5, . & T - .
s N - TS o
: b N, . - -
P et o p 3 ”
: s S 4 ¥
.) .
_ " \ " ‘ - .

' N\ " The 6t Vulkan Developer Conference
vu I I(an I Sed 2 O 24 Sunnyvale, California | February 5-7, 2024

6 Years of Teaching Vulkan with Example for
Video Extensions

Helmut Hlavacs, University of Vienna
Bernhard Clemens Schrenk, University of Vienna

Computer Science at University of Vienna, Austria

Founded in 1365, 10600 staff, 84600 students,
15 Faculties, 5 centers

Wintersemester: October — January
Summersemester: March — June

https://informatik.univie.ac.at/en/

Bachelor 6 semesters / 180 ECTS credits ——

Master: 4 semesters / 120 ECTS credits ——

PhD: 6 semesters

Computer Science
Business Informatics

Computer Science
Media Informatics
Business Informatics
Data Science
Medical Informatics
Business Analytics
Digital Humanities

German
Students from
Austria, Germany

English
International
Erasmus Exchange

Courses related to Vulkan AP

Bachelor program:
e Electives - Cluster Computer Graphics

* Foundations of Computer Graphics (Gatekeeper)
* Real-Time Computer Graphics (Vulkan API)
* Cloud Gaming (VVE)

Master prograM e Real-Time Ray Tracing (OpenGL)

e Bachelor’s thesis

* Electives * Image Synthesis
e Gaming Technologies (VVE)
e lab1 Cluster Algorithms
J e Lab 2 Cluster Data Analysis

 Master’s thesis

History of Real-Time Computer Graphics: DirectX 9 — DirectX 10 — Direct X 11 — Vulkan

g% Lniversitat

Real-Time Computer Graphics — Lecture = Wien
~580 slides
* Introduction to the Vulkan APl and the Vulkan Tutorial All lectures are
e C++ Primer recorded and can be

. downloaded from the
Mathematics 1: LinAlg, Rotation, Affine Mappings, Reference Frames |, . 14" 90 min

Mathematics 2: Model - View — Projection, NDC, Viewports videos
Vulkan API - Introduction, Instance, Debug, Surface

* Vulkan API - Device + Queue, Swapchain, Command Pools/Buffers

e Vulkan API - Synchronization, Render Pass + Frame Buffer

* Vulkan API - Memory, VMA, Buffers, Images

* Vulkan API - Descriptor Sets and Layouts, Pipeline Objects / Blending

Vulkan API - Pipeline Objects, GLSL

Lighting and Shading - BRDF, Light types, Phong

Lighting and Shading - PBR, Fresnel, Micro Facet, Geometry, Metal/Roughness
Maps (Texture, Normal, Shadow)

A Sample
Lecture

ENTERTAINMENT COMPUTING (EC)

Creating Surfaces

E.g., Win32:

VkResult vkCreateWin32SurfaceKHR(
VkInstance instance,
const VkWin32SurfaceCreateInfoKHR* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VksurfaceKHR* psurface);

typedef struct vkwin32surfaceCreateInfokHR {
vkstructureType sTvpe;
const void* phext;
VkiWin32surfaceCreateFlagskHR flags;
HINSTANCE hinstance; //Win32 HINSTANCE for Win32 window
HWND hwnd; //Win32 HWND
} vkwin32surfaceCreateInfokHR;

E.g., GLFW:

GLFWwindow* window = glfwCreateWindow(64@, 488, "Window Title™, NULL, NULL);
vksurfacekHR surface;

VkResult err = glfwCreateWindowSurface(instance, window, WULL, &surface);

ENTERTAINMENT COMPUTING (EC)

Querying Surfaces

VkResult vkGetPhysicalDeviceSurfaceSupportKHR(
VkPhysicalDevice physicalDevice,

uint32_t queueFamilyIndex,
VkSurfaceKHR surface,
VkBool32* pSupported);

VkResult vkGetPhysicalDeviceSurfaceFormatsKHR(

VkPhysicalDevice physicalDevice,
VkSurfacekKHR surface,
uint32_t* pSurfaceFormatCount,

VkSurfaceFormatKkHR* pSurfaceFormats);

VkResult vkGetPhysicalDeviceSurfaceCapabilitieskHR(

VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface,

VkSurfaceCapabilitiesKHR* pSurfaceCapabilities

Real-Time Computer Graphics

To determine whether a queue family of a physical
device supports presentation o a given surface

Get supoprted byte formats and color spaces
+ Implementation must provide format
VK_FORMAT_B8GBRESAE UNORM

VK_COLOR_SPACE_SRGB_NONLINEAR_KHR

typedef struct VkSurfaceFormatKHR {
VkFormat format;
VkColorSpacekHR colorSpace;

} vkSurfaceFormatkKHR;

To query the basic capabilities of a surface,

typedef struct VkSurfaceCapabilitieskHR {
uint32_t minImageCount;
uint32 t maxImageCount;
VkExtent2D currmaxImageCountentExtent;
VkExtent2D minImageExtent;
VkExtent2D maxImageExtent;
uint32_t maxImageArraylayers;
WkSurfaceTransformFlagskHR supportedTransforms;
WkSurfaceTransformFlagBitskHR currentTransform;
VkCompositeAlphaFlagskHR supportedCompositealpha;
VkImageUsageFlags supportedUsageFlags;

} VkSurfaceCapabilitieskHR;

Real-Time Computer Graphics SoSe 2023
wniversitat
ENTERTAINMENT COMPUTING (EC) wien

Surface Present Modes

VkResult vkGetPhysicalDeviceSurfacePresentModesKHR(
VkPhysicalDevice physicalDevice,

VksurfacekHR surface,
uint32_t* pPresentModeCount,
VkPresentModeKHR* pPresentModes) ;

tyvpedef enum VkPresentModeKHR {
VK_PRESENT_MODE_IMMEDIATE_KHR = @,
VK_PRESENT_MODE_MAILBOX_KHR = 1, //1 element in gueue, replace previous
VK_PRESENT_MODE_FIFO KHR = 2, //N elements, wait if full (must support)
VK_PRESENT_MODE_FIFO_RELAXED_KHR = 3,
VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR = leeelilleee,
VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR = 1leeellleel,
VK_PRESENT_MODE_MAX_ENUM_KHR = @x7FFFFFFF

} VkPresentModeKHR;

Real-Time Computer Graphics

ENTERTAINMENT COMPUTING (EC)

Time for Code

Create surface

Real-Time Conges

sitat
Real-Time Computer Graphics — Lab Assignments

6-7 assignments + a personal game project

Install the Vulkan SDK, compile and run the Vulkan Tutorial

Scenegraph Worldmatrix and Vulkan Basics

Physical Device, Swap Chain, Command Pools and Buffers, Synchronization
Memory, Buffers and Images + Game Topic

Descriptor Sets, Pipeline, View port and GLSL Programming + Game Design
Document

Blinn-Phong BRDF and more objects (and textures)
7. Your Game

A

o

A Sample Assignment — Task 04 — Memory,
Buffers and Images

1) ...
2) ...
3) ...

4) Change the tutorial code, so that it no longer uses vkCmdDrawIndexed(), but so
that it uses vkCmdDraw(). This means you no longer use an index buffer for
drawing! Now triangles are defined only by three successive vertices in the vertex
buffer!

So after having loaded vertex and index information from disk, create another
vertex buffer that holds exactly 3 vertices for each triangle (and therefore many
redundant copies of vertices.). Then use this vertex buffer for drawing.

Other Vulkan Related Courses and the VVE

Gaming Technologies

* Physics simulation: Time stepping,
rigid body kinematics, collision

detection/resolution, ...

e Al for Games (NPCs): Movement,
Path finding, FSM, Decision/Behavior

Trees, MCTS, GOAP, ...

* Your Game (using Al and physics)

Vienna Physics
Engine

Vienna Vulkan
Engine (VVE)

The Vienna
Vulkan Engine
(VVE)

C++ rendering framework
Windows / Linux / ~*MacOS
Vulkan API / GLSL

GLM / GLFW / Assimp / Nuklear
Shadow maps

Cloud Gaming

* Video encoding (FFMPEG) and
streaming

* Multimedia Networking: IP 4/6,
UDP/TCP, STUN/TURN, RTP, SIP,
buffer dynamics, ...

 GUI frameworks
 Audio

* Your Cloud Game (Server, Client)

Threadpool, Screenshots
Eventlisteners

Rendering, learning Vulkan, basis
for implementing new stuff
https://github.com/hlavacs

https://github.com/hlavacs

Quackblast (Lamies Abbas) .

L] L]
I I~ EN 7oAy l"'af'\'l'

u_m

!
-

(il
N O O

Zombie Fighter (Jan Mesner)

Example Bachelor “s Thesis: Graphical Vulkan Editor

Riccardo Pfeiler, Graphical Vulkan Editor, Bachelor s Thesis, University of Vienna, 2023.
https://github.com/Schokolado/GraphicalVulkanEditor

Generate C++ Source code Create and visualize pipelines
8 Graphical Vulkan Editor X B Graphical Vulkan Editor X
File Generate File Generate
Instance Physical Device Logical Device Swapchain Model Graphics Pipeline Instance Physical Device Logical Device Swapchain Model Graphics Pipeline
)) Pipelines
Image Dimensions:
= = Graphics Pipeline 1 Add Pipeline
i . Afi .
Height: 500 + | Width: |500| 5 Graphics Pipeline 2
Edit Pipeline
[Lock window size -
Delete Pipeline

Image Clear Color:

R: G: (0,00 % B: 0,00 |% A: [1,00 % [4] Use Indexed Vertices

[] Reduce SPIR-V Code Size

Frames in Flight: |2 : |

Pipeline Preview:
[save Energy for Mobile

Reload Preview

Image Usage: VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
Presentation Mode: VK_PRESENT_MODE_MAILEOX_KHR v
Image Format: VK_FORMAT _B8GSR8AS_SRGB v
Image Color Space: VK_COLORSPACE_SRGE_NONLINEAR _KHR v

Generate GVE Project Header Generate GVE Project Header

https://github.com/Schokolado/GraphicalVulkanEditor

Example Master’s Thesis: 3 Vulkan Renderers

Alexander Fomin, Computer graphics based on Vulkan APIl. Comparation studies of
rendering algorithms performance. Master’s Thesis, University of Vienna, 2022.

Implementation for the Vienna Vulkan Engine
e Deferred renderer

e Ray Tracing renderer (NVIDIA extension)

e Ray Tracing renderer (Khronos extension)

Research questions
* Which rendering algorithm performs better on specific hardware?
e Performance Ray Tracing vs rasterization?

* Performance Nvidia extension vs Khronos extension?

Lessons Learned in 6 Years Wrestling the AP

Teacher Instrospection Extraspection — Students 5
It's a gundam!

Great interest in games related courses

* Massive work learning the API

* Making the engine is a challenge but
good investment

International students inhomogeneous

« Recording pays in the long run but Differences in Mathematics / C++

lecture rooms get quite lonely * Make good use of the Moodle forum
* Bring all to the same level at the start e In summer 2023 20% failed RTCG

* Huge amount of content —all or nothing « Afterwards students do know the API

* Balance with other content? Lighting, .
shading, mapping, shadows, AO, ...

e Cor C++ interface?

Very creative wrt game ideas

High motivation, like heavy implementation

e Include Queries? Render Pass? * Some wait until the last day —and then some

Presentations are big fun and surprising

https://www.urbandictionary.com/define.php?term=it%27s+a+gundam%21

N oA W E

Foundations of Computer Graphics EE

animation motionblur supersampling
julia_animation

Real-Time Ray Tracing

Gaming Technologies
Cloud Gaming

Lab 1: Vulkan Video Encoding Seaahy
Lab 2: Vulkan Video Decoding | "Re¢s . :
Upcoming: Master Thesis s

-_— e | | o
‘4 [t \ S
- - — e — —

\sg;, \3‘. "‘ilr L] L] L]
ey universitat
= B e
ﬁ “-:‘Vw-‘v.‘\ g
L wien

Janis””

My experience during the courses

* First: Learning a good mathematical base

* Followed by: State of the art technology and APIs

* Perfectly guided through every topic by small tasks
* Much fun with own projects

* Finding: | am not a designer, but

* | love writing code &

* working on game engines

* Finally: Inspiration where | can continue
* master thesis

G OO . ° L
AN
&/ GTRONG
S B\
=\ AR 505
ey wien
ranss

Cloud Gaming / Video Encoding

* Why this topic for my lab courses & master thesis?

* Course Cloud Gaming — easy approach:

* Grab pictures to host memory
* Encode with FFMPEG
* Send to client

* | wanted to improve that -> do it on the GPU

Source: Stable Diffusion

* Game Engine: Vulkan based
* Vulkan Video Extensions just on their way to get released (1 year ago)

g% universitat
7 wilen

Starting Point — Vulkan Video

* Provisional Specifications for Vulkan Video Encode / Video Decode H.265

Video Decode H.264
VK_KHR_video_decode_h264

VK_KHR_video_decode_h265

Video Decode Core

NVIDIA Vulkan Beta Driver VK_KHR_video_decode_queue Video Decode VP9

Vulkan Video Core Video Decode AV1

YK KR vidcoquesel™ ey tam ey S

3 Video Encode Core ! i VK_EXT_video_encode_h264 |
VK KHR_video_encode_queue I—'-‘-‘—‘—'-‘—'-‘-‘—‘-‘—‘-‘—'-
-------------- : Video Encode H.265 I

i VK_EXT_video_encode_h265 !

* No validation layer support for Video Encode in SDK ~ l==========n=s

Source: https://www.khronos.org/blog/khronos-finalizes-vulkan-

o O n e Sa m p | e : nvp ro_sa m p I eS/V k_Vi d eo_sa m p | eS video-extensions-for-accelerated-h.264-and-h.265-decode

° Encoding from YCbCr raw data flle Compatibility with the remaining nvpro-samples.

e Produci Int f I Video encoding using h.264 standard.
roducing intra frames only Support for all-Intra GOP structure.

* Working with one specific revision Support for P frames.

Support for B frames.

Encoding frames from graphical application.

Different YCbCr chroma subsampling and bit depth options.

Support for h.265 standard.

Source: https://github.com/nvpro-samples/vk_video_samples

s ° . oo
f_,\s': TN,
o universita
5 L =
=] AT S S = P
= ([T ABeTE) 2
s\ Gl 1)
o wien
Taniss

The progress / What to do differently

* Many Ups and Downs

e Extracting the relevant code from the example

* First working own code, took some time

* Even longer way until first P frame (reference picture list)

» Stopped working after every specification revision update

* Many bugs found after final SDK release (with validation layer)

* Next time: Get more in contact with the involved people
* Tip: Read the proposal document containing example snippets

What | learned technically

e Better understanding of Synchronization in Vulkan
* Working with multiple queues

* Working with different image layouts

* Working with provisional Vulkan APls

* Too much details about H.264

= Frame duration (Target FPS: 60 Hz)

Showing 5 of 529 CPU fram|

+ HW 0000:01:00.0 - NVIDIA GeFor ™

I E —m———————
- rw queue 2 rcomp/cen .~ (I

0000:01:00.0 - NVIDIA GeForce RTX | #2) #300 [1,620 ma] | #301 [1,560 m3]
+ CPU frame duration #300 [1,620 ms] | #301 [1,574 ms]
—_—
« Vulkan

B 1: CPU:CACHED|COHERENT[V
m 0: NONE

B 0: GPU:LOCAL, CPU:COHEREN

Vulkan APl Command Creation . I I . I I

~ WDDM (0000:01:00.0 - NVIDIA GeForc:

API kQueue | [vi_| [vka-| [VkQueueSubmit | [vk_| [vkQu_|
« W Quaun 3 VtEne) . B
API | vkQueueSubmit | | vkQueueSubmit |
HW GPU Markers [Video Coding, Reference Slots: 2 | | Video Coding, Reference Slots: 2 |
Mon-._ - L
~ Vulkan APl Memory Ops D | - D .
0 E]
0 8
1: CPU:COHERENT/VISIBLE
0 @

 All this based on a solid base learned during the lectures before

T O30 g L] * o e
AN
SN
; = N _‘n
z|)3
)
w2y wilen
JIgnis>

Outcome & Deliverables

* Vulkan Video integrated in Vienna Vulkan Engine
* Video Textures from H.264 files

e Get rendered content as H.264 stream
e GOP structure with | and P frames

e Simple example code for
* Vulkan Video Encode Extension (updated for the finally released revision)
* Vulkan Video Decode Extension
* One CPP file each

* Not a complete H.264 implementation, but trimmed for education

* As base for other implementations and future experiments
e github.com/hlavacs/ViennaVulkanEngine/tree/vulkanvideo _encode
e github.com/clemy/ViennaVulkanEngine/tree/videodecode

Summary as Student

* Vulkan as base for all courses
e Gaining knowledge in modern computer graphics APIs
* HW & OS independent: Students can use any platform

* Immediately use the knowledge for visualization in related courses:
e Al for NPCs
* Game Physics

* Reuse own code and ideas and improve it in every course

* Perfectly supported my interests in
* Coding
* Math
* New Technologies

e Outlook: A solid base for multiple possibilities
 An academic career
 Ajobin the (game) industry

	Slide 1
	Slide 2: Computer Science at University of Vienna, Austria
	Slide 3: Courses related to Vulkan API
	Slide 4: Real-Time Computer Graphics – Lecture
	Slide 5: A Sample Lecture
	Slide 6: Real-Time Computer Graphics – Lab Assignments
	Slide 7: A Sample Assignment – Task 04 – Memory, Buffers and Images
	Slide 8: Other Vulkan Related Courses and the VVE
	Slide 9
	Slide 10: Example Bachelor ´s Thesis: Graphical Vulkan Editor
	Slide 11: Example Master´s Thesis: 3 Vulkan Renderers
	Slide 12: Lessons Learned in 6 Years Wrestling the API
	Slide 13: My Computer Graphics Course Journey
	Slide 14: My experience during the courses
	Slide 15: Cloud Gaming / Video Encoding
	Slide 16: Starting Point – Vulkan Video
	Slide 17: The progress / What to do differently
	Slide 18: What I learned technically
	Slide 19: Outcome & Deliverables
	Slide 20: Summary as Student

