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2 T A ‘ya—l
Nooln) = B O o U e )+ O(n*~%%).
(s — 1)! x1llog x

The choice of x is still at our disposal. It is advantageous to take x =1 log n; with
this choice of x we obtain

—1 . na-—l
Neo(n) = B r(n) + O(—-—r——~—->
) (s — 1! ) log™! n log log 7

his is our first assertion and the second now follows immediately by Lemma 3.
5. The conjugate problem. In conclusion it may be of some interest to men-

‘tion the conjugate problem of the problem discussed above. This consists in the

determination of an asymptotic formula for the number Fx)=F(x;riky » v ke)
of positive integers n<x which are such that the highest common factor of any
7 of the integers n-+ky, * * > n-+k, is 1. An account of this problem (in a more
general form) has previously appeared in this MonTHLYT. '

i L. Mirsky, On coprime values taken by given polynomials, this MoNTHLY, vol. 55, 1948, pp.
88-89.

A CALCULUS OF FIGURATE NUMBERS AND
FINITE DIFFERENCES*

E. T. FRANKEL, Pittsburgh, Pennsylvania

1. Introduction. The purpose of this article is to derive an operational cal-
culus in the field of finite differences, which is based on the properties of general-
ized figurate numbers. The procedures necessarily yield old as well as new re-
sults, but the emphasis will be on methods and results which are believed to be

new.

2. Figurate Numbers are here generalized to include figurate numbers of
negative order as well as the traditional series of positive order {1]. The more
general numbers are derived by using 1, 0,0, -+ asa generating series, and
operating on it by repeated summation for figurate numbers of positive order
and bv repeated inverse summation for figurate numbers of negative order.

The generating series 1,0,0, -+ - 18 defined as the series of figurate numbers
of zero order. In our notation, superscripts will represent orders of hgurate
numbers, positive or negative, and subscripts 0, 1, 2, - will represent the
successive terms. Thus, the (r-+1)th term in the series of figurate numbers
of the nth order will be represented by F" The operation of repeated summation
is, of course, the process of successive cumulative addition which connects the

e e

* Based on a presentation by the author at the wathematics Colloquium of the University of
Pittsburgh, April 24, 1947, through the courtesy of Professor J. S. Taylor, Head of the Depart-

ment.
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3 adjacent columns, or rows, of Pascal's triangle. Triverse summation, as the term
_.__.) 4 O(n*—2e*%). ' implies, is the operation which reverses or “undoes” the operation of summa-
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=1 1) Fo =Fy+F +Fy,+ - - +F
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In the notation of the calculus of finite differences Auy= tz1— Uz Since,
from (2) » » '

n—1 n n
(9) Fr+1 = Fr+1 - F,,
(10) - AF; = i,

In particular,
n n n n—1
AF, = Fy — Fo=Fy
2 _n —1 n—2

A’Fy = AF; = F,

and, in general,
it n -

(11) A'Fy=F .

Thus, the leading term and leading differences of the series of figurate num-
bers F?, (r=0,1,2, -+ ), are the figurate numbers 2, F, F272, etc., which,
as in Table 1, form a downward diagonal to the left, starting with Fy. It may be
observed that the numbers above such a diagonal do not appear at all when a
series of figurate numbers is successively differenced by the repeated operation
An, =1z — . Apparently the operation of inverse summation, which we shall
represent by the symbol S7! (corresponding to S for summation), is a more
general type of difference operation since it produces the numbers above the
leading difference diagonal in addition to the leading differences themselves.
This suggests the desirability of studying similar patterns derived from other
series.

3. Summation and Inverse Summation of Series. When generalized figurate
numbers are arranged as in Table 1 any two adjacent columns bear mutually

inverse relationships to each other. The series at the right is the summation of

the series at the left. The series at the left is the inverse summation of the
series at the right. In effect, any one of the columns may be regarded as a gen-
erating series from which all of the others are derived. .

Analogously, the successive equidistant values of a function #s, (x=0, 1,
2, - --,r), may be treated asa generating series and operated upon by repeated
summation and by repeated inverse summation. If u, represents the general term
of the generating series, Su, the general term of the summation series, and
S—1u, the general term of the inverse summation series, the following relation-
ships are true:

A CALCULUS OF
Sy, = u, -
S, = 574

rticular,
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(15) Sﬁlur = Up — U,_g, r>0
(16) S7hu, = S, — SV, ,, r>0, et.

In particular,

€170

_ mSTfm = "1y — 4y = Ay

(18) . S—éﬂz =S5y — Sy = ASTyy = A”uo..
Analogous to (11)

(19) - ASrMuy = Sy,

When =0, no operation of summation or of inverse summation is performed
on uo. Therefore, analogous to (3),

(20) S™ug = Sy = u,.

Table 2 exhibits basic relationships between the generating series, the sum-
mation series and the inverse summation series. It should be noted that the

TABLE 2
. Inverse Summation Generating Series Summation
S, Su. Su.
Uo Uo Up
1 Uy —1ug U1 u0+ul
r Ur—Ury Uy wotu1+ - o - Fu,

mutually inverse operations S and .S! are commutative. By contrast, the opera-
tion A and its inverse A~! (or Z) are not commnutative [2].

4. Parallel Leading Differences and Intersecting Leading leferences. Sup-
pose u; is a rational integral function of the nth degree in x, and that the series
of equidistant terms #u,, (x=0, 1, -, n+1), has been operated on by repeated
inverse summation. Table 3 summarizes certain results of such operations; that
is, it lists parallel leading differences and intersecting leading differences of a

TABLE 3

x Sty S™u, STy, s S Sy S0
0 2% 7)) %o e 2] o Ug
1 d] ) Aug Uy
2 dg LB A’uo U2
n—1 day Arluy s Un_1
n dn Arug o tn
n+1 0 Atug e Uni1
. 0 ..
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rational integral function of the nth degree in x. In column S—"u. the nth differ. ¢ Theorems ox
ences, starting with A, are constant. 1n the successive colunmssiartng=with "t oof Series—

S—(+1y the (n--1)th and higher orders of differences vanish. 1n general, the
terms dy, da, - * + , dn in column S~V are not zero. We designate them the
parallel leading differences of the generating series, in order to distinguish them
from Aug, A2ug, + - -, A™uo which we call the intersecting leading differences. In , .
this way, both sets of differences may be derived by repeated inverse summa- ol
tion of the (#+41)th order. -

The rth parallel leading difference is

@1 d, = S~ Dy,

R |

The rth intersecting leading difference is
(22) Aty = S”U;.

5. Criss-Cross Multiplication of Series. Having given two series @, and b,
(x=0,1, - - -, 7), a third series ¢;=a.¥ b, can be obtained by a process of criss-
cross multiplication shown in Table 4. The svmbol of criss-cross multiplication

TABLE 4
x az bz Cz=az*b=
- r v ‘.:l"l[ [ 4§ o PO
L
0 aq bo co=aobo
1 .5 by a=aoh+abo Lar w2 Re
. e .
. )
r ay br 4 =av*br= Z atbr-f
t=0
N, = N0

(%) is somewhat suggestive of the operation which it represents. The symbol is
taken from the theory of the Laplace Transformation where it has an analogous - wt,
significance in connection with certain continuous functions [3]. The operation

of criss-cross multiplication obviously conforms to the commutative law; that ' -,

is, a,%b,=b.*a,. It is easily seen that the operation of criss-cross multiplication

conforms to the distributive law; that is, a. % (b, 4-c,) =a,®b,+a, %cr. We sha!

now demonstrate that it also conforms to the associate law. - .
Proof:

(23) (ar*b,)*c, = (ao*boye, + (a1%b)cr1+ - - -+ (a,_la_kbr_l)(;l + (d,‘l‘b,_)C:i- licy

. 1

Multiplying out and regrouping the terms, we obtain o i‘ “ ) ‘_

(24) (ar*br)*cr = 06(‘0'¥C,) + al(br—l*cral) + e + ar(bo*ﬂo) &y P2 3t ey 7! -

(25) = a,% (by*c,).

(26) (a,%b,) % e = bola,*c,) + bi(ar_1*C1) + - -+ 4 be(aokco)

(27) = b.x(a,%c,): :

R T T s
R ———— R =

e T T
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6. Theorems on Criss-Cross Multiplication, Figurate Numbers, and Sum-
mation of Series. |

TuroREM 1. Repeated summation of a series n times is equivalent to Criss-cross
multiplication of the series by the nth order ofﬁgumtc?numbers. That is,

(28) S, = u,%F, |
(29) :mﬁ+wt+~-+wﬂ+mﬂ

n4+r—1 n—+r—2
()T
7 r'—l
n n) n—1
() (5)
-1 -2
(31) =’I¢0(n+r >+M1(n+r -)+-.
n—1 n—1
n ( n >+ (n—l)
Hr n—1 o n—1)

An equivalent result has been given by Sheppard [4] with a reference to Elder-
ton [5].

(30)

I

THEOREM 2. Repeated inverse summation of a series n times is equivalent to

criss-cross multiplication of the series by the (—mn)th order of figurate numbers.
That is,

(32) S u = u,xF,

(33) e uB S wF oy A e Py wFy
n T #n
(34) =men( >+mﬁnﬂ( )+”.+%<>
r r—1 0
. n ”n ' n
(35) = Uy — ( )ur—l + ( >Mr~’.‘ - - + (_ 1)T< )uo.
1 2 , r

An equivalent result has been given by Dwyer [6].

THEOREM 3. Criss-cross multiplication of figurate numbers of order r (posttive
or negative) by figurate numbers of order s (positive or negative) results in figurate
numbers of order r+s.

(36) That s, Froslh = Fr'
r+a2—1 elce

(37) Corollary: F:u*F!m*F: elc. = Fn .

A — T M T T

-



R B R

!

20 A CALCULUS OF FIGURATE NUMBERS AND FINITE DIFFERENCES - [January,
!
THEOREM 4. If ux(x=0,1,2, -+ -, n) is a rational integral function of the nth
degree in %, the rth parallel leading difference 8

—(n+1) . - (n+1) ’

(38) d. =S u, = u,%F,

and the rth intersecting leading difference 1s

(39) h

Aruo = S—'u, = u,*F,—f = d,#F:—-&l.

THEOREM 5. Let u. and v, represent the successive lerms of two series for
x=0, 1, 2, etc., and let u,x v, represent the general term of their criss-cross product.
If the first series is operated on by repeated summation of the mth order, and the
second series by repeated inverse summation of the nth order, then the general term
of the criss-cross product of the 1wo new series is '

40)  STu xS v, = (B ww)x(F, *v) = Fr s (exn) = S (u,%0,).
THEOREM 6. If in the preceding formula n="m, it becomes
(41) Smu,*S—mv, = Ff* (u,%v,) = U F V.

This last result is equivalent to Dwyer’s Successive Cumulation Theorem [6],
which he applied to the development of new techniques for the computation of
moments of statistical frequency distributions.

Proofs of theorems 1 to 6 present no unusual features, and are omitted here.

7. Applications. To derive a general formula for the (»+1)th term in the kth
order of repeated summation of the series u# (x=0,1, - - -, 7), arational integral
function of the nth degree in x: ' ' .

In Table 3, any column operated upon by repeated summation and inverse
summation will produce the entire field of numbers. Therefore, any column oper-
ated upon by criss-cross multiplication with hgurate numbers will produce the
entire field. If we choose the column which contains the parallel leading differ-
ences of the original series, that is, if we apply criss-cross multiplication by
figurate numbers to the series %o, di, ds, + = -, dn, then any term in any column
can be represented by an expression of not more than n-+1 terms involving the
parallel leading differences and ficurate numbers.

Applving the foregoing principles, the desired term is Sku,, and

42)  S'u = wrE: = (@l yxFr = 4B
(43) BT GET B
k +r E+n+4r—1 k4
(44) =uo( +n )erx( >++d“( r)
r y — 1 r—n
E+n+7r (k+ﬂ—§-r—1> (k+r)
45 = d + - d, .
(45) uo( k4 n >+ ' E+n + E+n

I————_
" © ——— T -

o
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‘The parallel leading differences d;, da, etc. which are required in applying the

above formulas may be obtained-either by repeated inverse summation-er-by
P AT SR e e S wisen-series by the series of figurate Nitaanees
order —{(n--1), that is, by F-&+D_ It mayv be observed that the combinatorial
expressions represent figurate numbers of constant order (k+n-+1). Such ex-
pressions are simpler to evaluate numerically than the binomial coefficients of
constant order which appear in corresponding formulas in terms of the inter-
secting leading differences 4, A%, A%, efc.

r

g -

8. Numerical Examples. A few numerical examples will illustrate the ap-
plication of the summation formula described in the preceding section.

Example (a): Derive an expression for the sum of the cubes of the first 7 odd
numbers. Here, u,={2x-+1)%, the expression is of the third degree, and the paral-
lel leading differences may be obtained by criss-cross multiplication by figurate
numbers of the fourth negative order, that is, by F7*, as follows: '

X u,=(2x+1) Fos do=1u, % Fat
0 1 1 1
1 27 —4 23
2 125 6 23
3 343 —4 1

In this case, k=1;n=3; uo=1; d;=23:d,=23;d;=1; and the required summa- '

tion ends with the term %,_;. Substituting,

r+ 3 r+2 1 r\ -
’( 4 )+23< 4 >+23< 4 >+<4)
(r + 3)(r + 2)(r + 1)r+ 23(r + 2)(r 4+ Dr(r - 1)
24 24

23(r 4+ Dr(r — D — 2) 4 r(r — 1)(r — 2)(r — 3)
24 24 '

Sur—-!

-+

When this is multiplied out, it reduces to

18 4 33 4 ..« 4 (2r — 1)% = 72222 — 1).

FExample (b): Find polvnomial expressions for the rth term and the sum of
r terms of the series —6, —3, 10, 39, 90, 169, - - -

Since, in this case, inspection does not reveal the decree of the general term,
the parallel differences are formed by repeated inverse summation, as follows:

= e g —
N o T

™
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x U, Sy, ) S~y S, Stuz=d,
0 —6 -6 —6 —6 —6

1 -3 3 9 15 21

2 10 13 10 T Y |
3 39 20 16 6 5

4 90 51 22 6 0

5 169 79 28 6 0

From the above difference table, since terminal zeros appear in column S—u,,
we assume that the desired polynomial is of the third degree. The term desired
is 14,1, since that'is the rth term of the series ug, 1, us, =+ +, 2%,_1. Substituting
in formula (45), k=0; n=3; uo=—6; di=21; do= —14; d3=5; and for the rth
term of the series

. r+2 r+1 r r—1
0, 1 = — 6 21 —1 i
Strs ( 3 )+ ( 3 ) 4(3)+5( 3 )

=y — gyt —yr — 5.

Similarly, for the sum of the first 7 terms,

r+ 3 r+4 2 r+1 r
= —0 21 — 14
o= =o() () () 5(5)

r(3r* + 2% — 9r — 68)/12.

9. Vandermonde’s Theorem. Using the notation r® =r(r —1) - - - (r —k 1),
the identity known as Vandermonde’s Theorem or the factorial binomial
theorem [7] may be written

(46) (r + s)(k) p— r(k) + <k>,-(k_l)s + (k>r(k“2)s(2) + « e
: 1 2

which is analogous in form to the binomial expansion

Ik B
(CY)) (f+s)k=rk+(1>r}ﬁ18+(2)rk—ﬂsz+'“'

The factorial binomial theorem may be proved starting with Theorem 3, as
follows:

~r-—8

(48) : Fy ' =Fy *Fy

e —— - I — .._vA._M.
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5 3 7 + S\ 2 =7 _—5 —r —8 —7 _—8 e R R s

R A il 10 (- I)L( . NV =FeFo +FcaFy + - +F F, e R S e

—0 —6. ‘ » A E
o : r S k—1 7 1 N

T - ()G) (L) ()
) o 0 ) T EDT( e
6 5 ‘ ’

6 o A VAT A
‘ 0 o (D) (h).

. Eliminating (—1)* from both sides of the equation,
cros appear in column S™'u,,

rd degree. The term desired (50) <’+5>={’)<5)+( r ><s>+'--+(r)<s),or
. We, - 0, U,1. Substituting ) k \ & 0 E—1 1 0 k

= o 1_-1; (f;g:s; and for the rth r (k) (g0 . (k—1) (1) MONO!
(51) S SN A I A
5 = . —
k! ROl (k- DN 0!k!
¥ ) + 5 (’ - 1) Multiplying both sides by k! we obtain
3 3 /-

(32) (r+ 5)® = 5 4 (k)r(k—])s(l) + (k)r(k—z)s&) N IO O)
1 2 »

10. A Problem in Binomial Coefficients. The properties of generalized fig-

. _ urate numbers can be applied to solve Problem 4189 in the Mo~tHLY, Febru-
Fk ]> + 5< ' ) ary, 1946, Vol. 53, No. 2, page 103.

Prove that .
m m+ k4 a\ fr+ k m+a—1
S (IO
—0 r+ k+a k m
B =y —=1) - (r—k41), -

1 or the factorial binomial ’ The expression
fm+ k+a o+ k4 a m-—m+k+ﬂ)
(—1)< >=(—1)( ) (=)FRITT,
r+k—+a/ :

The expression

ion (r + k-) B (r +§k> _
k - r T

v
=3

F A PYCO N

_: 2 ... Al - - - - .
s+ Thercfore, the original expression is equivalent to
N . — |m.+l.-9—a) l%l m —(m+l..§—a) k41
tarting with Theorem 3, as (-1 1 me—r =(—-1)F *F o
’ .
(m+a—1) m + a—1
= (—=1)"F, = ( -
m

% e L e m—— T B ™ Lo e e L S S ——
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The result is independent of the restriction @ 0. The above proof may be com-
pared with the proof in the MONTHLY, June=July, 1947, page 347.

11. Summation of Product Series. Theorem 6 can be applied to find the sum
of a product series such as #,2a, %10y, - * -, Ug¥y, Where v; is a polynomial of
degree n. The sum of the series is evidently

e S

— st

(53) U KT, = Uy + Upay 4 -+ Ul

- Introducing figurate numbers of the (n+1)fh order, positive and negative,

—(n+1)

(54) Cukn, = (B wu) % (F T %)
(55) = (F 7 xu)*d,.

Changing back from criss-cross multiplication by figurate numbers to repeated
summation, :

(56) u,%v, = Sy % d,,

When the above is expanded, since the function v, is of the nth degree, the terms
involving dny1, dny2, €tc., will vanish. Therefore, the desired sum

(57) U XV = d(lS"+1ur + dlsn+1ur—l + ct + dnsﬂ+lur—m
where
d, = F; " xu,, (t=0,1,---,n).

This result is equivalent to one given by Dwyer [6] for the evaluation of
Zg UatzVatze

12. Parallel Leading Differences of Powers of Integers. Although Dwyer
used another type of notation, the differencing operation which he applied is
identical with the operation of inverse summation as defined in this article.
Carrving out his objective of simplifving the computation of statistical mo-
ments, Dwyer derived general expressions and recurrence formulas for what,
in our terminology, are the parallel leading differences of the powers of integers,
which are analogous to the “differences of zero” of actuarial literature. For the
powers 7*, (r=0,1,2, - - - ), since the function is of the nth degree, Theorem 4
is applicable, and we have

—(n+1) , —(m+l) o,

(58) d, =S =T, *r".

An equivalent formula, in another connection has been given by Wall [8]
Values of dy, dy, - - - are given in Table 5 from n=1 to n=11.

e ——————— -....-..q_,__'.-.ﬁ"f
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1950] A CALCULUS OF FIGURATE NUMBERS AND FINITE DIFFERENCES 25
. TABLE 5 R i——— »

r n=ln=2n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 Cm=11
1 1 1 1 1 1 1 1 1 1 1 1 i
2 1t 4 11 26 ST 120 247 502 1013 2036 ~ LGS -
3 1 11 66 302 1191 4293 14608 47840 152637~ € 6O i
4 26 302 2416 15619 88234 455192 2203488 \qu '
5 1 57 1191 15619 156190 1310354 9738114 m $rop
6 1 120 4293 88234 1310354 15724248
7 1 247 14608 455192 9738114
8 1 502 47840 2203488

© 9 1 1013 152637

10 1 2036

11 1

Totals 1 2 6 24 120 720 5040 - 40320 362880 3628800 39916800
2t 3t 4! S! 6! 7! 8! 9! 10! 11!

These values of d may be substituted in Formula 45 to derive expressions
for powers of integers and their sums in terms of figurate numbers or in
terms of factorial products. From a statistical point of view, 7™ turns out to be

a weighted average of factorial products, in which the d’s are the weights. Thus,

_dr™ A do(r DO oo b d(rFn— 1™

(59) o
dy+dy+ -+ da
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