
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estimated through multiple methods with varying accuracy, reli-
ability, and cost (Figure 1B). The availability of high-throughput,
low-sample-input arrays with reasonable epigenomic coverage24

enables measurement of methylation in pregnancy cohorts.25,26
Epigenome-wide association studies (EWAS) using these arrays
test for associations between hundreds of thousands of individual
CpG sites and environmental exposures (Figure 1C). Promising
findings from groundbreaking studies in modest sample sizes have
led to large, international, and collaborative consortia, which facili-
tate rigor and reproducibility of EWAS findings.26,27 Recent map-
ping of the epigenome across tissues and cell types,28 more
frequent availability of genomic or other omic data in the same
samples, and evolving bioinformatic tools are enabling stronger bi-
ological inferences on EWAS findings. Chemical exposure assess-
ment and statistical methods advances are starting to allow
evaluation of many environmental exposures simultaneously to
comprehensively assess the exposome.29,30 Together, these efforts
are increasing the identification of reproducible epigenetic effects
of the prenatal environment.30

Here, we review the state of the science on associations between
the prenatal environment andmethylation.We take an epidemiolog-
ical perspective to evaluate population-level studies. First, we sum-
marize literature on perinatal environmental EWAS meta-analyses
and studies with attempted replication. Consortium efforts have
identified reproducible methylation signatures of some prenatal
exposures, most notably smoking. Second, we evaluate the imple-
mentation of exposure biomarkers for those perinatal exposures
with robust and reproducible methylation signatures, a major
advance for identifying health impacts of exposures going forward.
Third, we provide epidemiological considerations that can impact
the power to detect associations in the EWAS framework. Fourth,
wemake recommendations for new cohorts considering prenatal ex-
posure EWAS. Fifth, we discuss putativemechanisms linking expo-
sures to methylation and challenges in determining their role in
exposure-related health outcomes. Finally, we describe areas of
needed future development and recommend approaches for imple-
menting emerging tools to provide insights to advance the field.
With these analyses and recommendations, this article illustrates the
current strengths and weaknesses of perinatal environmental epige-
netics research and highlights its future potential.

Methods
We retrieved EWAS of prenatal exogenous exposures with des-
ignated search terms identified via PubMed, Web of Science,
and Embase searches through 10 May 2022 (search terms in
Supplemental Material, “Supplementary Methods”). Because a
global term such as environmental exposures may fail to capture
specific environmental exposures, we included a broad collec-
tion of search terms. Abstracts for all retrieved studies were
screened using specified inclusion and exclusion criteria based
on the research question of interest. To be included, studies had
to be conducted in human populations evaluating the relation-
ship between prenatal exogenous exposures and epigenome-
wide methylation. To avoid including duplicated studies, we
included only original research articles, excluding reviews and
commentaries. Because we focused on epigenome-wide studies,
we excluded studies that reported only associations with sum-
mary DNA methylation measures (e.g., global methylation, epi-
genetic clocks) or candidate CpGs, genes, or regions. Given our
focus on exogenous exposures, we excluded EWAS evaluating
nonexternal exposures, for example, maternal health constructs
such as maternal depression, anxiety, or body mass index. All
studies meeting inclusion criteria after abstract screening were
briefly reviewed to determine the following key characteristics:
the genetic ancestry of the population; the exposure; the tissue

and method of DNA methylation measurement; the sample size;
the number of significant CpGs, genes, or regions reported; the
method of correcting for multiple testing; and the use of meta-
analysis or replication. Abstract screening and brief review were
conducted by F.B., with oversight by K.M.B. and S.J.L. In high-
dimensional analyses such as EWAS, the myriad statistical tests
require large sample sizes to limit false positive findings, which can
also be minimized by replication testing in independent studies or
meta-analyses across studies, which also provides evidence of con-
sistency. From the earliest days of genome-wide association studies
(GWAS), attempted replication has been regarded as an essential
design element.31,32 Although replication does not guarantee causa-
tion, it provides stronger statistical evidence for association, makes
artifactual association less likely, and improves effect estimates.
Associations might not replicate from one population to another for
reasons related to true sources of heterogeneity, including genetic
ancestry and exposure distribution differences, and these cannot be
evaluated without attempted replication.31,32 Therefore, as a final
inclusion criterion, we restricted in-depth review to only studies that
were either meta-analyses or single studies that attempted replica-
tion in an independent study (regardless of replication success).

Results
Our literature search identified 360 peer-reviewed publications.
After excluding studies with only global or candidate methylation
positions or examining nonexogenous exposures (Figure S1), we
performed further review for 134 exogenous exposure EWAS con-
ducted from 2012 to 2022. The vast majority (n=128) of these
EWAS used the Illumina450K or EPIC arrays, and most measured
DNA methylation in cord blood, peripheral blood, or placental
tissue.Most of these EWASwere conducted inEuropean or primarily
European ancestry populations (Figure 2A–B).Meta-analyses or rep-
lication attempts were slightly more common among EWAS con-
ducted in European or primarily European ancestry populations
(43%) than in other ancestries (30%), likely reflecting greater avail-
ability of European ancestry cohorts in which to perform replication
analyses, a situation that was also observed in GWAS.31 Sample size
of EWAS varied across exposure categories, with the largest EWAS
for prenatal maternal cigarette smoking (n=6,685), but with many
EWAS reporting sample sizes in the hundreds (Figure 2C; Table S1).
Of 134 reviewed studies, only 19 (14%) have been conducted in
cohorts of 1,000 or more individuals. Some studies with smaller sam-
ple sizes that did not attempt replication reported high numbers of sig-
nificant differentially methylated positions (Figure 2D). Of the 134
reviewed studies, 51 reported a replication attempt or were a meta-
analysis (Table 1). These studies were reviewed in depth and sum-
marized below.

Maternal Smoking
Given smoking’s known impacts on offspring health,9 most birth
cohort studies collect some smoking data, mostly via question-
naires. Thus, smoking EWAS were among the most frequent and
largest of the EWASwe identified. Smoking EWAS have success-
fully identified robust and well-replicated methylation differences
in newborn blood (Table 1), with larger studies revealing more dif-
ferentially methylated CpGs (DM-CpGs). Smoking EWAS have
considered both timing of exposure and of DNAmethylation mea-
surement. Changes to methylation appear to reflect sustained
smoking across the pregnancy, not smoking limited to early preg-
nancy.84 Many methylation differences observed at birth persisted
into later childhood.33,85 Substantial overlap existed in DM-CpGs
from EWAS meta-analyses of sustained prenatal exposure to
maternal cigarette smoking in newborns33 and personal current
cigarette smoking in adults.86 However, many geneswere uniquely
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differentially methylated in newborns,34 underscoring the impor-
tance of timing on exposure influences and epigenetic plasticity.

The placenta provides oxygen, nutrients, and hormones to the
fetus. Placental abnormalities have been linked to later health
outcomes in offspring.87 Maternal blood perfuses the placenta,

exposing it to circulating environmental chemicals. An EWAS
meta-analysis (n=1,700, seven studies) identified widespread
impacts of prenatal smoking on placental methylation.35 Overlap
with the most prominent DM-CpGs in newborn blood was mini-
mal; reasons for this tissue specificity are unclear. Similar to

Figure 2. (A) The number of epigenome-wide association studies of external exposures identified in this review (n=134 studies; one study appears twice in
bar graphs because performed replication for one exposure tested but not the other) by year of publication, reported genetic ancestry, and replication or meta-
analysis status. (B) The number of epigenome-wide association studies of external exposures with meta-analysis or replication (n=51 studies reviewed in
depth) by reported genetic ancestry. (C) Sample sizes of prenatal environmental epigenome-wide association studies (n=134; studies involving multiple expo-
sures represented as multiple points) by exposure category (x-axis) among meta-analyses (red squares), studies incorporating replication (blue triangles), and
other studies (gray dots). Midline: median sample size, lower whisker: smallest sample size that is greater than or equal to the 25% – 1:5× IQR, upper whisker:
largest sample size that is less than or equal to the 75%+1:5× IQR, box limits: 25% and 75%; these statistics are reported in Table S1. (D) The number of sig-
nificant differentially methylated positions reported in each study graphed against the sample size of each study and faceted by the category of exogenous expo-
sure considered. Only studies using EPIC or 450K arrays that reported significance at either a FDR<0:05 or Bonferroni correction represented (n=106 of
original 134 studies, some studies represented >1 time, because they tested multiple exposures). The y-axis range varies across panel of exposure category.
Data used to generate Figure 2 is provided in Table S2. Note: FDR, false discovery rate; IQR, interquartile range.
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results in newborn blood, placental findings were much more
extensive for sustained smoking than for any smoking in preg-
nancy, supporting the importance of exposure timing.

Maternal Diet
Maternal nutrition can impact fetal development and child
health.88 Assessing food and nutrient intake requires detailed die-
tary assessments that are less frequently collected than smoking
information. Some nutrients are more reliably assessed by blood
measurements than by questionnaires, and these more expensive
measures requiring appropriate samples are available in even
fewer birth cohorts. Thus, fewer EWAS of maternal prenatal diet
with smaller sample sizes have been conducted to date than
smoking EWAS (Table 1).

Folic acid supplementation in pregnancy is associated with
fewer neural tube defects.10 Widespread differential methylation
by maternal blood folate levels was reported in an EWAS meta-
analysis.47 Prenatal alcohol consumption,89 vitamin D levels,90

iron levels, and Mediterranean diet91 are also associated with fetal
and child health outcomes. However relatively large EWAS meta-
analyses (n range 1,062–3,075) of these exposures have found few
(range: 0–3) DM-CpGs.45,46 For most nutrients and dietary intakes
measured by questionnaires, substantial measurement error in die-
tary assessment will require large sample sizes to adequately test
for reproducible associations.

Environmental Contaminants
Prenatal air pollution exposure has been associated with shorter
gestation and impaired fetal growth.92 EWAS meta-analyses of
NO2 and particulate matter (n range 850–1,949) reported between
1 and 14 DM-CpGs (Figure 2). As with diet, air pollution is het-
erogeneous and generally measured differently and with error
across locations, decreasing power.

Prenatal exposures to metals have been associated with adverse
offspring health outcomes.93 The largestmetals EWASmeta-analysis
(n=1,462) of prenatal methylmercury exposure and cord blood
methylation reported 2 CpGs [false discovery rate ðFDRÞ<0:10];
neither replicated. EWASmeta-analyses of othermetals and elements
have been small (n range 120–484) and reported few significantly dif-
ferentiallymethylated sites (range 0–5). Various other prenatal chem-
ical contaminants (see Table 1) have been examined in EWAS of
newborn blood or placenta in single studies, without successful
replication.

Social Stressors
Psychosocial stressors before and during pregnancy can impact
offspring health.94 One EWAS of maternal socioeconomic posi-
tion in a United Kingdom cohort (n=914–974) identified differ-
ential methylation in blood at 4 CpGs at birth, none in
childhood, and 20 in adolescence, but no sites replicated.82

Exposure to psychosocial stressors can be challenging to har-
monize across studies. Very large sample sizes will likely be
required to find true associations. An ongoing Pregnancy And
Childhood Epigenetics consortium (PACE) EWAS project is
examining carefully harmonized prenatal stress measures across
multiple cohorts.

Other Exposures
A large meta-analysis (n=2,644) comparing children conceived
using medical assistance to those conceived without assistance
identified 5 DM-CpGs; none successfully replicated.83T
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Summary of Prenatal EWASMeta-Analyses and Potential
Application as Biomarkers
When extensive, replicable, differentially methylated sites are
available, a supremely useful application is the development of
methylation biomarkers for prenatal exposures.95 (See Figure 4)
For example, robust methylation signals of exposure to prenatal
cigarette smoke enabled creation of methylation biomarkers of
prenatal smoke exposure in newborns,98 older children,99 and
young adults.99 For methylation biomarker generation, it is im-
portant to have a gold standard of exposure. In studies of prenatal
smoke exposure, measurements of cotinine levels, a biomarker of
recent smoking, enable identification of pregnant individuals
who falsely report as nonsmokers.98 Objective methylation bio-
markers are a major advance for identifying exposure health
effects.95 For example, on questionnaires, some smokers falsely
deny smoking, with more pronounced underreporting in pregnant
persons,100 leading to information bias. Smoking data may also
be missing, and missingness is likely nonrandom—another
source of information bias. Methylation exposure biomarkers
avoid these sources of bias. In addition, methylation biomarkers
in offspring offer information on both dose and duration of smok-
ing across pregnancy that are difficult for respondents to accu-
rately report.101 Epidemiological questionnaires often only
considered any smoking during pregnancy. However, half of
women smoking at conception quit soon thereafter.33 Exposure
timing is critical for health impacts, because sustained smoking
across pregnancy reduces birth weight, whereas smoking end-
ing early does not.102 This finding matches EWAS findings,
where methylation signals reflect sustained smoking across
pregnancy, not transient early smoking.33,84 In contrast, cotinine,
the previous primary biomarker of smoking, reflects only very
recent exposure. By capturing additional parameters of exposure
that are difficult to collect on questionnaires and identifying smok-
ers who would be classified as nonsmokers, methylation bio-
markers should improve researchers’ ability to accurately estimate
health impacts of exposure. Because some methylation biomarkers
of prenatal smoke exposure persist,99 they are useful in childhood
studies. Smoking strongly correlates with many harmful expo-
sures. Methylation biomarkers allow thorough adjustment for con-
founding introduced by smoking exposure when studying other
exposures. Clearly methylation biomarkers greatly improve on
previous assessments of prenatal smoke exposure.

Success of EWAS in generating biomarkers of maternal
smoking provides a proof of principle for other pregnancy expo-
sures. Routinely stored newborn blood spots become a goldmine
of information about the prenatal environment for studies of later
childhood health outcomes.103 Even for exposures that can be
queried in later childhood, methylation biomarkers avoid biased
recall influenced by disease diagnosis.

Standard and novel statistical and computational approaches
to biomarker generation from EWAS findings have recently been
reviewed.95 Reliable biomarker generation is possible only when
substantial and reproducible differential methylation is identified.
To date, only smoking and folate meet this criterion (Figure 2).
In the “Discussion” section, we highlight important factors influ-
encing EWAS power and suggest advances that will lead to
better-powered EWAS of many exposures and thus novel bio-
marker generation.

Discussion
Our review suggests that although the number of prenatal EWAS
conducted has increased over recent years, reproducible DNA
methylation signatures for prenatal exposures besides cigarette
smoking and folate are currently lacking. We hold that this

reflects a lack of power, rather than a failure of the approach. To
expand on current research and potentially identify additional
effects of prenatal exposure on methylation, better-powered
EWAS are necessary.

The genome-wide nature of EWAS impacts power. In any
high-dimensional genomic analysis, the large number of statistical
tests results in greater testing burden and requires larger sample
sizes. The burden of multiple tests creates a trade-off between
higher coverage of the methylome and reduced power. As technol-
ogy advances, more sites are tested for differential methylation.
We saw this happen with the shift from the earlier Illumina450K
array (∼ 480,000 CpGs) to the higher coverage EPIC (>850,000
CpG) and the EPIC version 2 (>935,000 CpGs) arrays and it may
happen again with the implementation of reduced representation or
whole genome sequence bisulfite sequencing. Each time, themulti-
ple testing burden correspondingly increases. When holding all
other factors constant, larger sample sizes increase power. Yet the
largest EWAS conducted to date are small in comparison with
genome-wide analyses. For example, the most recent birth weight
GWAS has a sample size of 321,223,104 whereas the largest EWAS
of birth weight has a sample size of 8,825.105 In GWAS, larger sam-
ple sizes have generally led to identification of many additional
genetic variants with smaller effect sizes. The larger the expected
magnitude of the association, the higher the power to detect it. For
maternal smoking and newbornmethylation, only a few genes, such
as AHRR, GFI1, andMYO1G, have CpGs with large effect sizes—
10%–15% differences by exposure group.33 However, the average
smoking effect sizes across all significantly differentially methyl-
ated sites have been small, in the range of 0.5% differences34 but
nonetheless are highly reproducible across studies. In EWAS meta-
analyses of other exposures to date, effect sizes have generally been
small but are potentially important for child health.25 For studies to
identify these small differences, or reliably conclude that they do not
exist, samples sizes need to be large.

The power of any exposure effect study is also a function of
the exposure prevalence (for a binary exposure) or variability (for
a continuous exposure) and of the precision and validity of the
measures of both outcome and exposure.106 Optimizing these fac-
tors is often more difficult to achieve than simply increasing the
overall sample size. We reflect on some of these factors and give
recommendations for addressing them below.

New pregnancy cohort studies seeking to perform prenatal envi-
ronmental EWAS studies in the future can take advantage of lessons
learned in the field and prepare themselves to take advantage of
emerging approaches. Each study will have specific research ques-
tions and resource constraints. Below, we walk through general rec-
ommendations to improve study power and validity at each stage of
the sample and data collection process. Rapid developments are being
made in environmental epigenetics. The greatest improvements in the
ability of EWAS to detect prenatal exposure effects will come from
advances in inclusion,methods, and biological interpretation.

Diversity, Equity, and Inclusion
Study participants are the foundation of every epidemiological
research study. Most prenatal (Figure 2) and adult EWAS identi-
fied in this review were from participants of European genetic
ancestry.107 GWAS faced a similar limitation and took steps to
increase coverage of diverse populations.108 Multiethnic studies
enable confirmation of signals in diverse groups, while identifying
those unique to one group who would otherwise escape discovery.
Methylation is partially heritable and levels at specific locimay dif-
fer across populations.109 As in GWAS, inclusion of diverse popu-
lations will extend the informativeness of EWAS.107,110 Partnering
with communities to ensure research participants are represented
from diverse backgrounds is another essential area. We believe
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that expanding the participation in epigenetic research will allow
for the identification of signals that are either generalizable across
groups or specific within groups, which is important for biomarker
validation and mechanistic investigation.107 Similarly, it will be
important to expand the representation of participants included in
reference databases that are used for functional annotation and
interpretation of EWAS findings, such as the Genotype Tissue
Expression (GTEx) database.111

For environmental epidemiology studies, it is important to
recruit participants who may have a wide range of exposure levels.
Environmental health disparities across populations112 can influ-
ence exposure patterns relevant to prenatal EWAS.113,114 Including
diverse populations who may have greater exposure variability will
increase power to detect exposure related differential methylation.
Understanding complex factors underlying exposure variation
across geographic and racial/ethnic groups is critical to reducing dis-
parities115 and should inform future EWAS study designs and inter-
pretation offindings.

More diverse, interdisciplinary research teams lead to more
creative, innovative, different, and broad research questions116
and increase equity in the field.117 Reducing structural barriers
in training and funding, as supported by the recent National
Institutes of Health UNITE initiative,118 will enhance prenatal
epigenetics research.119

Journals should require authors to deposit entire EWAS meta-
analysis results in public databases such as the EWASCatalog120 and
should be annotated for ancestry. Deposition will support replication
testing in new studies, enable creation of methylation risk scores, and
stimulatemechanistic studies.

Tissue Selection and Biospecimen Storage for Epigenetic
Measures Including Cell Type–Specific Samples
Most prenatal EWAS use cord blood because it is easily collected
at birth and may be a surrogate tissue. To promote harmonization
of epigenetic measures with existing cohorts, we recommend that
new perinatal epidemiology studies collect newborn cord blood,
regardless of the additional samples they are collecting. Collection
of other available tissues should be based on health outcomes of in-
terest and feasibility. For example, placental tissue has recently
been an effective model of neurological and cardiovascular disor-
ders and is an emerging tissue type in environmental EWAS.35 If
the newborns in a birth or pregnancy cohort will be followed into
childhood, additional accessible tissues should be considered. In
children, blood collection is challenging, and thus buccal cells or
saliva are often used.121 Sampling disease-relevant target tissues
can improve EWAS inferences.122 Nasal epithelium, a proxy for
the lower respiratory epithelium,123 is easily collected in children
and has been used for EWAS of asthma and rhinitis124 but could
also help identify local effects of inhaled exposures. Skin cells can
be obtained noninvasively in children using tape and could be use-
ful for EWAS of eczema or sun exposure.125 Follicles from
plucked hairs can provide a source of stem cells.126 Fibroblasts can
be reprogrammed into induced pluripotent stem cells for further
toxicological investigation.127 Blood can be challenging to collect
in population-based studies of children. However, for some expo-
sures or health outcomes, blood may indeed be the relevant target
tissue or an excellent surrogate.122 The postnatal tissues of interest
may influence the selection of tissues at birth to enable longitudinal
epigeneticmeasures within a common tissue type.

DNA methylation analyses can be performed on whole blood
or whole tissue specimens, which can be stored frozen using stand-
ard practices. If the study’s goal is assessment of epigenetic marks
beyond DNA methylation, assessment of specific types of cells
(for example, mesenchymal stem cells128) or measurement of sin-
gle cells, careful investigation of the type of collection tubes and

storage and processing is essential. Standard freezing lyses cell
membranes; thus cell culture approaches or traditional cell count-
ing methods, such as complete blood counts, or cell sorting with
fluorescence-assistance, are possible only with fresh or specially
cryopreserved samples. These analyses may mandate the use of
cryopreservation tubes for blood collection. Use of cryopreserva-
tion tubes require centrifugation to isolate peripheral blood mono-
nuclear cells (PBMCs) within a few hours of collection and
aliquoting into cryovials containing freezing media. Sampling
processing steps may be less feasible during field sample collec-
tion, such as during home visits. Smaller studies may be able to
invest in the processing to focus on specific cell types, whereas
larger studies may opt to use bulk tissue specimens such as whole
blood. If biospecimens will also be used to measure other epige-
netic factors, additional consideration is required. If RNA will be
analyzed, RNA stabilizing solutions will be required. Ensuring
higher quality RNA samples at collection and storage can save
money during sequencing. Better-quality RNA samples can use
more affordable poly(A) tail selection and library preparation meth-
ods than the more expensive ribosome depletion methods required
for poorer quality samples. In our experience, routinely discarded
term human placental tissue often has lower RNA quality, as
expected, based on the physiology of pregnancy and labor,129 rela-
tive to other tissues such as blood, with implications for RNA
sequencing approaches. Many standard RNA extraction protocols
omit small RNAs, and additional care must be taken if these are of
interest. Epigenetic measures requiring chromatin (histone modifi-
cations, ATAC-seq) must also be considered at the sample-
collection phase. Sample collection and storage methods can influ-
ence stability of epigenetic measures.130 Samples can be processed
fresh for these measures, and archiving recommendations for either
snap freezing or slow freezing vary by tissue and lab.

Most tissues are complex mixtures of cell types with distinc-
tive methylation patterns. Including cell type proportions in
EWAS regression models can improve precision.131 Many expo-
sures influence cell composition,132 however, which might medi-
ate associations of exposures with methylation, and conditioning
on a mediator can introduce spurious effects. Cell proportions in
bulk tissue can be estimated from methylation measures using ref-
erence panels for many tissues including cord blood,133 saliva,134
and placenta.135 Cell proportions estimated from methylation pro-
vide another relevant outcome measure.131 Newer methods lever-
age single-cell RNA sequencing (scRNA-seq) data to deconvolute
bulk tissue methylation data.136 ScRNA-seq identifies untargeted
cells in the tissue, including cells in various states of activation or
proliferation that might be influenced by exposure.137 Improved
cell estimation will also enable investigators to discern whether
exposure–methylation associations are driven by specific cell
types.138 For example, smoking effects might be partially medi-
ated by activating subpopulations of immune cells not captured in
published reference panels.139

Improved and Standardized DNAMethylation
Measurements
As noted above, current methylation arrays cover only a fraction
of the DNA methylome (935,000 CpGs on the IlluminaEPIC ver-
sion 2.0 array vs. 28.3 million in the genome). Beyond the
coverage-burden trade-off discussed above, the validity of DNA
methylation measurements can also impact the ability to reliably
detect associations with prenatal exposures. As expected, associa-
tions with exposures or outcomes have been disproportionately
observed at CpGs that are measured more reproducibly.140
Further, both arrays include many sites largely invariant in blood
in general populations.141 At these invariant CpGs, even the most
precise measurements will not be sufficient to reliably capture the
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tiny differences between individuals. Reproducibility of measure-
ment tends to be lower at CpGs with either very low (<10%) or
very high (>90%) levels of methylation.142 Removal of invariant
probes prior to analysis has been suggested to decrease statistical
testing burden and therefore increase power.143 However, even at
some loci with high interindividual variability, reproducibility
has been shown to be low.140 In the meta-analysis setting, it
would be important to show that these probes are uniformly
invariant or poorly reproducible across most populations, but
such data are lacking. Increased precision of DNA methylation
measurements will increase power. Illumina is developing a
methylation screening array intended to be sold at a lower price
with far fewer CpGs than the current EPIC version 2, targeting
CpGs differentially methylated in prior EWAS plus other inform-
ative content. We anticipate that as the price of methylation
arrays come down, using methylation exposure biomarkers in
population studies will become more feasible and widespread.
Like newer genetic arrays tailored for population-based studies
(e.g., Illumina Global Diversity Array), methylation arrays tai-
lored for using blood from diverse populations would increase
power of EWAS.

Whole genome bisulfite sequencing is increasingly being rec-
ommended to increase genomic coverage. Although the increased
genomic coverage enhances completeness of environmental meth-
ylation signatures, it also increases the statistical testing burden,
decreasing power and requiring larger sample sizes. To improve
the feasibility of implementing sequencing in epidemiological
cohorts, decreases in sample input requirements and cost are
needed. Alternative and more affordable sequencing approaches,
including reduced representation bisulfite sequencing or sequenc-
ing following TruSeq Methyl Capture EPIC library preparation,
can limit the genomic areas sequenced, therebymaintaining power.
The TruSeq approach is designed to be compatible withmicroarray
approaches and users have observed high technical correlations.144

High sequencing depth is recommended for methylation quantifi-
cation.145 Low sequencing depths can result in measurement error,
also decreasing power.

Like most laboratory assays, methylation arrays are subject to
batch effects and lab drift. In early EWAS, expectation of similarity
to genotyping, which is relatively robust to batch effects, contrib-
uted to underappreciating the importance of randomizing cases
and controls, or exposed and unexposed, across plates and batches.
Batch effects in sequencing data can be an even larger issue than
for array-based measures.146 A recent comparison of split sample
reproducibility in measurements of methylation in newborn blood
samples between the EPIC array and bisulfite sequencing found
the array to be more reproducible.147 Improved preprocessing and
analytic methods for sequencing data will be needed to incorporate
these into consortia. With either array- or sequencing-based meth-
ods to assess methylation, appropriate control for technical sources
of variation is needed and improves power.148

Even though sequencing approaches are becoming cheaper and
offer better coverage, to promote replication and meta-analyses,
investigators may strongly consider including an Illumina DNA
methylation array for greatest harmonization opportunity with
other cohorts. The explosion of software for all aspects of process-
ing and analysis of array data makes themmore accessible to those
with less-specialized bioinformatic assistance or training. For the
widest genome-wide discovery, investigators may select whole
genome bisulfite sequencing approaches. Because there are few
epidemiological studies with sequencing measures available for
replication testing, investigators may need to adopt a testing and
replication sample set within their study population. To balance
costs, investigators may opt for an enriched sequencing approach,
such as reduced representation bisulfite sequencing, but this

approach may have limited overlap of coverage with previous
studies. When performing laboratory epigenetic measures, we
strongly recommend that investigators group multiple longitu-
dinal specimens for measurement at the same time to avoid
batch effects. This methodology may require waiting to measure
specimens from an earlier collection period until specimens
from a later collection period are available. This approach will
allow for the analysis of longitudinal epigenetic associations,
which enhances the ability to make causal inference. Stacking
multiple omics measures on the same participants improves the
biological interpretability of findings. For example, we recom-
mend measuring DNA methylation, genetics, and RNA expres-
sion in the same participants.

Improved and Standardized Considerations for Exposure
Assessment
Issues in exposure assessment for environmental epidemiology,
including special considerations in pregnancy, have been exten-
sively discussed elsewhere.149–152 Here we briefly touch on
points of special relevance to prenatal epigenetic studies. The
power to detect exposure effects on an outcome, including differ-
ential methylation, depends on both its prevalence (binary expo-
sures) or variability (continuous exposures) and on how well the
exposure is measured. If the exposure is very rare or hardly
varies, even the largest study will be poorly powered. For most
exposures, populations differ in the prevalence and/or variability
of any exposure, emphasizing the importance of diversity in pop-
ulations as discussed above. Regardless of the exposure’s preva-
lence/variability, if an exposure is poorly measured, exposure
misclassification can impact validity and power. Generally, if
misclassification is nondifferential with respect to the outcome
(as is often the case for prenatal exposures and DNA methylation
levels), the resulting bias is toward the null.153 In the setting of
meta-analysis (or pooled analysis), exposure misclassification
will be reduced when the exposure metric can be well harmon-
ized across studies. For prenatal exposure EWAS, considerations
of persistence of the chemical are important. For nonpersistent
chemicals with shorter half-lives (such as phthalates with a uri-
nary half-life <24 h), repeated measures during pregnancy better
characterize exposure.151,154 For some prenatal exposures, timing
during gestation of exposure may matter. For example, for mater-
nal smoking during pregnancy, methylation signatures in new-
borns predominantly reflect exposure that lasts throughout the
pregnancy rather than smoking that ends early in the preg-
nancy.33,84 About half of women smoking at the beginning of
pregnancy quit early during the pregnancy, but it is very uncom-
mon to take up smoking de novo later in pregnancy.33,84 Thus,
we cannot be certain that sustained smoking across pregnancy is
required or whether new smoking late in pregnancy would lead
to similar methylation patterns in newborns. Exquisitely detailed
measurement of exposure will not increase the power to identify
differential methylation if the timing captured during the preg-
nancy is not the relevant one. We recommend careful considera-
tion of timing, frequency, and method of exposure measurement
because these can impact the power and validity of an EWAS.

The decision of what method to use to measure an exposure of-
ten relates to pragmatic issues of availability, expense, and partici-
pant burden as well as the research question at hand. Some
exposures, such as prenatal smoking, are feasible to assess using
questionnaires, albeit with caveats expressed earlier, which
decreases costs of data collection, facilitating larger sample sizes.
When collecting exposure data via questionnaire, prospective data
collection is important because after development or diagnosis of
the condition, recall bias can influence participants’ exposure
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reports. Many prenatal exposures of interest cannot be reliably
measured via questionnaire.

Sometimes multiple sources of exposure data can be collected
and combined to improve measurement reliability. For example,
outdoor air pollution exposure can be estimated by combining resi-
dential history with measured exposure levels at routine monitor-
ing stations and/or satellite data, using modeling with land use
features, point sources of exposure, and spatiotemporal factors,
and that can incorporate corrections for measurement error.155,156

Measures relevant to climate change, including flooding and heat
islands, can also be obtained.157 Residential history-based meas-
ures are least invasive for participants (no participant contact or
biospecimens required) and can be selected for various periods of
time to test windows of susceptibility. Additional information on
how and where participants spend their time can be incorporated
with additional participant burden. These strategies may not reflect
what enters the body or a given target tissue.

External doses to chemical exposures can be measured using
an emerging exposure assessment approach to monitor human
contact. Silicon bracelets are worn by participants for a period
(generally a week), and chemicals deposited on the bracelets can
be quantified.158 Bracelet approaches are appealing to many new
studies for their ease of use, though exposure levels do not reflect
the internal dose of an exposure, because the body’s barriers pre-
vent absorption of a portion of external doses.

Internal exposure doses are generally measured in biospecimens
from participants, such as blood, urine, hair, nails, or teeth. The fea-
sibility of collecting each type of biospecimen may vary by partici-
pant group, and the half-life of exposure measures may vary by
sample type, such as urine vs. blood. Exposure to many chemicals
varies with calendar time due to secular trends in industrial, policy,
or personal practices. This variation should be considered in decid-
ingwhen to initiate or complete data collection. Accounting for time
of day of collection, time since last consuming food, and delay from
collection to freezing as potential confounders is often needed
in environmental epidemiology even in cross-sectional studies.
Exposure assessment in urinary specimens requires a correction for
hydration status or dilution, which is most often done through mea-
surement of urinary specific gravity or creatinine levels. Urinary ex-
posure measure interpretation may be further impacted by a number
of physiological changes that occur during pregnancy, including
changes to glomerular filtration rate, urinary output, creatinine
excretion.159–161 Biomarker concentrations may also correlate with
a participant’s physiology; for example, 1,1-dichloro-2,2-bis(p-
chlorophenyl) ethylene (DDE), a pesticide metabolite, is correlated
with adiposity,162 and numerous xenobiotics that are excreted in the
urine are correlated with kidney function.163 Genetic factors may
influence absorption, metabolism, or excretion of xenobiotics,
which influence measured biomarker concentrations.164 Based on
the target window of susceptibility of the chemical under investiga-
tion, different tissues may be selected. Laser ablation inductively
coupled–mass spectrometry (ICP-MS) of shed baby teeth in chil-
dren can simultaneously quantify exposure to multiple metals dur-
ing the in utero period with precise timing information.165 This
method has been adapted for additional tissues, including placenta
and brain, allowing for cell type specific exposure resolution.166

Consideration must also be given to avoiding contamination in col-
lection. For example, if tracemetals will bemeasured, samplesmust
be collected in metal-free tubes. Some analytes are impacted by
freeze–thaw cycles, which influence the size of aliquots for storage.
Whether the analytes of interest are stable in freezer storage needs to
be ascertained in advance. If no prior data are available, pilot studies
will be required.

When combining exposure data across cohorts for an EWAS
meta-analysis, divergent exposure estimation methods can increase

misclassification and reduce power. The Environmental Influences
onChildHealthOutcomes (ECHO) consortiumcombinesU.S. birth
cohorts to examine health effects of prenatal environmental expo-
sures.27 ECHO is applying common exposure estimation techniques
for air pollution across birth cohort studies167 and is measuring pre-
natal environmental exposures in central laboratories using common
technologies. There is a similar European cohort harmonization pro-
ject, Advancing Tools for Human Early Lifecourse Exposome
Research and Translation (ATHLETE).168 Refined exposure har-
monization should reducemeasurement error and increase power.

Improved exposure assessment (Figure 1B) should decrease
exposure misclassification, thus increasing power to identify pre-
natal exposure-related differential methylation. Even for persis-
tent chemicals where single measurements might be acceptable,
most chemical exposures are currently measured individually at
high cost. Technologies to measure hundreds of compounds
simultaneously, including nuclear magnetic resonance and mass
spectrometry,169 enable assessment of the exogenous exposome.
We believe that improvements in techniques to capture time-
integrated multiple early-life exposures with high precision and
low cost will revolutionize the field.

Replication, Meta-Analyses, and the Need for Improved
Statistical Methods
Of note, the prenatal EWASs with the largest sample sizes in our
review were meta-analyses or pooled analyses conducted through
collaboration via consortia. An international consortium examin-
ing the prenatal environment’s impact on early-life methylation,
and subsequent impacts on later child health outcomes is the
PACE consortium.26 PACE was modeled on highly successful
GWAS consortia that have produced a wealth of reproducible
and reliable results linking genetic variants to numerous pheno-
types and diseases.170,171 PACE and other EWAS consortia apply
a multistep meta-analysis approach (Figure 3). This multistep
approach can improve replicability (by verifying an association
exists across multiple populations), reproducibility (by increasing
sample size and implementing quality controls on analyses), and
rigor (for example, by developing harmonized definition of expo-
sure included in clear analysis plans that are tested before distrib-
uting to participating cohorts, by performing an independent
shadow repeat of the meta-analysis from scratch). We note that
some prenatal EWAS of relatively small sample size, which were
neither performed as meta-analyses nor attempted replication,
nevertheless reported large numbers of significant findings
(Figure 2D), which may reflect false positives or otherwise non-
replicable findings. We believe this underscores the importance
of meta-analysis and replication attempts. To increase the rigor
and reproducibility of the research, we recommend that new stud-
ies partner with existing consortia where possible to take advant-
age of existing expertise and processes as illustrated in Figure 3
to enable better-powered, higher-quality studies. Continued
increases in power will enable detection of weaker differential
methylation signatures, as we might expect for exposures meas-
ured less precisely than smoking or those that vary less. Lower
costs of both exposure assessment and methylation measures will
also facilitate larger EWAS.

The standard method to combine study-specific results in
genome-wide analyses is fixed-effects meta-analysis,172 which
weights by the inverse of the variances to produce an overall effect
estimate and standard error. Although it is often stated that random
effects models should be used when there might be between-study
heterogeneity, Rice et al.172 show that inverse variance–weighted
average estimates a reasonable and interpretable parameter, even
under the assumption that effect sizes differ. They further point out
that a fixed-effects meta-analysis does not require the assumption
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of homogeneity. Rather than relying on tests of homogeneity, it is
important to evaluatemeta-analysis effect estimates alongwith vis-
ualization both of study-specific estimates and leave-one-out anal-
yses whereby the meta-analysis is repeated after leaving out each
study. These more convincingly demonstrate whether meta-analysis
results are driven by a single study than statistical tests of heterogene-
ity.172 In the setting of environmental EWAS, the exposure may
have been measured in greater detail and with higher precision in
some studies than others. Studies with more accurate characteriza-
tion of the harmonized exposuremetric will tend to have larger effect
sizes and smaller standard errors, which would make them more in-
fluential in inverse variance–weightedmeta-analysis.

Pooled analyses167 are an alternative to meta-analysis that ena-
blemoreflexibility in the analysis, including ability to perform addi-
tional analyses that might be suggested by reviewers. However,
pooled analyses require sharing of underlying data, which requires
more administrative person-time to coordinate human subjects
issues and data transfer agreements as well as extensive data
harmonization.

New studies should identify others with the most similar
designs and sample-collection protocols to facilitate future collab-
oration and replication. Studies can partner for coordinated epige-
netic and exposure measures, which makes pooling of data across
cohorts more feasible.173 If appropriate partnerships cannot be
found, new studies performing prenatal environmental EWAS
should look up their results in comparison with previously pub-
lished results, a routine step even in consortium meta-analyses.
Prior studiesmay differ in their exposure assessment approaches or
tissue of DNA methylation measure, but comparing results across
studies will help readers understand which findings are generaliz-
able and which may either be population specific or potentially
false positives.

The exposome is a complex mixture. Statistical mixture meth-
ods are currently computationally intensive, even for a few analy-
tes, and thus not applicable for high-dimensional epigenomic
analyses.174 We expect that the development of computationally
efficient methods will improve the ability to capture associations
between the exposome, methylation, and health outcomes.

Statistical advances have improved EWAS, including consid-
eration of bias and inflation across genome-wide models175 and

dealing with extreme methylation values prior to analysis, such
as by winsorizing.176 Improved methods are needed to address
potential heterogeneity from incorporating multiple genetic
ancestries in EWAS meta-analyses. New methods are also
needed to optimize biomarker development and validation in the
EWAS meta-analysis setting.

Many methods papers propose novel methods to address an
EWAS limitation. However, when these methods are tested only
in one or few publicly available data sets, which may vary in
quality control, it becomes difficult for EWAS researchers to
evaluate how widely applicable they may be. EWAS consortia
facilitate testing new methods in multiple data sets. We believe
that finding a superior method to standard approaches across
many different studies is most informative.

Epidemiologic Approaches to Investigate Persistence and
Causality of DNAMethylation Signals
Although it is possible that differential methylation at genes
involved in metabolism of a xenobiotic could influence measured
concentration, in general methylation is unlikely to influence the
likelihood of exposure. Therefore EWAS of environmental expo-
sure are less likely to result from reverse causation than EWAS of
health conditions, where the direction of association can be diffi-
cult to determine. For nonharmful dietary exposures, sufficiently
powered randomized controlled trials could be used to confirm
causality of the relationships between the exposure and DNAmeth-
ylation. Air pollution epidemiology studies have also used short-
term controlled exposure chambers,177 which have been deployed
in a randomized design for DNA methylation research.178 Natural
experiments, whereby a drastic change in exposure occurs within a
population because of policy changes or other unusual events, can
provide an opportunity for exploring causal exposure effects.96,97

When methylation data are available from both newborns and
older children, persistence of signals present at birth can be stud-
ied. Assessment of the same exposure in childhood is required to
assess whether persistent signatures reflect postnatal, rather than
prenatal, exposure. Currently much more EWAS data are avail-
able regarding prenatal exposures than for later in childhood. The
Avon Longitudinal Study of Parents And Children (ALSPAC)

Figure 3. Overview of the suggested process for conducting a prenatal exposure EWAS meta-analysis in the consortium setting. Note: EWAS, epigenome-
wide association study.
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study measured methylation at birth, childhood, and adolescence
in the same analytic runs. Accounting for postnatal smoke expo-
sure, ALSPAC found persistence of prenatal exposure differential
methylation varied substantially across loci,85 a result mirrored in
later cross-sectional meta-analysis.33 Future studies with careful
repeated measures are necessary to identify persistent signatures
of other prenatal exposures. We expect that in addition to being
useful biomarkers in later life of prenatal exposure, loci retaining
these signatures might be more likely to be involved in the etiol-
ogy of childhood and adult health outcomes. Based on the likely
relationship of exposure influencing methylation, the next step is
to determine if exposure-related methylation contributes to causa-
tion of exposure-related health outcomes.

Although prenatal exposure biomarkers are a major advance,
even without elucidating mechanisms,95 determining whether
methylation signals are on the causal pathway to exposure-related
health outcomes is of primary interest. Mediation analysis, a statis-
tical technique developed to assess causal relationships between
exposures and outcomes in social psychology research,179 is com-
monly used. Methylation is tested as a mediator of the exposure–
disease relationship (Figure 4). For maternal smoking, large-effect
size CpGs41 in three genes were tested as mediators of the well-
established association between smoking and reduced birthweight.
These CpGs were estimated to mediate nearly half of the effect of
self-reported any smoking during pregnancy on birth weight.
However, any smoking during pregnancy has a much weaker asso-
ciation with birth weight than sustained smoking,98,102 and these
smoking-related CpGs capture sustained smoking much better

than self-report. One such CpGs is so powerful a biomarker of life-
time personal smoking history that it was patented for use in the
insurance industry.180 Because smoking CpGs are such strong bio-
markers, false positive evidence of mediation between self-reported
exposure and the outcome can result.181 Further, it seems biologi-
cally implausible that one, or few, CpGs in blood, among the thou-
sands differentially methylated by maternal smoking,33 could
mediate somuch of smoking’s impact on birthweight.41,182

Another statistical technique used to assess whether exposure-
related methylation causes exposure-related health outcomes is
Mendelian randomization (MR). To evaluate whether exposure-
related methylation is causal for an exposure-related health out-
come, MR uses genetic variants related to the exposure-associated
methylation and to the outcome only through the pathway of meth-
ylation.183 Even when many CpGs are differentially methylated by
exposure, there may be few genetic instruments meeting these cri-
teria, and most genetic instruments for exposure CpGs are weak
predictors. Fully half of CpGs on the Illumina450K platform are
related to nearby genetic variants, but the variation in methylation
explained is exceedingly low.184 Further, local genetic correlation
can lead to noncausal associations between genetic variants and
methylation in cis,185 obscuring inferences. Pleiotropy assumptions
of MR can be difficult to verify.6 Another limitation of MR for
interpreting blood EWAS findings is that genetic instruments pre-
dict methylation of the CpG site in blood, which is likely a proxy
for epigenetic processes in the relevant target tissue.186 Along with
mediation, MR requires strong casual inference assumptions that
are generally difficult to meet or verify.187 Understanding whether

Figure 4. Prenatal exposure EWAS findings can lead to multiple downstream research opportunities. First, prenatal exposure EWAS findings can be used to
develop and test a DNA methylation-based exposure biomarker. Active methods development work is optimizing the DNA methylation site selection proce-
dures and improving biomarker signals.95 Second, once a DNA methylation exposure biomarker has been developed, this tool can be used to test associations
between exposures and health outcomes. This approach is particularly useful in situations where other exposure measures are not feasible. Another potential
application of prenatal exposure EWAS findings is to establish causal relationships. Instrumental variable analysis can be used to test potential causality
between the exposure and DNA methylation. Mendelian randomization uses genetic factors as an instrumental variable, but this approach may be challenging
for environmental exposures where genetic factors that contribute to exposure absorption, distribution, metabolism, and excretion are poorly characterized.
Randomized controlled trials are feasible for nonhazardous dietary factors. Natural experiments featuring an event or policy that alter exposure levels may be a
more realistic instrumental variable for prenatal exposures.96,97 However, these would need to be drastic events, such as a policy banning a commonly used
chemical. Last, prenatal exposure EWAS findings can be used in mediation analyses of exposures and health outcomes. In this case, DNA methylation is tested
as a mediator linking exposure to a health outcome. This scenario is challenging when DNA methylation is a strong biomarker of the exposure, leading to over-
estimation of mediation effects. Note: EWAS, epigenome-wide association study.
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exposure-related differential methylation causes exposure-related
disease will require identification of the underlying epigenetic
mechanisms.185

Laboratory Approaches for Mechanistic Studies of DNA
Methylation Signals
We currently lack insight into basic biological mechanisms link-
ing exposures to sequence-specific methylation. Nutrients, such
as folic acid, vitamin B12, and choline, provide the methyl sub-
strate used in methylation.188 Chemicals that cause oxidative DNA
damage may inhibit DNA methyltransferase enzyme binding with
DNA, resulting in hypomethylation.189,190 Although one might pre-
dict that these chemicals would produce global, random shifts in
methylation, they are often associated with altered sequence-specific
methylation. Mechanisms for the sequence specificity remain largely
unknown, limiting our ability to understandwhether they cause health
outcomes.191 Some hypotheses regarding mechanisms of exposure
impacts on DNA methylation, as observed in EWAS investigations,
have been proffered. The sequence-specificity suggests involvement
of transcription factors.191 Exposures may activate or repress tran-
scription factors that either hinder or facilitate gene-specific differen-
tial methylation.192 Alternatively, or additionally, exposure-related
methylation changesmay be proxies for histonemodifications that al-
ter gene function and contribute to exposure-related disease pathoge-
nesis.186 Indeed, during normal development, histone modifications
often precede methylation changes.193 Thus, differential methylation
might be downstream impacts of exposure-induced histone changes
rather than direct exposure effects.

Controlled, laboratory-based validation of population-based
findingswill provide important mechanistic insights. One approach
involves examining downstream effects after experimentally mod-
ulatingmethylation levels. Traditional in vitromethods tomodulate
methylation use compounds such as 5-azacytidine,194 or alter levels
of methyl donors195; both influence methylation genome-wide and
often have off-target effects. Like CRISPR methods to modify ge-
notypes at specific positions,196 new epigenetic editing methods
allow for sequence-specific alteration of methylation levels in ani-
mal and cell culture models.197 Although current epigenetic editing
approaches are less accurate than genetic methods, we observe that
epigenetic editing is already revolutionizing investigation of the
effects of methylation differences by helping identify the down-
stream biological processes resulting from exposure-induced dif-
ferential methylation.

Precisely how methylation alters gene expression is poorly
understood.185 Methylation upstream of a gene in cis is generally
assumed to be associated with reduced gene expression. In sev-
eral EWAS of exposures or health outcomes, this canonical
inverse association (higher DNA methylation with lower gene
expression) holds for about two-thirds of DM-CpGs.33,47,198 The
correlation with gene expression depends on genomic context,199
and many exceptions to the canonical association exist. By
combining modern causal inference methods with genome-wide
analysis,185 specific and directional effects of gene expression
on trans methylation (CpG>10MB from gene) were identified
at 818 genes. Most of these genes were neither transcription
factors nor previously known to regulate methylation, pointing
toward future research avenues. Understanding the fundamental
epigenetic mechanisms influencing gene expression will enable
meaningful interpretation of EWAS findings.

Multi-omic analyses for functional annotation, biological
interpretation, and discovery. Methylation is only one aspect of
the epigenome. Additional levels include regulatory RNA and his-
tone modifications. Storing samples for measurement requires
steps currently too labor-intensive to be practical for large studies.
Modified sample storage in future studies could enable better

epigenome assessment. Each type of histone modification requires
separate measurement.200 Development of high-throughput, low
sample input methods to interrogate multiple epigenomic features
on routinely stored sampleswill be amajor advance.

Incorporating multiple types of omics on the same samples
(e.g., gene expression, genetics, metabolomics, proteomics) can
improve biological interpretation and mechanistic insights from
EWAS findings.175,201–204 A common first level of integrated
omics analyses with EWAS (Figure 3) is to look at correlation
between gene expression and DNA methylation at differentially
methylated CpGs. There are relatively few publicly available
data sets with both Illumina methylation array data and gene
expression in cord blood.205,206 For this reason, prenatal epige-
netic studies often also look up key findings in data sets with
paired blood methylation and gene expression from up to a few
hundred children207 or much larger studies of adults.208,209 Given
the tissue specificity of both methylation and gene expression, of
considerable interest is the recent addition of Illumina EPIC
methylation data to the GTEx gene expression resource across
nine different tissues from 987 adults.210 Colocalization meth-
ods211–214 and integrative epigenomic215 tools are increasingly
aiding in EWAS biological interpretation. For example, eFORGE
integrates multiple layers of epigenetic data to identify blood
EWAS findings with potential functional impact in disease-
relevant target tissues.215 Such tools will become more valuable
as the underlying epigenomic sample sets amalgamated by the
International Human Epigenome Consortium216 become larger
and incorporate more diverse populations.110

Development of methods to use multi-omics data to discover
novel loci or intermediate omic phenotypes, as opposed to interpret-
ing EWAS204 loci, is an active area of research173 and well-validated
methods have not been established or widely employed in epidemiol-
ogy. Multi-omics methods were reviewed, and their limitations were
discussed in 2020.217 Amore recent approach is multi-set correlation
and factor analysis, an unsupervised integration method to enable
novel inference from multi-omic data.218 Widespread future imple-
mentation of computationally efficient methods for multi-omics dis-
covery, including epigenomic data, will help understandmechanisms
of health impacts of prenatal exposures.

Summary
The early-life environment impacts health throughout the life
course, and epigenetic mechanisms play a key role in programming
responses to these exposures. Methylation is the epigenetic mecha-
nismbest epidemiologically studied to date, thanks to stable platforms
with reasonable epigenome-wide coverage. Prenatal environmental
exposure to smoking is associated with highly reproducible and spe-
cific methylation signatures that have great utility as biomarkers of
early-life exposure. Improvements to study design could result in ro-
bust biomarkers for other exposures. Best practices forEWAS include
careful study design, attention to tissue- and cell-type heterogeneity,
rigorous exposure measurement, large and diverse study populations,
and replication. Environmental epigenetics is an emerging area with
promising research and clinical implications.Mechanisms underlying
the specificity of exposure methylation signatures and consequences
of the methylation differences are currently unclear but are a crucial
future research area essential for developing clinical applications.
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