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Abstract

Racial disparities in many aging-related health outcomes are persistent and pervasive

among older Americans, reflecting accelerated biological aging for Black Americans com-

pared to White, known as weathering. Environmental determinants that contribute to weath-

ering are poorly understood. Having a higher biological age, measured by DNA methylation

(DNAm), than chronological age is robustly associated with worse age-related outcomes

and higher social adversity. We hypothesize that individual socioeconomic status (SES),

neighborhood social environment, and air pollution exposures contribute to racial disparities

in DNAm aging according to GrimAge and Dunedin Pace of Aging methylation (DPoAm).

We perform retrospective cross-sectional analyses among 2,960 non-Hispanic participants

(82% White, 18% Black) in the Health and Retirement Study whose 2016 DNAm age is

linked to survey responses and geographic data. DNAm aging is defined as the residual

after regressing DNAm age on chronological age. We observe Black individuals have signifi-

cantly accelerated DNAm aging on average compared to White individuals according to

GrimAge (239%) and DPoAm (238%). We implement multivariable linear regression models

and threefold decomposition to identify exposures that contribute to this disparity. Exposure

measures include individual-level SES, census-tract-level socioeconomic deprivation and

air pollution (fine particulate matter, nitrogen dioxide, and ozone), and perceived neighbor-

hood social and physical disorder. Race and gender are included as covariates. Regression

and decomposition results show that individual-level SES is strongly associated with and

accounts for a large portion of the disparity in both GrimAge and DPoAm aging. Higher

neighborhood deprivation for Black participants significantly contributes to the disparity in

GrimAge aging. Black participants are more vulnerable to fine particulate matter exposure

for DPoAm, perhaps due to individual- and neighborhood-level SES, which may contribute

to the disparity in DPoAm aging. DNAm aging may play a role in the environment “getting
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under the skin”, contributing to age-related health disparities between older Black and White

Americans.

Introduction

There are severe racial disparities in age-related health in the United States. Black Americans

have earlier onset, higher prevalence, and reduced survival of age-related diseases relative to

their White counterparts due to the “cumulative impact of repeated experience with social or

economic adversity and political marginalization” [1, 2]. Early health deterioration has been

termed weathering and reflects accelerated aging [3, 4]. Across many biomarkers of aging,

Black Americans are biologically older than their White counterparts of the same chronologi-

cal age [5]. There is evidence that individual socioeconomic status (SES), neighborhood depri-

vation and segregation, and discrimination may play a role in these disparities [6–8].

However, the social and structural determinants of weathering are not well understood and

the contributions of individual and neighborhood factors know to impact age-related health

have not been quantified.

Social epigenetics posits that DNA methylation (DNAm) is a mediating link between social

and structural determinants of health and both age-related health outcomes and health dispar-

ities, though there is limited work directly testing this hypothesis [9, 10]. Social and structural

determinants of health are the conditions in which individuals are born, live, learn, work, and

age [11]. Structural factors such as racial segregation and discrimination, exclusionary eco-

nomic policy, and environmental racism influence an individual’s socioeconomic resources

and exposure to environmental conditions, such as the social environment of one’s neighbor-

hood and physical pollutants. These determinants are known to be important for age-related

health and health disparities, but there is limited understanding of the biological mechanisms

by which they affect health outcomes. There is evidence that DNAm aging may be one such

mechanism [10, 12].

Markers of biological aging using DNAm have emerged as robust measures of weathering,

especially GrimAge and Dunedin Pace of Aging Methylation (DPoAm) [13, 14]. An advantage

of these measures is they were trained to predict phenotypic age based on biomarkers and

mortality rather than chronological age alone, which may more accurately reflect biological

aging processes [12]. Both GrimAge and DPoAm demonstrate racial disparities, reflecting

weathering, and strongly predict many age-related outcomes, including lung disease, cognitive

decline, functional decline, and mortality [13–20].

Prior evidence from the Health and Retirement Study, the cohort focus of this study, sug-

gests that the hazard ratio of mortality is 2.32 and 1.71 per standard deviation increase in

GrimAge and DPoAm acceleration, respectively [5]. Acceleration in GrimAge or DPoAm was

further associated with racial disparities and an increased risk of prevalent and incident func-

tional limitations and chronic conditions and poorer self-rated health as well as age-related

outcomes: GrimAge and DPoAm mediated 13–92% of disparities in functional status and

decline, self-rated health, and mortality [5]. Although DNAm aging has been associated with

social and structural determinants, including individual SES and aspects of the neighborhood

social environment, to the best of our knowledge, prior studies have not quantified the contri-

bution of specific determinants to the racial disparity in DNAm aging, nor examined whether

GrimAge and DPoAm are associated with air pollution exposure [8, 13, 14, 19–21].

The neighborhood social and physical environments are important determinants for age-

related health. Neighborhood socioeconomic deprivation, perceived neighborhood disorder
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(i.e., reporting less social cohesion and safety and more physical disorder), and air pollution

exposure have all been linked to health status and decline in older adults. A growing body of

research shows that living in a neighborhood with a greater proportion of people with low

socioeconomic resources is associated with many adverse health outcomes for older adults

regardless of their individual SES [22–31]. There are mixed results on the health effects of per-

ceived social and physical disorder in one’s neighborhood, but disorder is associated with risk

of functional decline, cardiovascular disease, and dementia [25, 28, 32–36]. Exposure to fine

particulate matter (PM2.5) air pollution is an established risk factor for mortality and several

age-related diseases and nitrogen dioxide (NO2) is associated with several of these outcomes as

well, while findings for ozone (O3) are mixed and show weak to no associations with health

outcomes [37–41]. The risks of air pollution exposure may be even higher for older adults than

for the general population [39].

Historic and current structural and environmental racism and persistent racial residential

segregation result in inequitable distributions of these social determinants, where Black Amer-

icans have fewer socioeconomic resources and higher exposure to unfavorable and unhealthy

conditions in their neighborhood environment [42–44]. The large impact of the inequitable

distribution of individual SES on health disparities is well documented [45]. Black older adults

are more likely to live in a neighborhood with higher deprivation, disorder, and PM2.5 and

NO2 pollution than their White counterparts and these inequities also contribute to health dis-

parities [33, 46–48]. For example, neighborhood socioeconomic composition explains large

portions of the racial disparities in COVID-19 infection in Chicago and self-rated health

among older adults [49, 50]. Neighborhood stress contributes to the racial disparity in hyper-

tension [51]. Air pollution contributes to racial disparities in hypertension, Alzheimer’s dis-

ease, and likely other age-related diseases [52–54].

Furthermore, the relationship between measured environmental exposures and age-related

outcomes may be different between racial groups. Black Americans appear to have greater risk

from the same amount of PM2.5 pollution than their White counterparts; Black Medicare ben-

eficiaries had three times greater risk of mortality and Black women had twice the risk of Alz-

heimer’s Disease due to PM2.5 [53, 55]. There is also some evidence that risk of functional

limitations due to neighborhood physical disorder may differ between racial groups [33].

Since race is a social construct, any differences in risk between racial groups can be attributed

to structural and social determinants that affect either amount of exposure or defenses against

a detrimental neighborhood exposure. Research is needed to determine whether risk from

social environment exposures differ, whether differences contribute to racial disparities in out-

comes, and the determinants that influence these differences.

We selected an approach using threefold decomposition, a technique commonly used in

econometrics and social sciences to investigate disparities between groups, because it allows us

to evaluate how the both the distribution of an exposure and differences in risk contribute to

disparities. This method decomposes a difference in an outcome between two groups into

three components that are 1) explained by differences in the level of explanatory variables

between the groups, 2) explained by differences in the effect of explanatory variables on the

outcome between the groups, and 3) an unexplained portion [56]. This is accomplished by

estimating group-specific regression models and using a counterfactual approach, where the

change in the outcome disparity is evaluated after replacing the disadvantaged group’s covari-

ate and coefficient values with those of the reference group.

In this study we investigate the extent to which different levels of neighborhood exposures

and different risks due to those exposures between Black and White older Americans contrib-

ute to racial disparities in DNAm aging. We first hypothesize that individual-level SES greatly

contributes to the DNAm aging disparity but does not fully explain it. We further hypothesize
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that neighborhood exposures with a larger racial disparity and stronger association with bio-

logical aging contribute more to the DNAm aging disparity (specifically, neighborhood depri-

vation, PM2.5, and NO2 contribute more than neighborhood disorder and O3, which is

included as a negative control). Finally, we hypothesize that Black participants have greater

risk due to PM2.5 than White and perhaps to other neighborhood exposures as well. We test

these hypotheses using a large nationally representative sample of adults 50 and over, two

robust markers of biological aging as outcomes, and two complementary analytical techniques,

regression and decomposition. This study builds on the weathering literature by identifying

specific environmental-level factors that contribute to racial disparities in biological aging,

including air pollution, and by examining not only different levels of environmental exposures

between racial groups but also potentially different levels of risk.

Methods

Data

The Health and Retirement Study (HRS) is sponsored by the National Institute on Aging

(grant number NIA U01 AG009740) and is conducted by the University of Michigan. Surveys

are administered by phone or in person biannually with a nationally representative population

of Americans aged 50 or older [57]. In 2016, a subset of HRS participants provided a venous

blood sample of which a representative subsample (N = 4018) was selected for DNA methyla-

tion (DNAm) measurement [58]. We link epigenetic data with data from the 2016 wave of the

HRS survey, the Psychosocial and Lifestyle Questionnaire (2008–2014), and the HRS Contex-

tual Data Resource (CDR). The Psychosocial and Lifestyle Questionnaire is given to half of

HRS respondents in each wave as a self-administered questionnaire after completing a face-to-

face interview [59]. Response rates are 73–83%. The CDR is a restricted data set which includes

geographic identifiers and data drawn from sources such as the American Community Survey

and Environmental Protection Agency (EPA) [60, 61].

Ethics statement

All data were collected by HRS following written informed consent under a protocol approved

by an IRB at the University of Michigan. We report secondary analyses approved by an IRB at

the University of Pennsylvania.

Population

We include self-identified non-Hispanic White and Black individuals in the DNAm sub-sam-

ple with complete exposure and covariate data. 366 individuals were excluded for missing any

variables. Our final sample comprises 2,960 participants; 82% (N = 2438) are White, 18%

(N = 522) are Black.

Measures

DNA methylation aging. Whole blood samples collected in EDTA tubes were sent to the

CLIA-certified Advanced Research and Diagnostic Laboratory at the University of Minnesota

for centralized processing [58]. DNAm was measured at 866,091 CpG sites using the Infinium

Methylation EPIC BeadChip. Samples were randomized across plates, run in duplicate, and

quality controlled. Values for GrimAge and Dunedin Pace of Aging methylation (DPoAm)

were estimated based on published CpG sites and weights [13, 14]. GrimAge was trained using

data from the Framingham Heart Study Offspring Cohort. Elastic net regression was used to

create DNAm proxies for plasma protein biomarkers and smoking pack years, then the
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DNAm proxies were combined to predict time to death. The resulting GrimAge value is trans-

formed to units of years. DPoAm was trained using data from the birth cohort Dunedin Study.

The rate of change in 18 biomarkers from ages 26 to 38 were combined in a Pace of Aging

measure, then elastic net regression was used to select CpG sites that predict Pace of Aging.

DPoAm is reported in units of biological years per chronological year as a measure of pace of

aging. For both, we regress value on chronological age and use the residual to measure individ-

uals’ DNAm aging, consistent with previous work [62]. A residual greater than zero indicates

higher clock value than expected based on chronological age, i.e., accelerated DNAm aging.

We repeat this regression including ten ancestry-informative principal components, as

described below, and without population weighting and report results in S1 Table. We then

divide by the root mean square to scale the residuals for ease of comparison between the two

clock measures.

Environmental exposures. For exposure to neighborhood socioeconomic deprivation

and air pollution, we use census-tract-level data based on participants’ census tract of residence

in 2014, the most recent year prior to the outcome measurement.

Social Deprivation Index (SDI). The SDI is a composite measure of socioeconomic depriva-

tion based on seven characteristics, such as percent of the population under the poverty line or

unemployed, constructed using data from the American Community Survey [63, 64]. We use

the publicly available census-tract-level 2015 SDI score.

Air pollution. Mean level of fine particulate matter air pollution (PM2.5), Nitrogen Dioxide

(NO2), and Ozone (O3) per census tract are available from the EPA as part of the CDR. We use

average 2014 levels at participants’ 2014 residential census tracts for PM2.5 and O3. The most

recent data available for NO2 are for 2010, so we use the average 2010 level at participants’

2010 residential census tract.

Neighborhood disorder. We use participant evaluations of their neighborhood in the Psy-

chosocial and Lifestyle Questionnaire as measures of perceived neighborhood social and physi-

cal disorder [59]. Respondents rated their agreement on a seven-point scale to each of eight

statements. Four statements relate to social disorder (sense of belonging, trustworthiness,

friendliness, and helpfulness among neighbors) and four to physical disorder (presence of van-

dalism, litter, vacant buildings, and sense of safety) in their neighborhood (defined as every-

where within a 20-minute walk or half a mile of your home). We use the most recent response

from 2008–2014 for each respondent and the average score across the four items, log-trans-

formed and scaled to normalize distributions. Higher scores indicate greater perceived

disorder.

Covariates. We use self-reported race, ethnicity, and gender. Participants who identified

as Hispanic or Latino or as a race other than Black or White are excluded. The HRS survey

treats gender as binary and does not distinguish between assigned sex or gender identity. “Sex-

mismatched” blood samples were removed from DNAm measurement, so there is likely no

representation of trans or intersex individuals in this dataset. Education is categorized based

on years of formal schooling completed. We use an index of household income and wealth to

avoid collinearity. Household income is the sum of respondent and spouse annual income.

Household wealth is the sum of all assets, including second homes, minus debts. We log trans-

form income and wealth, calculate a Z score for each, average the Z scores, then use weighted

quartiles. Race, gender, education, and quartile of wealth/income are included as covariates in

all analyses. We do not include chronological age as a covariate because it has a null association

with DNAm aging (coefficient of zero) in all models. Including chronological age has no effect

on any results in regression models.

Sample weights. HRS provides sample weights for the DNAm subsample to adjust for

probability of participation. More detail on weights can be found in the documentation [58].
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We impute missing sample weights (N = 143 missing) using the mean value and include

weighting in all regression analyses.

Ancestry-informative principal components. We perform a supplementary analysis cor-

recting for ancestry-informative genetic markers to account for population stratification,

which varies between ancestry groups and can influence DNAm [65]. Ten ancestry-specific

principal components are available for a portion of the White (European ancestry) and Black

(African ancestry) participants and were included as covariates in supplemental regression of

GrimAge and DPoAm values on chronological age (S1 Table) [66].

Analytic approach

All analyses are conducted in R statistical software (version 4.2.1) and code is available at

github.com/pennbindlab [67]. Models are informed by a directed acyclic graph showing pro-

posed relationships between all measures (Fig 1). Each neighborhood exposure is treated inde-

pendently, represented by “Neighborhood” in the figure. Race influences education, income,

wealth, neighborhood exposures, and DNAm aging due to various manifestations of structural

racism. Age and gender are important confounders of these effects. We use two complemen-

tary analytic strategies.

Linear regression models. We first implement stepwise linear regression. We perform

univariate linear regression to assess the association between DNAm aging and race alone,

which defines the total racial disparity. We then add individual-level covariates (gender, educa-

tion, and wealth/income). To evaluate associations between DNAm aging and the environ-

ment we then add each environmental exposure individually (SDI, perceived social disorder,

perceived physical disorder, PM2.5, NO2, and O3). Variance inflation factors for all models

DNAm aging

Income/Wealth

Age Education

Gender Neighborhood

Race

Fig 1. Directed acyclic graph showing relationships between variables. Race, age, gender, education, income/wealth, and

neighborhood exposures all have direct effects on DNAm aging as well as indirect effects through the pathways indicated. Race, age, and

gender are associated with education, income, and wealth, all of which influence one’s residential location and neighborhood exposures.

https://doi.org/10.1371/journal.pone.0287112.g001

PLOS ONE Environment and racial disparities in epigenetic aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0287112 July 5, 2023 6 / 22

http://github.com/pennbindlab
https://doi.org/10.1371/journal.pone.0287112.g001
https://doi.org/10.1371/journal.pone.0287112


are� 1.5, indicating low multicollinearity. We perform sensitivity analysis to assess whether

residential mobility biases the results by excluding individuals who moved between 2010 and

2016 (N = 667) (S2 and S3 Tables). We assess whether the relationships between the exposures

and DNAm aging differs between racial groups by adding interaction terms with race. We

assess factors that may influence vulnerability to PM2.5 exposure by adding interaction terms

between PM2.5 and gender, education, wealth/income, and neighborhood social environment

measures (SDI, perceived social and physical disorder). All models include sample weighting,

as described above. P-values are Bonferroni corrected to account for six comparisons. AIC

(Aikake’s Information Criterion) is shown as a goodness-of-fit indicator.

Threefold decomposition. Next, we implement Kitagawa-Blinder-Oaxaca decomposition

to quantify how each covariate and environmental measure contribute to the disparity in

DNAm aging using the package Oaxaca() (version 0.1.5) [68, 69]. Threefold decomposition sep-

arates these contributions into endowment, coefficient, and interaction effects. The endowment

effect indicates the portion of the disparity due to differences in the levels of the explanatory var-

iables between groups. The coefficient effect reflects the portion of the disparity due to differ-

ences in the coefficient of the variables between groups, i.e. different associations or effects of

the exposures between groups. The interaction effect accounts for differences in endowments

and coefficients that exist simultaneously. We use linear regression as the underlying models for

decomposition and run 10,000 bootstrap samples to calculate 95% confidence intervals.

Results

There are large racial disparities in DNA methylation aging and

environmental exposures

Descriptive statistics by race are shown in Table 1. The overall sample has an average age of 71

years and is 41% male. Black participants are significantly younger, more likely to be women,

less educated, and have lower income/wealth than White participants on average (p<0.001).

They also have higher levels of all environmental exposures except ozone (O3); Black partici-

pants are exposed to higher levels of neighborhood social deprivation, perceived social and

physical disorder, fine particulate matter (PM2.5), and nitrogen dioxide (NO2) (p<0.001). Effect

sizes for these disparities are medium to large (Cohen’s d> 0.5), with the difference in social

deprivation being particularly striking. Black participants on average have higher rates of DNA

methylation (DNAm) aging than White participants in both GrimAge and Dunedin Pace of

Aging methylation (DPoAm) aging (p<0.001); Black participants on average have accelerated

DNAm aging while White participants have slightly decelerated DNAm aging. Scaled residuals

are shown in Table 1 and used in all analyses for ease of comparison between the two DNAm

aging measures. Unscaled residuals show that the difference between Black and White partici-

pants’ DNAm aging is 1.4 biological years according to GrimAge, and 0.03 biological years (or

0.36 biological months) per chronological year according to DPoAm (S1 Table). The effect size

for disparities in all DNAm aging measures are moderate (Cohen’s d ~ 0.3).

Sensitivity analyses show that the absolute disparity in DNAm aging remains the same

whether sample weights are applied and whether ancestry-informative genetic markers are

included in the regression (S1 Table). The racial disparity in DNAm aging is not due to sam-

pling bias nor genetic background.

Stepwise multivariable regression models

Regressing DNAm aging on race gives the total disparity between White and Black participants

in GrimAge and DPoAm aging in scaled units, shown in the first column of Tables 2 and 3,
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respectively. The disparity in GrimAge is 0.30 units (95% CI 0.18, 0.42; p<0.001), and the dis-

parity in DPoAm is 0.35 units (95% CI 0.23, 0.47; p<0.001). Adding individual-level covariates

in the second column shows that gender and individual-level socioeconomic status (SES) are

significantly associated with both GrimAge and DpoAm aging. Being female (GrimAge β =

-0.73, 95% CI -0.8, -0.67; DpoAm β = -0.2, 95% CI -0.27, -0.13; p< 0.001) is associated with

decreased DNAm aging while having less education (GrimAge β = 0.51, 95% CI 0.38, 0.63;

DPoAm β = 0.39, 95% CI 0.26, 0.53; p<0.001 for less than high school compared to college or

more), or having lower wealth/income (GrimAge β = 0.53, 95% CI 0.43, 0.64; DPoAm β = 0.32,

95% CI 0.21, 0.44; p<0.001 for the lowest quartile compared to the highest quartile) is associated

with increased DNAm aging. These associations tend to be larger in magnitude with GrimAge

than DPoAm aging. Adding these individual-level factors reduces the association between

GrimAge aging and race from 0.30 to 0.13 (95% CI 0.02, 0.24) units and to non-significance,

implying that these factors strongly contribute to the racial disparity in GrimAge aging. The

association between DPoAm aging and race remains significant after adding these factors, but

the magnitude is reduced from 0.35 to 0.21 (95% CI 0.09, 0.33, p<0.01) units, implying that

individual-level SES contributes somewhat to the disparity in DPoAm aging.

We then add each environmental exposure separately to the model. The Social Deprivation

Index (SDI) is significantly associated with GrimAge aging (β = 0.06, 95% CI 0.02, 0.09;

p<0.05), and further reduces the association between GrimAge aging and race to 0.08 (95% CI

Table 1. Sample characteristics and racial disparities.

Characteristic Overall, N = 2,9601 White, N = 2,4381 Black, N = 5221 p-value2 Effect Size3

Age (years) 71.33 (9.53) 72.08 (9.54) 67.81 (8.69) <0.001 0.468

Gender <0.001 0.085

Male 1,218 (41%) 1,051 (43%) 167 (32%)

Female 1,742 (59%) 1,387 (57%) 355 (68%)

GrimAge aging 0.03 (1.00) -0.02 (0.99) 0.28 (1.03) <0.001 0.304

DunedinPoAm aging 0.03 (1.00) -0.03 (0.98) 0.31 (1.04) <0.001 0.334

Education <0.001 0.164

College + 839 (28%) 740 (30%) 99 (19%)

Some College 773 (26%) 644 (26%) 129 (25%)

High School 974 (33%) 803 (33%) 171 (33%)

< High School 374 (13%) 251 (10%) 123 (24%)

Wealth/Income Quartile <0.001 0.325

4 702 (24%) 680 (28%) 22 (4.2%)

3 751 (25%) 671 (28%) 80 (15%)

2 803 (27%) 644 (26%) 159 (30%)

1 704 (24%) 443 (18%) 261 (50%)

Social Deprivation Index -0.12 (0.98) -0.32 (0.89) 0.79 (0.80) <0.001 1.31

Social Disorder -0.06 (0.96) -0.16 (0.93) 0.41 (0.98) <0.001 0.600

Physical Disorder -0.06 (0.95) -0.17 (0.92) 0.46 (0.96) <0.001 0.670

PM2.5 (μg/m3) 9.52 (1.91) 9.36 (1.94) 10.26 (1.61) <0.001 0.506

Ozone (μg/m3) 38.17 (3.89) 38.40 (4.01) 37.09 (3.04) <0.001 0.367

NO₂ (ppb) 8.23 (4.14) 7.78 (3.80) 10.37 (4.93) <0.001 0.590

Sample characteristics overall and by race. Significance of comparison between White and Black groups shown.
1Mean (SD); n (%)
2Wilcoxon rank sum test; Pearson’s Chi-squared test
3Cohen’s D; Cramer’s V

https://doi.org/10.1371/journal.pone.0287112.t001
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-0.03, 0.2) units (Table 2, column 3). The SDI is not significantly associated with DPoAm

aging after correcting for multiple comparisons but has a positive coefficient (β = 0.04, 95% CI

0.0, 0.08) (Table 3, column 3). Adding SDI reduces the magnitude and significance of the asso-

ciation between DPoAm aging and race to 0.18 (95% CI 0.05, 0.18; p<0.05) units. Together

these results imply that lower neighborhood socioeconomic resources are associated with

higher GrimAge aging and contribute to the Black-White disparity in DNAm aging.

The association between perceived social disorder and GrimAge aging has a positive coeffi-

cient (β = 0.04, 95% CI 0.0, 0.07) but is not significant after correcting for multiple compari-

sons (Table 2, column 4). Adding social disorder has a smaller effect on the association with

race than adding SDI but reduces the association slightly to 0.11 units (95% CI 0.0, 0.22). Per-

ceived social disorder did not have an association nor affect the racial disparity in DPoAm

Table 2. GrimAge aging: Multivariable associations with individual covariates and neighborhood exposures.

GrimAge1 Total

disparity1
Individual SES1 SDI1 Social

Disorder1
Physical

Disorder1
PM2.5

1 Ozone1 NO₂1

Race

White — — — — — — — —

Black 0.30***
(0.18,0.42)

0.13 (0.02,0.24) 0.08 (-0.03,0.20) 0.11 (0.00,0.22) 0.12 (0.01,0.23) 0.13 (0.02,0.24) 0.13 (0.02,0.24) 0.13 (0.02,0.24)

Gender

Male — — — — — — —

Female -0.73*** (-0.80,-

0.67)

-0.73*** (-0.79,-

0.66)

-0.72***
(-0.79,-0.66)

-0.73*** (-0.79,-

0.66)

-0.73*** (-0.80,-

0.67)

-0.73*** (-0.80,-

0.67)

-0.73*** (-0.80,-

0.67)

Education

College + — — — — — — —

Some College 0.26***
(0.17,0.34)

0.25***
(0.17,0.34)

0.25***
(0.17,0.34)

0.25***
(0.17,0.34)

0.26***
(0.17,0.34)

0.26***
(0.17,0.34)

0.26***
(0.17,0.34)

High School 0.30***
(0.21,0.38)

0.29***
(0.20,0.38)

0.30***
(0.21,0.38)

0.29***
(0.21,0.38)

0.29***
(0.21,0.38)

0.30***
(0.21,0.38)

0.30***
(0.21,0.38)

< High School 0.51***
(0.38,0.63)

0.50***
(0.37,0.62)

0.50***
(0.38,0.63)

0.50***
(0.38,0.63)

0.51***
(0.38,0.63)

0.51***
(0.38,0.63)

0.51***
(0.38,0.63)

Quartile Wealth/

Income

4 — — — — — — —

3 0.15**
(0.06,0.24)

0.14* (0.05,0.23) 0.15**
(0.06,0.23)

0.15**
(0.06,0.24)

0.15**
(0.06,0.24)

0.15**
(0.06,0.24)

0.15**
(0.06,0.24)

2 0.41***
(0.31,0.50)

0.38***
(0.28,0.47)

0.40***
(0.30,0.49)

0.40***
(0.31,0.50)

0.41***
(0.31,0.50)

0.41***
(0.31,0.50)

0.41***
(0.31,0.50)

1 0.53***
(0.43,0.64)

0.49***
(0.38,0.60)

0.52***
(0.41,0.62)

0.52***
(0.42,0.63)

0.53***
(0.43,0.64)

0.53***
(0.43,0.64)

0.53***
(0.43,0.64)

Neighborhood

Exposure

0.06* (0.02,0.09) 0.04 (0.00,0.07) 0.02 (-0.02,0.06) 0.00 (-0.01,0.02) 0.00 (-0.01,0.01) 0.00 (-0.01,0.01)

(Intercept) -0.05* (-0.09,-

0.02)

-0.09 (-0.17,-

0.02)

-0.05

(-0.13,0.03)

-0.08 (-0.16,-

0.01)

-0.08 (-0.16,-

0.01)

-0.12

(-0.29,0.06)

-0.15

(-0.46,0.17)

-0.10

(-0.20,0.01)

R2 0.008 0.213 0.215 0.214 0.213 0.213 0.213 0.213

AIC 9,064 8,393 8,387 8,390 8,394 8,395 8,395 8,395

Results of linear regression models with GrimAge aging as the outcome.
1ß (95% confidence interval)

*p<0.05

**p<0.01

***p<0.001

https://doi.org/10.1371/journal.pone.0287112.t002
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aging (Table 3, column 4). Neither physical disorder nor the air pollution measures are associ-

ated with either measure nor do they affect the association between DNAm aging and race.

To account for potential misclassification, we repeat these models excluding individuals

who moved between 2010 and 2016 (S2 and S3 Tables). The overall magnitude of the race coef-

ficient decreases across all models, but patterns in the magnitude of the racial disparity remain.

The race coefficient is reduced upon addition of individual SES and SDI to the model. The

association between SDI and GrimAge aging is attenuated but remains positive (β = 0.05, 95%

CI 0.01, 0.09).

Interaction models

To investigate differences in risk due to environmental exposures between racial groups, we

implement linear regression models with interaction terms between each exposure measure

Table 3. DPoAm aging: Multivariable associations with individual covariates and neighborhood exposures.

DPoAm1 Total

disparity1
Individual SES1 SDI1 Social

Disorder1
Physical

Disorder1
PM2.5

1 Ozone1 NO₂1

Race

White — — — — — — — —

Black 0.35***
(0.23,0.47)

0.21**
(0.09,0.33)

0.18* (0.05,0.30) 0.20**
(0.08,0.32)

0.21**
(0.09,0.33)

0.21**
(0.09,0.33)

0.21**
(0.09,0.33)

0.20**
(0.08,0.32)

Gender

Male — — — — — — —

Female -0.20*** (-0.27,-

0.13)

-0.20*** (-0.27,-

0.13)

-0.19*** (-0.26,-

0.12)

-0.20*** (-0.27,-

0.13)

-0.20*** (-0.27,-

0.13)

-0.20*** (-0.27,-

0.13)

-0.20*** (-0.27,-

0.13)

Education

College + — — — — — — —

Some College 0.18***
(0.09,0.27)

0.18**
(0.08,0.27)

0.18**
(0.08,0.27)

0.18**
(0.08,0.27)

0.18**
(0.09,0.27)

0.18***
(0.09,0.27)

0.18***
(0.09,0.27)

High School 0.23***
(0.13,0.32)

0.22***
(0.13,0.32)

0.23***
(0.14,0.32)

0.23***
(0.13,0.32)

0.23***
(0.13,0.32)

0.23***
(0.13,0.32)

0.23***
(0.14,0.32)

< High School 0.39***
(0.26,0.53)

0.39***
(0.25,0.52)

0.39***
(0.25,0.53)

0.39***
(0.25,0.53)

0.39***
(0.26,0.53)

0.39***
(0.26,0.53)

0.40***
(0.26,0.53)

Quartile Wealth/

Income

4 — — — — — — —

3 0.06 (-0.04,0.15) 0.05 (-0.04,0.15) 0.05 (-0.04,0.15) 0.06 (-0.04,0.15) 0.06 (-0.04,0.15) 0.06 (-0.04,0.15) 0.06 (-0.03,0.16)

2 0.20***
(0.09,0.30)

0.17**
(0.07,0.28)

0.19**
(0.08,0.29)

0.19**
(0.09,0.30)

0.20***
(0.09,0.30)

0.20***
(0.09,0.30)

0.20***
(0.10,0.30)

1 0.32***
(0.21,0.44)

0.29***
(0.18,0.41)

0.31***
(0.19,0.42)

0.32***
(0.20,0.43)

0.32***
(0.21,0.44)

0.32***
(0.21,0.44)

0.32***
(0.21,0.44)

Neighborhood

Exposure

0.04 (0.00,0.08) 0.03 (-0.01,0.07) 0.01 (-0.03,0.05) 0.00 (-0.01,0.02) 0.00 (-0.01,0.01) 0.00 (-0.01,0.01)

(Intercept) -0.06** (-0.10,-

0.03)

-0.22*** (-0.31,-

0.14)

-0.20*** (-0.28,-

0.11)

-0.22*** (-0.30,-

0.14)

-0.22*** (-0.30,-

0.14)

-0.25* (-0.44,-

0.07)

-0.13

(-0.47,0.22)

-0.26*** (-0.37,-

0.14)

R2 0.012 0.059 0.060 0.060 0.059 0.059 0.059 0.059

AIC 8,973 8,843 8,841 8,842 8,844 8,845 8,844 8,844

Results of linear regression models with DPoAm aging as the outcome.
1ß (95% confidence interval)

*p<0.05

**p<0.01

***p<0.001

https://doi.org/10.1371/journal.pone.0287112.t003
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and race. Only the interaction between race and PM2.5 with DPoAm aging as the outcome is

statistically significant (Table 4 and Fig 2, full results in S4 Table). Black individuals appear

more vulnerable to PM2.5 exposure in terms of DPoAm aging (β = 0.10, 95% CI 0.03, 0.17;

p<0.05). There were no significant interaction terms for GrimAge aging as the outcome

(S5 Table).

Racial differences in risk from environmental exposures are due to structural and social

determinants. To identify the determinants that may influence the relationship between PM2.5

and DPoAm aging we implement models with DPoAm aging as the outcome and interaction

terms between PM2.5 and gender, education, wealth/income, SDI, and perceived social and

physical disorder (S6 Table). There is a significant interaction between gender and PM2.5,

Table 4. DPoAm aging: Interactions between environmental and social determinants and PM2.5 pollution exposure.

DPoAm1 Race1 Gender1 Individual SES1 SDI1

Race

White — — — —

Black -0.81 (-1.5,-0.09) 0.21** (0.09,0.33) 0.19** (0.07,0.32) 0.16 (0.03,0.29)

Gender

Male — — — —

Female -0.20*** (-0.27,-0.13) 0.30 (-0.05,0.65) -0.20*** (-0.27,-0.13) -0.20*** (-0.27,-0.13)

Education

College + — — — —

Some College 0.17** (0.08,0.27) 0.18*** (0.09,0.27) 0.18** (0.08,0.27) 0.17** (0.08,0.27)

High School 0.23*** (0.13,0.32) 0.23*** (0.13,0.32) 0.22*** (0.13,0.31) 0.22*** (0.13,0.32)

< High School 0.39*** (0.26,0.53) 0.40*** (0.26,0.53) 0.38*** (0.24,0.52) 0.38*** (0.24,0.52)

Quartile Wealth/Income

4 — — — —

3 0.06 (-0.03,0.16) 0.06 (-0.04,0.15) -0.52 (-1.0,-0.07) 0.06 (-0.04,0.15)

2 0.20*** (0.09,0.30) 0.20** (0.09,0.30) -0.07 (-0.55,0.41) 0.18** (0.08,0.29)

1 0.32*** (0.20,0.43) 0.33*** (0.21,0.44) -0.30 (-0.79,0.19) 0.30*** (0.18,0.42)

Race * PM2.5

Black * PM2.5 0.10* (0.03,0.17)

Gender * PM2.5

Female * PM2.5 -0.05* (-0.09,-0.02)

Quartile Wealth/Income * PM2.5

3 * PM2.5 0.06 (0.01,0.11)

2 * PM2.5 0.03 (-0.02,0.08)

1 * PM2.5 0.07 (0.02,0.12)

Social Deprivation Index -0.14 (-0.32,0.05)

Social Deprivation Index * PM2.5 0.02 (0.00,0.04)

PM2.5 0.00 (-0.02,0.01) 0.03 (0.01,0.06) -0.03 (-0.06,0.00) 0.01 (-0.01,0.03)

(Intercept) -0.19 (-0.38,0.00) -0.54*** (-0.81,-0.27) 0.08 (-0.22,0.39) -0.27* (-0.46,-0.07)

R2 0.061 0.062 0.062 0.061

AIC 8,839 8,838 8,841 8,842

Results of linear regression models with DPoAm aging as the outcome.
1ß (95% confidence interval)

*p<0.05

**p<0.01

***p<0.001

https://doi.org/10.1371/journal.pone.0287112.t004
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shown in Table 4 and Fig 2, where women appear less vulnerable to PM2.5 exposure (β = -0.05,

95% CI -0.09, -0.02; p<0.05). No other interaction terms are statistically significant; however,

there are positive interactions with the lowest quartile of wealth/income (β = 0.07, 95% CI

0.12, 0.02) and with SDI (β = 0.02, 95% CI 0.0, 0.04). These interactions indicate that lower

individual SES and higher neighborhood deprivation are associated with increased vulnerabil-

ity to PM2.5 (Fig 2). Individual- and neighborhood-level SES may play a role in the relationship

between PM2.5 exposure and DPoAm aging.

Fig 2. Predicted association between DPoAm aging and PM2.5 by social determinants. Estimated marginal mean values of DPoAm aging

from models shown in Table 4. Interactions between PM2.5 and race (A), gender (B), wealth/income (C), and Social Deprivation Index (D)

shown in solid lines, 95% confidence intervals shaded.

https://doi.org/10.1371/journal.pone.0287112.g002
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Decomposition results

We use threefold Kitagawa-Blinder-Oaxaca decomposition to further quantify the contribu-

tion of individual and environmental variables to the racial gap in DNAm aging. Endowment

terms quantify the contribution of different levels of the variables between groups and coeffi-

cient terms quantify the contribution of different relationships between the variables and

DNAm aging between groups (Fig 3). Full results, including interaction terms, are shown in

S7 Table. The negative endowment term of gender (GrimAge -0.08, 95% CI -0.12, -0.05;

DPoAm -0.02, 95% CI -0.04, -0.01) indicates that if the gender balance were the same for both

Black and White groups, the gap in DNAm aging would be larger. In this sample there are a

greater portion of female Black participants (68%) than female White participants (57%), and

female gender is associated with decreased DNAm aging. If the Black sample were also 57%

Fig 3. Threefold decomposition of individual and neighborhood contributions to racial disparity in DNAm aging. Magnitude of the endowment and

coefficient terms and 95% confidence intervals for GrimAge (A) and DPoAm (B) aging.

https://doi.org/10.1371/journal.pone.0287112.g003
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female, their average DNAm aging would be even higher and the racial disparity would be

larger (27.4% larger for GrimAge and 6.8% for DPoAm).

Differences in individual-level SES between racial groups contribute strongly to the race

gap in DNAm aging. A positive coefficient term for some college for DPoAm (0.08, 95% CI

0.03, 0.12) shows that the relationship between receiving this level of education and DNAm

aging may be different for Black and White individuals. A significant positive endowment

term for less than high school (GrimAge 0.03, 95% CI 0.02, 0.05; DPoAm 0.02, 95% CI 0.01,

0.04) shows that more Black than White individuals receiving less than a high school education

contributes to the gap in DNAm aging (11.1% for GrimAge, 6.7% for DPoAm). Similarly, a

positive endowment term for the lowest quartile of wealth/income (GrimAge 0.07, 95% CI

0.04, 0.09; DPoAm 0.05, 95% CI 0.02, 0.08) shows that more Black individuals being at the low-

est wealth/income level contributes to their higher levels of DNAm aging than White individu-

als (GrimAge 21.5%; DPoAm 14.4%).

The significant positive endowment term of SDI for GrimAge aging (0.06, 95% CI 0.02,

0.11) supports the linear regression results. Greater levels of neighborhood socioeconomic

deprivation for Black participants contributes to the disparity in GrimAge aging (21.1%). The

endowment term of SDI for DPoAm aging is positive but not statistically significant (0.02,

95% CI -0.03, 0.08). No other environmental exposures have significant endowment terms.

The large coefficient term of PM2.5 for DPoAm aging (0.49, 95% CI -0.09, 1.07) is not statisti-

cally significant but is consistent with the interaction model result that there may be racial dif-

ferences in risk from PM2.5 exposure which contribute to the disparity in DPoAm aging.

Discussion

We investigated how individual- and neighborhood-level social determinants of aging contrib-

ute to weathering, measured by GrimAge and Dunedin Pace of Aging methylation (DPoAm)

aging. We found that, as expected based on the literature, Black participants had faster DNA

methylation (DNAm) aging and greater disadvantage in individual socioeconomic status

(SES), neighborhood deprivation, perceived neighborhood disorder, and air pollution expo-

sure than White participants. Lower levels of education and wealth/income for Black partici-

pants contribute substantially to the disparities in both GrimAge and DPoAm aging but did

not fully explain them. Higher levels of neighborhood disadvantage for Black participants fur-

ther contribute to the disparity in GrimAge, while greater risk due to fine particulate matter

(PM2.5) air pollution may contribute to the disparity in DPoAm. These findings suggest ave-

nues for further research and action to advance progress toward eliminating racial disparities

in aging.

While these results are largely consistent with previous literature, this work also presents

novel findings. Work in social epigenetics has previously observed associations between

DNAm aging with individual-level SES and neighborhood disadvantage, but to our knowledge

this is the first study to quantify the contribution of these exposures to disparities in DNAm

aging [7, 8, 21, 62, 70]. Inequitable levels of education, income, and wealth are well established

as drivers of racial disparities in health; our findings from regression and decomposition analy-

ses reinforce this body of evidence by showing that racial disparities in the level of education

and wealth/income are the largest contributors to the disparity in DNAm aging [45]. Inequita-

ble distribution between the highest and lowest levels of education and wealth/income between

Black and White participants explains up to 33% of the disparity in GrimAge aging and 21% of

the disparity in DPoAm aging.

This work also builds on the growing literature showing that disparities in neighborhood

deprivation also contribute to racial health disparities. Associations between both GrimAge
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and DPoAm aging and neighborhood deprivation have been found previously, however there

have been mixed results on whether neighborhood deprivation has a significant independent

effect after controlling for individual SES [7, 8, 21, 70]. We find a significant independent asso-

ciation and quantify the contribution of neighborhood deprivation to the racial disparity in

GrimAge (21%). Perceived social and physical disorder do not contribute significantly to

DNAm aging disparities, reflecting the less consistent evidence of associations with health for

subjective measures of the environment compared to objective measures [25]. More work is

needed to determine whether other aspects of the neighborhood, such as the built environ-

ment or crime rates, contribute to racial disparities in aging and to ascertain the mechanisms

by which neighborhood deprivation is associated with DNAm aging. Potential mediators

include health behaviors, social networks, psychosocial wellbeing and stress.

Although associations have been found between air pollution and other epigenetic clocks and

with DNAm in epigenome-wide association studies, this is the first study to our knowledge to

assess associations between air pollution and GrimAge and DPoAm aging [71–73]. We find that

only Black participants have a significant association between PM2.5 and DPoAm aging. There

are no significant associations for White participants, for GrimAge, nor for other air pollutants

(nitrogen dioxide (NO2) nor ozone (O3)). We expected that O3 would not be significantly associ-

ated with DNAm aging nor contribute to disparities given that O3 exposure is similar across racial

groups (indeed slightly higher for White participants in our sample) and that there is little evi-

dence of association between O3 and DNAm. In contrast, NO2 exposure has a large racial dispar-

ity and is associated with DNAm and many health outcomes [39, 40, 46]. The null findings for

NO2 may be partly due to data limitations; the most recent year available is 2010, while data for

PM2.5 and O3 are available from 2014. When we repeat the model with PM2.5 using 2010 expo-

sure, there is no longer a significant interaction with race (S4 Table).

Higher risk of Alzheimer’s disease and mortality from the same measured PM2.5 exposure

for Black than for White Americans has previously been documented [53, 55]. Our results sug-

gest that Black adults’ risk may be higher for DPoAm aging as well and that individual- and

neighborhood-level SES may play a role in this disparity. It remains unclear whether the

increased risk is due to measurement error, where Black individuals have higher personal

exposure levels than White individuals who live in a census tract with the same average PM2.5

level, or to factors that influence sensitivity to the effects of PM2.5 exposure. Social and struc-

tural determinants play a role in both levels of personal PM2.5 exposure and in the effect of

PM2.5. For example, individual- and neighborhood-level SES may influence time spent out-

doors, time spent outside one’s neighborhood, and levels of indoor air pollution. They also

contribute to psychosocial and physiological stress which could weaken one’s defenses against

PM2.5.

Results for GrimAge and DPoAm are largely consistent with some notable distinctions.

While gender and education are significantly associated with and contribute to disparities in

both measures, the strength and magnitude of these associations and contributions tend to be

larger for GrimAge. While only GrimAge is significantly associated with neighborhood social

deprivation, only DPoAm shows a difference in PM2.5 risk. These differences indicate that the

two measures of DNAm aging may capture slightly different underlying biological processes

or aspects of aging. Smoking was included as a biomarker in the creation of GrimAge, so if

tobacco smoking and PM2.5 influence DNAm at overlapping CpG sites the effect of PM2.5 may

be masked [13]. DPoAm was constructed using data from a birth cohort in Dunedin, New

Zealand, at ages 26–38 while GrimAge used data from the Framingham Heart Study Offspring

cohort which has a wider geographic and age range (average age approximately 70 years) [14].

These different training sets may contribute to GrimAge being more sensitive to late-life social

and environmental conditions.
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While both GrimAge and DPoAm measures were trained on predominantly White cohorts

and may measure biological aging less accurately in Black populations, we demonstrate that

the racial disparity remains after correcting for ancestry-informative principal components,

suggesting this observation is not driven by differences in genetic ancestry (S1 Table). An addi-

tional phenotypic DNAm age measure, PhenoAge, does not reflect weathering, perhaps due to

less sensitivity to socioeconomic disadvantage, and was not included in our analyses [5, 21].

Epigenetic clocks are composite measures of dozens to hundreds of methylation sites, so it is

not possible to determine whether specific sites or genes drive the observed racial disparity

using this approach. An important future direction in this field is to build DNAm aging mea-

sures using data from more diverse study populations and to investigate whether methylation

levels of specific sites, regions, or genes differ in their association with physiological aging out-

comes between racial groups.

Our finding that women have decelerated DNAm aging compared to men is also consistent

with previous literature [8, 20, 21, 62]. It is unknown whether this effect is attributable to sex,

gender, or a combination thereof given gaps in current measurement practices [11]. Future

research on the structural, social, and biological determinants of this sex/gender difference is

needed. Research using an intersectional approach, which recognizes that multiply marginal-

ized groups such as Black women face unique structural and social conditions, is also needed.

These results benefit from several strengths and careful consideration of weaknesses. We

use two complementary analytical approaches, regression and decomposition, and find gener-

ally consistent results. This study is well powered with a large sample and accounts for poten-

tial sampling bias by using population weights. Complete case analysis inherently adjusts for

missingness but likely underestimates the racial disparity since participants excluded for miss-

ing data are more likely to be Black and have higher DNAm aging. Survival bias may also result

in underestimation of the disparity in DNAm aging.

This study has some limitations. We are not able to adjust for length of tenure at partici-

pants’ residential location. A sensitivity analysis excluding participants who changed location

between 2010 and 2016 finds that the magnitude of the racial disparity was lower and the asso-

ciation between GrimAge and Social Deprivation Index (SDI) is attenuated. Future studies

could include individual-level factors that may mediate the effects of SDI on GrimAge, includ-

ing health behaviors such as diet and physical activity which are influenced by one’s neighbor-

hood environment.

There is also potential misclassification of neighborhood exposure levels. An individual’s expo-

sure to neighborhood deprivation or air pollution may differ from the average level in their cen-

sus tract, depending on where in the tract they live and how much time they spend in different

locations. More granular geographic data may more accurately capture neighborhood exposures

but is not available in this study. One’s personal exposure to air pollution is also influenced by

indoor air pollution which is not widely monitored. Studies have shown relatively high correla-

tions between personal and ambient exposure of PM2.5 but correlations are lower for O3 and

NO2 [74–76]. We use the most recent year of air pollution data available prior to when the out-

come was measured (2014 for PM2.5 and O3, 2010 for NO2) because past residential locations are

not available for all participants, so we are not able to accurately capture cumulative exposure.

2010 NO2 data may not accurately capture more recent exposure, but the Pearson correlation

between 2010 and 2014 exposure for PM2.5 and O3 are 0.82 and 0.75, respectively, indicating that

neighborhood pollution levels are relatively consistent across temporal sampling. A major limita-

tion in this study and in the field is lack of longitudinal DNAm data. Availability of DNAm out-

comes at only one time point precludes analysis of trajectories of biological aging and assessment

of causality. There are also limited data sets that integrate data on social and environmental expo-

sures with markers of biological aging, which limits the potential for cross-validation of results. It
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will be important for future studies to collect longitudinal data to investigate whether change in

exposures result in change to DNAm aging and which periods of the life course are most impor-

tant for weathering. Data on a greater variety of social and structural determinants on the individ-

ual and geographic level will also be important to investigate which exposures are most important

and which factors moderate susceptibility to exposures.

Disparities in DNAm aging mediate significant portions of the racial disparities in a variety

of age-related health outcomes [5]. Eliminating disparities in biological aging, or weathering,

would greatly reduce the persistent and pervasive disparities in health between aging Black

and White Americans. It is crucial to identify the factors contributing to weathering and to

take action to address them. This study and others suggest that eliminating the racial gaps in

education, income, and wealth would go a long way toward alleviating weathering but are not

sufficient to eliminate it [45]. Interventions on the neighborhood level are also needed, as is

attention to differences in risk from pollutants between populations.
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