
The 6th Vulkan Developer Conference
Sunnyvale, California | February 5-7, 20242024

6 Years of Teaching Vulkan with Example for
Video Extensions

Helmut Hlavacs, University of Vienna
Bernhard Clemens Schrenk, University of Vienna

Computer Science at University of Vienna, Austria
• Founded in 1365, 10600 staff, 84600 students,

15 Faculties, 5 centers

• Wintersemester: October – January

• Summersemester: March – June

• https://informatik.univie.ac.at/en/

• Bachelor 6 semesters / 180 ECTS credits

• Master: 4 semesters / 120 ECTS credits

• PhD: 6 semesters

Computer Science
Media Informatics
Business Informatics
Data Science
Medical Informatics
Business Analytics
Digital Humanities

Computer Science
Business Informatics

German
Students from
Austria, Germany

English
International
Erasmus Exchange

Courses related to Vulkan API

Bachelor program:
• Electives
• Bachelor´s thesis

Master program:
• Electives
• Gaming Technologies (VVE)
• Lab 1
• Lab 2
• Master´s thesis

Cluster Computer Graphics
• Foundations of Computer Graphics (Gatekeeper)
• Real-Time Computer Graphics (Vulkan API)
• Cloud Gaming (VVE)
• Real-Time Ray Tracing (OpenGL)
• Image Synthesis

Cluster Algorithms
Cluster Data Analysis
….

History of Real-Time Computer Graphics: DirectX 9 – DirectX 10 – Direct X 11 – Vulkan

Real-Time Computer Graphics – Lecture

• Introduction to the Vulkan API and the Vulkan Tutorial

• C++ Primer
• Mathematics 1: LinAlg, Rotation, Affine Mappings, Reference Frames

• Mathematics 2: Model - View – Projection, NDC, Viewports

• Vulkan API - Introduction, Instance, Debug, Surface
• Vulkan API - Device + Queue, Swapchain, Command Pools/Buffers

• Vulkan API - Synchronization, Render Pass + Frame Buffer

• Vulkan API - Memory, VMA, Buffers, Images

• Vulkan API - Descriptor Sets and Layouts, Pipeline Objects / Blending

• Vulkan API - Pipeline Objects, GLSL

• Lighting and Shading - BRDF, Light types, Phong
• Lighting and Shading - PBR, Fresnel, Micro Facet, Geometry, Metal/Roughness

• Maps (Texture, Normal, Shadow)

~580 slides
All lectures are
recorded and can be
downloaded from the
Moodle: 14x 90 min
videos

A Sample
Lecture

Real-Time Computer Graphics – Lab Assignments

6-7 assignments + a personal game project

1. Install the Vulkan SDK, compile and run the Vulkan Tutorial

2. Scenegraph Worldmatrix and Vulkan Basics

3. Physical Device, Swap Chain, Command Pools and Buffers, Synchronization

4. Memory, Buffers and Images + Game Topic

5. Descriptor Sets, Pipeline, View port and GLSL Programming + Game Design
Document

6. Blinn-Phong BRDF and more objects (and textures)

7. Your Game

A Sample Assignment – Task 04 – Memory,
Buffers and Images

1) …

2) …

3) …

4) Change the tutorial code, so that it no longer uses vkCmdDrawIndexed(), but so
that it uses vkCmdDraw(). This means you no longer use an index buffer for
drawing! Now triangles are defined only by three successive vertices in the vertex
buffer!
So after having loaded vertex and index information from disk, create another
vertex buffer that holds exactly 3 vertices for each triangle (and therefore many
redundant copies of vertices.). Then use this vertex buffer for drawing.
…

Other Vulkan Related Courses and the VVE

Gaming Technologies

• Physics simulation: Time stepping,

rigid body kinematics, collision

detection/resolution, …

• AI for Games (NPCs): Movement,

Path finding, FSM, Decision/Behavior

Trees, MCTS, GOAP, …

• Your Game (using AI and physics)

Cloud Gaming
• Video encoding (FFMPEG) and

streaming

• Multimedia Networking: IP 4/6,
UDP/TCP, STUN/TURN, RTP, SIP,
buffer dynamics, …

• GUI frameworks

• Audio

• Your Cloud Game (Server, Client)

Vienna Vulkan
Engine (VVE)

Vienna Physics
Engine

• C++ rendering framework
• Windows / Linux / ~MacOS
• Vulkan API / GLSL
• GLM / GLFW / Assimp / Nuklear
• Shadow maps

• Threadpool, Screenshots
• Eventlisteners
• Rendering, learning Vulkan, basis

for implementing new stuff
• https://github.com/hlavacs

The Vienna
Vulkan Engine
(VVE)

https://github.com/hlavacs

Quackblast (Lamies Abbas)

Cubemania (Orcun Ilker Döger) Zombie Fighter (Jan Mesner)

Sphere Fighter (Paul Friedrich Pesak)

Example Bachelor ´s Thesis: Graphical Vulkan Editor
Riccardo Pfeiler, Graphical Vulkan Editor, Bachelor´s Thesis, University of Vienna, 2023.

https://github.com/Schokolado/GraphicalVulkanEditor
Generate C++ Source code Create and visualize pipelines

https://github.com/Schokolado/GraphicalVulkanEditor

Example Master´s Thesis: 3 Vulkan Renderers

Alexander Fomin, Computer graphics based on Vulkan API. Comparation studies of
rendering algorithms performance. Master’s Thesis, University of Vienna, 2022.

Implementation for the Vienna Vulkan Engine
• Deferred renderer

• Ray Tracing renderer (NVIDIA extension)

• Ray Tracing renderer (Khronos extension)

Research questions
• Which rendering algorithm performs better on specific hardware?

• Performance Ray Tracing vs rasterization?

• Performance Nvidia extension vs Khronos extension?

Lessons Learned in 6 Years Wrestling the API

• Massive work learning the API

• Making the engine is a challenge but
good investment

• Recording pays in the long run but
lecture rooms get quite lonely

• Bring all to the same level at the start

• Huge amount of content – all or nothing

• Balance with other content? Lighting,
shading, mapping, shadows, AO, …

• C or C++ interface?

• Include Queries? Render Pass?

• Great interest in games related courses

• International students inhomogeneous

• Differences in Mathematics / C++

• Make good use of the Moodle forum

• In summer 2023 20% failed RTCG

• Afterwards students do know the API

• Very creative wrt game ideas

• High motivation, like heavy implementation

• Some wait until the last day – and then some

• Presentations are big fun and surprising

Teacher Instrospection Extraspection – Students It's a gundam!

https://www.urbandictionary.com/define.php?term=it%27s+a+gundam%21

My Computer Graphics Course Journey

1. Foundations of Computer Graphics

2. Real-Time Ray Tracing

3. Gaming Technologies

4. Cloud Gaming

5. Lab 1: Vulkan Video Encoding

6. Lab 2: Vulkan Video Decoding

7. Upcoming: Master Thesis

My experience during the courses
• First: Learning a good mathematical base

• Followed by: State of the art technology and APIs

• Perfectly guided through every topic by small tasks

• Much fun with own projects

• Finding: I am not a designer, but

• I love writing code &

• working on game engines

• Finally: Inspiration where I can continue
• master thesis

Cloud Gaming / Video Encoding

• Why this topic for my lab courses & master thesis?

• Course Cloud Gaming – easy approach:
• Grab pictures to host memory

• Encode with FFMPEG

• Send to client

• I wanted to improve that -> do it on the GPU

• Game Engine: Vulkan based

• Vulkan Video Extensions just on their way to get released (1 year ago)

Source: Stable Diffusion

Starting Point – Vulkan Video
• Provisional Specifications for Vulkan Video Encode

• NVIDIA Vulkan Beta Driver

• No validation layer support for Video Encode in SDK

• One sample: nvpro-samples/vk_video_samples
• Encoding from YCbCr raw data file

• Producing Intra frames only

• Working with one specific revision

Source: https://github.com/nvpro-samples/vk_video_samples

Source: https://www.khronos.org/blog/khronos-finalizes-vulkan-
video-extensions-for-accelerated-h.264-and-h.265-decode

The progress / What to do differently

• Many Ups and Downs

• Extracting the relevant code from the example

• First working own code, took some time

• Even longer way until first P frame (reference picture list)

• Stopped working after every specification revision update

• Many bugs found after final SDK release (with validation layer)

• Next time: Get more in contact with the involved people

• Tip: Read the proposal document containing example snippets

What I learned technically
• Better understanding of Synchronization in Vulkan
• Working with multiple queues
• Working with different image layouts
• Working with provisional Vulkan APIs
• Too much details about H.264

• All this based on a solid base learned during the lectures before

Outcome & Deliverables

• Vulkan Video integrated in Vienna Vulkan Engine
• Video Textures from H.264 files
• Get rendered content as H.264 stream

• GOP structure with I and P frames

• Simple example code for
• Vulkan Video Encode Extension (updated for the finally released revision)
• Vulkan Video Decode Extension
• One CPP file each

• Not a complete H.264 implementation, but trimmed for education
• As base for other implementations and future experiments
• github.com/hlavacs/ViennaVulkanEngine/tree/vulkanvideo_encode
• github.com/clemy/ViennaVulkanEngine/tree/videodecode

Summary as Student
• Vulkan as base for all courses

• Gaining knowledge in modern computer graphics APIs
• HW & OS independent: Students can use any platform
• Immediately use the knowledge for visualization in related courses:

• AI for NPCs
• Game Physics

• Reuse own code and ideas and improve it in every course

• Perfectly supported my interests in
• Coding
• Math
• New Technologies

• Outlook: A solid base for multiple possibilities
• An academic career
• A job in the (game) industry

	Slide 1
	Slide 2: Computer Science at University of Vienna, Austria
	Slide 3: Courses related to Vulkan API
	Slide 4: Real-Time Computer Graphics – Lecture
	Slide 5: A Sample Lecture
	Slide 6: Real-Time Computer Graphics – Lab Assignments
	Slide 7: A Sample Assignment – Task 04 – Memory, Buffers and Images
	Slide 8: Other Vulkan Related Courses and the VVE
	Slide 9
	Slide 10: Example Bachelor ´s Thesis: Graphical Vulkan Editor
	Slide 11: Example Master´s Thesis: 3 Vulkan Renderers
	Slide 12: Lessons Learned in 6 Years Wrestling the API
	Slide 13: My Computer Graphics Course Journey
	Slide 14: My experience during the courses
	Slide 15: Cloud Gaming / Video Encoding
	Slide 16: Starting Point – Vulkan Video
	Slide 17: The progress / What to do differently
	Slide 18: What I learned technically
	Slide 19: Outcome & Deliverables
	Slide 20: Summary as Student

