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Specification Agreement

This Specification Agreement (this "Agreement") is a legal agreement between Advanced Micro Devices, Inc. ("AMD") and "You" as the recipient
of the attached AMD Specification (the "Specification"). If you are accessing the Specification as part of your performance of work for another
party, you acknowledge that you have authority to bind such party to the terms and conditions of this Agreement. If you accessed the
Specification by any means or otherwise use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions
set forth in this Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the
Specification; do not use, access or provide Feedback about the Specification. In consideration of Your use or access of the Specification (in
whole or in part), the receipt and sufficiency of which are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product, service or technology

("Product") to interface with an AMD product in compliance with the requirements as set forth in the Specification and (b) to provide

Feedback about the information disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This Agreement does not give You

any rights under any AMD patents, copyrights, trademarks or other intellectual property rights. You may not (i) duplicate any part of the

Specification; (ii) remove this Agreement or any notices from the Specification, or (iii) give any part of the Specification, or assign or

otherwise provide Your rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary information.

Additionally, AMD reserves the right to discontinue or make changes to the Specification and its products at any time without notice. The

Specification is provided entirely "AS IS." AMD MAKES NO WARRANTY OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND

STATUTORY WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING OR CUSTOM OF

TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY

DAMAGES OF ANY KIND (INCLUDING LOSS OF BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS

OF GOODWILL) REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT

PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical

implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s

product could create a situation where personal injury, death, or severe property or environmental damage may occur.

5. You have no obligation to give AMD any suggestions, comments or feedback ("Feedback") relating to the Specification. However, any

Feedback You voluntarily provide may be used by AMD without restriction, fee or obligation of confidentiality. Accordingly, if You do give

AMD Feedback on any version of the Specification, You agree AMD may freely use, reproduce, license, distribute, and otherwise

commercialize Your Feedback in any product, as well as has the right to sublicense third parties to do the same. Further, You will not give

AMD any Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual property claim or right

of any third party; or (ii) subject to license terms which seek to require any product or intellectual property incorporating or derived from

Feedback or any Product or other AMD intellectual property to be licensed to or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S. Export Administration

Regulations ("EAR"), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation (EC) No 428/2009 of 5 May 2009. Further, pursuant to

Section 740.6 of the EAR, You hereby certifies that, except pursuant to a license granted by the United States Department of Commerce

Bureau of Industry and Security or as otherwise permitted pursuant to a License Exception under the U.S. Export Administration

Regulations ("EAR"), You will not (1) export, re-export or release to a national of a country in Country Groups D:1, E:1 or E:2 any restricted

technology, software, or source code You receive hereunder, or (2) export to Country Groups D:1, E:1 or E:2 the direct product of such

technology or software, if such foreign produced direct product is subject to national security controls as identified on the Commerce

Control List (currently found in Supplement 1 to Part 774 of EAR). For the most current Country Group listings, or for additional

information about the EAR or Your obligations under those regulations, please refer to the U.S. Bureau of Industry and Security’s website

at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with "RESTRICTED RIGHTS" as set forth in subparagraphs (c)

(1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR 52.227-14 or subparagraph (c) (1)(ii) of the Rights in

Technical Data and Computer Software clause at DFARS 252.277-7013, as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles. Any dispute involving it

must be brought in a court having jurisdiction of such dispute in Santa Clara County, California, and You waive any defenses and rights
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allowing the dispute to be litigated elsewhere. If any part of this agreement is unenforceable, it will be considered modified to the extent
necessary to make it enforceable, and the remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder
or to take action against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to subsequent enforcement of
rights or subsequent actions in the event of future breaches. This Agreement is the entire agreement between You and AMD concerning
the Specification; it may be changed only by a written document signed by both You and an authorized representative of AMD.

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. This document may
contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability
or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein.
No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and
limitations applicable to the purchase or use of AMD’s products or technology are as set forth in a signed agreement between the
parties or in AMD’s Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple
Inc. used by permission by Khronos Group, Inc. DirectX is a registered trademark of Microsoft Corporation in the US and other
jurisdictions. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2018-2022 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc.
2485 Augustine Drive

Santa Clara, CA, 95054
www.amd.com
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Preface

About This Document
This document describes the current environment, organization and program state of AMD "RDNA3"
Generation devices. It details the instruction set and the microcode formats native to this family of processors
that are accessible to programmers and compilers.

The document specifies the instructions (including the format of each type of instruction) and the relevant
program state (including how the program state interacts with the instructions). Some instruction fields are
mutually dependent; not all possible settings for all fields are legal. This document specifies the valid
combinations.

The main purposes of this document are to:

1. Specify the language constructs and behavior, including the organization of each type of instruction in
both text syntax and binary format

2. Provide a reference of instruction operation that compiler writers can use to maximize performance of the
processor

Audience
This document is intended for programmers writing application and system software, including operating
systems, compilers, loaders, linkers, device drivers, and system utilities. It assumes that programmers are
writing compute-intensive parallel applications (streaming applications) and assumes an understanding of
requisite programming practices.

Organization
This document begins with an overview of the AMD RDNA3 processors' hardware and programming
environment. Subsequent chapters cover:

1. Organization of RDNA3 programs
2. Program state that is maintained
3. Program flow
4. Scalar ALU operations
5. Vector ALU operations
6. Scalar memory operations
7. Vector memory operations
8. Flat memory instructions
9. Data share operations

10. Exporting the parameters of pixel color and vertex shaders
11. Detailed specification of each microcode format
12. Instruction details, first by the microcode format to which they belong, then in alphabetic order
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Related Documents
• Intermediate Language (IL) Reference Manual. Published by AMD.
• AMD Accelerated Parallel Processing OpenCL™ Programming Guide. Published by AMD.
• AMD LLVM GPU documentation: https://llvm.org/docs/AMDGPUUsage.html
• The OpenCL™ Specification: https://www.khronos.org/opencl/
• Microsoft DirectX® Reference Website, at https://msdn.microsoft.com/en-us/library/windows/desktop/

ee663274(v=vs.85).aspx

Third party content may be licensed to you directly by the third party that owns the content and is not
licensed to you by AMD. ALL LINKED THIRD PARTY CONTENT IS PROVIDED 'AS IS' WITHOUT A
WARRANTY OF ANY KIND. USE OF SUCH THIRD PARTY CONTENT IS DONE AT YOUR SOLE
DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD
PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBILITY FOR ANY DAMAGES
THAT MAY ARISE FROM YOUR USE OF THIRD PARTY CONTENT.

Additional Information
For more information on AMD GPU architectures please visit https://GPUOpen.com
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Chapter 1. Introduction
This document describes the instruction set and shader program accessible state for RDNA3 devices.

The AMD RDNA3 processor implements a parallel micro-architecture that provides a platform for computer
graphics applications and also for general-purpose data parallel applications.

1.1. Terminology
The following terminology and conventions are used in this document:

Table 1. Conventions

* Any number of alphanumeric characters in the name of a code format, parameter, or instruction.
< > Angle brackets denote streams.
[1,2) A range that includes the left-most value (in this case, 1), but excludes the right-most value (in this

case, 2).
[1,2] A range that includes both the left-most and right-most values.
{x | y} or {x, y} One of the multiple options listed. In this case, X or Y.
0.0 A floating-point value.
1011b
'b0010
32’b0010

A binary value, in this example a 4-bit value.
A binary value of unspecified size.
A 32-bit binary value. Binary values may include underscores for readability and can be ignored
when parsing the value.

0x1A
'h123
24’h01

A hexadecimal value.
A hexadecimal value.
A 24-bit hexadecimal value.

7:4
[7:4]

A bit range, from bit 7 to bit 4, inclusive. The high-order bit is shown first. May be enclosed in
brackets.

italicized word or phrase The first use of a term or concept basic to the understanding of stream computing.

Table 2. Basic Terms

Term Description
RDNA3 Processor The RDNA3 shader processor is a scalar and vector ALU with memory access designed to run

complex programs on behalf of a wave.
Kernel A program executed by the shader processor for each work item submitted to it.
Shader Program Same meaning as "Kernel". The shader types are:

CS (Compute Shader), and for graphics-capable devices, PS (Pixel Shader), GS (Geometry Shader),
and HS (Hull Shader).

Dispatch A dispatch launches a 1D, 2D, or 3D grid of work to the RDNA3 processor array.
Work-group A work-group is a collection of waves that have the ability to synchronize with each other with

barriers; they also can share data through the Local Data Share. Waves in a work-group all run on
the same WGP.

Wave A collection of 32 or 64 work-items that execute in parallel on a single RDNA3 processor.
Work-item A single element of work: one element from the dispatch grid, or in graphics a pixel, vertex or

primitive.
Thread A synonym for "work-item".
Lane A synonym for "work-item" typically used only when describing VALU operations.
SA Shader Array. A collection of compute units.
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Term Description
SE Shader Engine. A collection of shader arrays.
SGPR Scalar General Purpose Registers. 32-bit registers that are shared by work-items in each wave.
VGPR Vector General Purpose Registers. 32-bit registers that are private to each work-items in a wave.
LDS Local Data Share. A 32-bank scratch memory allocated to waves or work-groups
GDS Global Data Share. A scratch memory shared by all shader engines. Similar to LDS but also

supports append operations.
VMEM Vector Memory. Refers to LDS, Texture, Global, Flat and Scratch memory.
SIMD32 Single Instruction Multiple Data. In this document a SIMD refers to the Vector ALU unit that

processes instructions for a single wave.
Literal Constant A 32-bit integer or float constant that is placed in the instruction stream.
Scalar ALU (SALU) The scalar ALU operates on one value per wave and manages all control flow.
Vector ALU (VALU) The vector ALU maintains Vector GPRs that are unique for each work item and execute arithmetic

operations uniquely on each work-item.
Work-group Processor
(WGP)

The basic unit of shader computation hardware, including scalar & vector ALU’s and memory, as
well as LDS and scalar caches.

Compute Unit (CU) One half of a WGP. Contains 2 SIMD32’s that share one path to memory.
Microcode format The microcode format describes the bit patterns used to encode instructions. Each instruction is

32-bits or more, in units of 32-bits.
Instruction An instruction is the basic unit of the kernel. Instructions include: vector ALU, scalar ALU,

memory transfer, and control flow operations.
Quad A quad is a 2x2 group of screen-aligned pixels. This is relevant for sampling texture maps.
Texture Sampler (S#) A texture sampler is a 128-bit entity that describes how the vector memory system reads and

samples (filters) a texture map.
Texture Resource (T#) A texture resource descriptor describes an image in memory: address, data format, width, height,

depth, etc.
Buffer Resource (V#) A buffer resource descriptor describes a buffer in memory: address, data format, stride, etc.
NGG Next Generation Graphics pipeline
DPP Data Parallel Primitives: VALU instructions which can pass data between work-items
LSB Least Significant Bit
MSB Most Significant Bit
DWORD 32-bit data
SHORT 16-bit data
BYTE 8-bit data

Table 3. Instruction suffixes have the following definitions:

Format Meaning
B32 binary (untyped data) 32-bit
B64 binary (untyped data) 64-bit
F16 floating-point 16-bit (sign + exp5 + mant10)
F32 floating-point 32-bit (IEEE 754 single-precision float) (sign + exp8 + mant23)
F64 floating-point 64-bit (IEEE 754 double-precision float) (sign + exp11 + mant52)
BF16 floating-point 16-bit for machine learning ("bfloat16"). (sign + exp8 + mant7)
I8 signed 8-bit integer
I16 signed 16-bit integer
I32 signed 32-bit integer
I64 signed 64-bit integer
U16 unsigned 16-bit integer
U32 unsigned 32-bit integer
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Format Meaning
U64 unsigned 64-bit integer
D.i Destination which is a signed integer
D.u Destination which is an unsigned integer
D.f Destination which is a float
S*.i Source which is a signed integer
S*.u Source which is an unsigned integer
S*.f Source which is a float

If an instruction has two suffixes (for example, _I32_F32), the first suffix indicates the destination type, the
second the source type.

The following abbreviations are used in instruction definitions:

• D = destination
• U = unsigned integer
• S = source
• SCC = scalar condition code
• I = signed integer
• B = bitfield

Note: .u or .i specifies to interpret the argument as an unsigned or signed integer.

1.2. Hardware Overview
The figure below shows a block diagram of the AMD RDNA3 Generation series processors:

Figure 1. AMD RDNA3 Generation Series Block Diagram
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The RDNA3 device includes a data-parallel processor array, a command processor, a memory controller, and
other logic (not shown). The command processor reads commands that the host has written to memory-
mapped registers in the system-memory address space. The command processor sends hardware-generated
interrupts to the host when the command is completed. The memory controller has direct access to all device
memory and the host-specified areas of system memory. To satisfy read and write requests, the memory
controller performs the functions of a direct-memory access (DMA) controller, including computing memory-
address offsets based on the format of the requested data in memory.

In the RDNA3 environment, a complete application includes two parts:

• a program running on the host processor, and
• programs, called shader programs or kernels, running on the RDNA3 processor.

The RDNA3 programs are controlled by a driver running on the host that:

• sets internal base-address and other configuration registers,
• specifies the data domain on which the GPU is to operate,
• invalidates and flushes caches on the GPU, and
• causes the GPU to begin execution of a program.

1.2.1. Work-group Processor (WGP)

The processor array is the heart of the GPU. The array is organized as a set of work-group processor (WGP)
pipelines, each independent from the others, that operate in parallel on streams of floating-point or integer
data. The work-group processor pipelines can process data or, through the memory controller, transfer data to,
or from, memory. Computation in a work-group processor pipeline can be made conditional. Outputs written
to memory can also be made conditional.

When it receives a request, the work-group processor pipeline loads instructions and data from memory,
begins execution, and continues until the end of the kernel. As kernels are running, the GPU hardware
automatically fetches instructions from memory into on-chip caches; software plays no role in this. Kernels
can load data from off-chip memory into on-chip general-purpose registers (GPRs) and caches.

The GPU devices can detect floating point exceptions and can generate interrupts to the host. In particular,
they detect IEEE-754 floating-point exceptions in hardware; these can be recorded for post-execution analysis.

The GPU hides memory latency by keeping track of potentially hundreds of work-items in various stages of
execution, and by overlapping compute operations with memory-access operations.

1.2.2. Data Sharing

The processors may share data between different work-items. Data sharing can boost performance. The figure
below shows the memory hierarchy that is available to each work-item. The actual number of GPRs may differ
from what is shown in the image below.
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Figure 2. Shared Memory Hierarchy

1.2.2.1. Local Data Share (LDS)

Each work-group processor (WGP) has a 128kB memory space that enables low-latency communication
between work-items within a work-group, or the work-items within a wave; this is the local data share (LDS).
This memory is configured with 64 banks, each with 512 entries of 4 bytes. The shared memory contains 64
integer atomic units to enable fast, unordered atomic operations. This memory can be used as a software cache
for predictable re-use of data, a data exchange machine for the work-items of a work-group, or as a cooperative
way to enable efficient access to off-chip memory. A single work-group may allocate up to 64kB of LDS space.

1.2.2.2. Global Data Share (GDS)

The AMD RDNA3 devices use a 4kB global data share (GDS) memory that can be used by waves of a kernel on
all WGPs. This memory provides 128 bytes per cycle of memory access to all the processing elements. It
provides full access to any location for any processor. The shared memory contains 2 integer atomic units to
enable fast, unordered atomic operations. This memory can be used as a software cache to store important
control data for compute kernels, reduction operations, or a small global shared surface. Data can be
preloaded from memory prior to kernel launch and written to memory after kernel completion. The GDS block
contains support logic for unordered append/consume and domain launch ordered append/consume
operations to buffers in memory. These dedicated circuits enable fast compaction of data or the creation of
complex data structures in memory.

1.2.3. Device Memory

The AMD RDNA3 devices offer several methods for access to off-chip memory from the processing elements
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(PE) within each WGP. On the primary read path, the device consists of multiple channels of L2 cache that
provides data to read-only L1 caches, and finally to L0 caches per WGP. Specific cache-less load instructions
can force data to be retrieved from device memory during an execution of a load clause. Load requests that
overlap within the clause are cached with respect to each other. The output cache is formed by two levels of
cache: the first for write-combining cache (collect scatter and store operations and combine them to provide
good access patterns to memory); the second is a read/write cache with atomic units that lets each processing
element complete unordered atomic accesses that return the initial value. Each processing element provides
the destination address on which the atomic operation acts, the data to be used in the atomic operation, and a
return address for the read/write atomic unit to store the pre-op value in memory. Each store or atomic
operation can be set up to return an acknowledgment to the requesting PE upon write confirmation of the
return value (pre-atomic op value at destination) being stored to device memory.

This acknowledgment has two purposes:

• enabling a PE to recover the pre-op value from an atomic operation by performing a cache-less load from
its return address after receipt of the write confirmation acknowledgment, and

• enabling the system to maintain a relaxed consistency model.

Each scatter write from a given PE to a given memory channel maintains order. The acknowledgment enables
one processing element to implement a fence to maintain serial consistency by ensuring all writes have been
posted to memory prior to completing a subsequent write. In this manner, the system can maintain a relaxed
consistency model between all parallel work-items operating on the system.
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Chapter 2. Shader Concepts
RDNA3 shader programs (kernels) are programs executed by the GPU processor. Conceptually, the shader
program is executed independently on every work-item, but in reality the processor groups up to 32 or 64
work-items into a wave, which executes the shader program on all 32 or 64 work-items in one pass.

The RDNA3 processor consists primarily of:

• A scalar ALU, which operates on one value per wave (common to all work-items)
• A vector ALU, which operates on unique values per work-item
• Local data storage, which allows work-items within a work-group to communicate and share data
• Scalar memory, which can transfer data between SGPRs and memory through a cache
• Vector memory, which can transfer data between VGPRs and memory, including sampling texture maps
• Exports which transfer data from the shader to dedicated rendering hardware

Program control flow is handled using scalar ALU instructions. This includes if/else, branches and looping.
Scalar ALU (SALU) and memory instructions work on an entire wave and operate on up to two SGPRs, as well
as literal constants.

Vector memory and ALU instructions operate on all work-items in the wave at one time. In order to support
branching and conditional execute, every wave has an EXECute mask that determines which work-items are
active at that moment, and which are dormant. Active work-items execute the vector instruction, and dormant
ones treat the instruction as a NOP. The EXEC mask can be written at any time by Scalar ALU instructions or
VALU comparisons.

Vector ALU instructions can typically take up to three arguments, which can come from VGPRs, SGPRs, or
literal constants that are part of the instruction stream. They operate on all work-items enabled by the EXEC
mask. Vector compare and add-with-carry-out return a bit-per-work-item mask back to the SGPRs to indicate,
per work-item, which had a "true" result from the compare or generated a carry-out.

Vector memory instructions transfer data between VGPRs and memory. Each work-item supplies its own
memory address and supplies or receives unique data. These instructions are also subject to the EXEC mask.

2.1. Wave32 and Wave64
The shader supports both waves of 32 work-items ("wave32") and waves of 64 work-items ("wave64").

Both wave sizes are supported for all operations, but shader programs must be compiled for and run as a
particular wave size, regardless of how many work-items are active in any given wave.

Wave32 waves issue each instruction at most once. Wave64 waves typically issue each instruction twice: once
for the low half (work-items 31-0) and then again for the high half (work-items 63-32). This occurs only for
VALU and VMEM (LDS, texture, buffer, flat) instructions; scalar ALU and memory as well as branch and
messages are issued only once regardless of the wave size. Export requests also issue just once regardless of
wave size. It is possible that instructions from other waves may be executed in between the low and high half
of a given wave’s instructions.

Hardware may choose to skip either half if the EXEC mask for that half is all zeros, but does not skip both
halves for VMEM instructions as that would confuse the outstanding-memory-instruction counters, unless
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there are no outstanding VMEM instructions from this wave. It also does not skip either half of a VALU
instruction which writes an SGPR. See Instruction Skipping: EXEC==0 for details on instruction skipping rules.

Hardware operates such that both passes of a wave64 use the state of the wave prior to instruction execution;
the first pass of the wave64 does not affect the input to the second pass.

In addition to the EXEC mask being different between the low and high half, scalar inputs may vary between
the two passes. Both passes use the same constants, but different masks and carry-in/out.

The differences in the second pass are:

• Input increments: Carry-in, div-fmas and v_cndmask all use the next SGPR (SSRC + 1, or VCC_HI)
• Output increments: Carry-out, div-scale and v_cmp all write to the next SGPR (SDST + 1, or VCC_HI)

◦ v_cmpx writes to EXEC_HI instead of EXEC_LO

The upper 32-bits of EXEC and VCC are ignored for wave32 waves. VCCZ and EXECZ reflect the status of the
lowest 32-bits of VCC and EXEC respectively for wave32 waves.

2.2. Shader Types

2.2.1. Compute Shaders

Compute kernels (shaders) are generic programs that can run on the RDNA3 processor, taking data from
memory, processing it, and writing results back to memory. Compute kernels are created by a dispatch, which
causes the RDNA3 processors to run the kernel over all of the work-items in a 1D, 2D, or 3D grid of data. The
RDNA3 processor walks through this grid and generates waves, which then run the compute kernel. Each
work-item is initialized with its unique address (index) within the grid. Based on this index, the work-item
computes the address of the data it is required to work on and what to do with the results.

2.2.2. Graphics Shaders

The shader supports 3 types of graphics waves: PS, GS, and HS.

Rendering modes (launch behavior):

• Normal NGG - Geometry Engine (GE) sends info to wave launch hardware to init VGPRs for each element
(prim) launched; GE fetches index and vertex buffer data and loads to VGPRs

• Mesh shader - turns GS-launch into a CS-style launch, and wave launch hardware does unrolling into
elements and generates element indices on the fly. The mesh shader program determines how to use this
index value.
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The amplification shader decides how many mesh shader groups to launch. The mesh shader processes vertices and then
primitives.

2.3. Work-groups
A work-group is a collection of waves which can share data through LDS and can synchronize at a barrier.
Waves in a work-group are all issued to the same WGP but can run on any of the 4 SIMD32’s and can share data
through LDS. The WGP supports up to 32 work-groups with a maximum of 1024 work-items per work-group.

Waves in a work-group may share up to 64kB of LDS space. Work-groups consisting of a single wave do not
count against the limit of 32. They do not allocate a barrier resource, and barrier ops are treated as S_NOP.

Each work-group or wave can operate in one of two modes, selectable per draw/dispatch at wave-create time:

CU mode
In this mode, the LDS is effectively split into a separate upper and lower LDS, each serving two SIMD32’s.
Waves are allocated LDS space within the half of LDS which is associated with the SIMD the wave is running
on. For work-groups, all waves are assigned to the pair of SIMD32’s. This mode may provide faster
operation since both halves run in parallel, but limits data sharing (upper waves cannot read data in the
lower half of LDS and vice versa). When in CU mode, all waves in the work-group are resident within the
same CU.

"RDNA3" Instruction Set Architecture

2.3. Work-groups 11 of 600



WGP mode
In this mode, the LDS is one large contiguous memory that all waves on the WGP can access. In WGP mode,
waves of a work-group may be distributed across both CU’s (all 4 SIMD32’s) in the WGP.
LDS_PARAM_LOAD and LDS_DIRECT_LOAD are not supported in WGP mode.

The WGP (and LDS) can simultaneously have some waves running in WGP mode and other waves in CU mode
running.

A barrier is a synchronization primitive which makes each wave reach a given point in the shader before any
wave proceeds.

2.4. Shader Padding Requirement
Due to aggressive instruction prefetching used in some graphics devices, the user must pad all shaders with 64
extra DWORDs (256 bytes) of data past the end of the shader. It is recommended to use the S_CODE_END
instruction as padding. This ensures that if the instruction prefetch hardware goes beyond the end of the
shader, it may not reach into uninitialized memory (or unmapped memory pages).

The amount of shader padding required is related to how far the shader may prefetch ahead. The shader can be
set to prefetch 1, 2 or 3 cachelines (64 bytes) ahead of the current program counter. This is controlled via a
wave-launch state register, or by the shader program itself with S_SET_INST_PREFETCH_DISTANCE.
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Chapter 3. Wave State
This chapter describes the state variables visible to the shader program. Each wave has a private copy of this
state unless otherwise specified.

3.1. State Overview
The table below shows the hardware states readable or writable by a shader program. All registers below are
unique to each wave except for TBA and TMA which are shared.

Table 4. Readable and Writable Hardware States

Abbrev. Name Size
(bits)

Description

PC Program Counter 48 Points to the memory address of the next shader instruction
to execute. Read/write only via scalar control flow
instructions and indirectly using branch. The 2 LSB’s are
forced to zero.

V0-V255 VGPR 32 Vector general-purpose register. (32 bits per work-item x (32
or 64) work-items per wave).

S0-S105 SGPR 32 Scalar general-purpose register. All waves are allocated 106
SGPRs + 16 TTMPs.

LDS Local Data Share 64kB Local data share is a scratch RAM with built-in arithmetic
capabilities that allow data to be shared between threads in a
work-group.

EXEC Execute Mask 64 A bit mask with one bit per thread, which is applied to vector
instructions and controls which threads execute and which
ignore the instruction.

EXECZ EXEC is zero 1 A single bit flag indicating that the EXEC mask is all zeros.
For wave32 it considers only EXEC[31:0].

VCC Vector Condition Code 64 A bit mask with one bit per thread; it holds the result of a
vector compare operation or integer carry-out. Physically
VCC is stored in specific SGPRs.

VCCZ VCC is zero 1 A single-bit flag indicating that the VCC mask is all zeros. For
wave32 it considers only VCC[31:0].

SCC Scalar Condition Code 1 Result from a scalar ALU comparison instruction.
FLAT_SCRATCH Flat scratch address 48 The base address of scratch memory for this wave. Used by

Flat and Scratch instructions. Read-only by user shader.
STATUS Status 32 Read-only shader status bits.
MODE Mode 32 Writable shader mode bits.
M0 Misc Reg 32 A temporary register that has various uses, including GPR

indexing and bounds checking.
TRAPSTS Trap Status 32 Holds information about exceptions and pending traps.
TBA Trap Base Address 48 Holds the pointer to the current trap handler program

address. Per-VMID register. Bit [63] indicates if the trap
handler is present (1) or not (0) and is not considered part of
the address (bit[62] is replicated into address bit[63]).
Accessed via S_SENDMSG_RTN

TMA Trap Memory Address 48 Temporary register for shader operations. For example, can
hold a pointer to memory used by the trap handler.

"RDNA3" Instruction Set Architecture

3.1. State Overview 13 of 600



Abbrev. Name Size
(bits)

Description

TTMP0-TTMP15 Trap Temporary SGPRs 32 16 SGPRs available only to the Trap Handler for temporary
storage.

VMcnt Vector memory load
instruction count

6 Counts the number of VMEM load and sample instructions
issued but not yet completed.

VScnt Vector memory store
instruction count

6 Counts the number of VMEM store instructions issued but
not yet completed.

EXPcnt Export Count 3 Counts the number of Export and GDS instructions issued
but not yet completed. Also counts parameter loads
outstanding.

LGKMcnt LDS, GDS, Constant and
Message count

6 Counts the number of LDS, GDS, constant-fetch (scalar
memory read), and message instructions issued but not yet
completed.

3.2. Control State: PC and EXEC

3.2.1. Program Counter (PC)

The Program Counter is a DWORD-aligned byte address that points to the next instruction to execute. When a
wave is created the PC is initialized to the first instruction in the program.

There are a few instructions to interact directly with the PC: S_GETPC_B64, S_SETPC_B64, S_CALL_B64,
S_RFE_B64 and S_SWAPPC_B64. These transfer the PC to and from an even-aligned SGPR pair (sign-extended).

Branches jump to (PC_of_the_instruction_after_the_branch + offset*4). Branches, GET_PC and SWAP_PC are PC-
relative to the next instruction, not the current one. S_TRAP, on the other hand, saves the PC of the S_TRAP
instruction itself.

During wave debugging, the program counter may be read. The PC points to the next instruction to issue. All
prior instructions have been issued but may or may not have completed execution.

3.2.2. EXECute Mask

The Execute mask (64-bit) controls which threads in the vector are executed. Each bit indicates how one thread
behaves for vector instructions: 1 = execute, 0 = do not execute. EXEC can be read and written via scalar
instructions, and can also be written as a result of a vector-alu compare. EXEC affects: vector-alu, vector-
memory, LDS, GDS and export instructions. It does not affect scalar execution or branches.

Wave64 uses all 64 bits of the exec mask. Wave32 waves use only bits 31:0 and hardware does not act upon the
upper bits.

There is a summary bit (EXECZ) that indicates that the entire execute mask is zero. It can be used as a condition
for branches to skip code when EXEC is zero. For wave32, this reflects the state of EXEC[31:0].
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3.2.3. Instruction Skipping: EXEC==0

The shader hardware may skip vector instructions when EXEC==0. Instructions which may be skipped are:

• VALU - skip if EXEC == 0
◦ Not skipped if the instruction writes SGPRs/VCC
◦ Does not skip WMMA or SWMMA
◦ This skipping is opportunistic and may not occur depending on timing after a V_CMPX.

• These are not skipped regardless of EXEC mask value, and are issued only once in wave64
◦ V_NOP, V_PIPEFLUSH, V_READLANE, V_READFIRSTLANE, V_WRITELANE
◦ BUFFER_GL1_INV, BUFFER_GL0_INV

• These are not skipped and are issued twice regardless of EXEC mask value in wave64 mode
◦ V_CMP which writes SGPR or VCC (not V_CMPX - may skip one pass but not both)
◦ Any VALU which writes an SGPR

• Export Request - skip unless: Done==1 or if export target is POS0
◦ Skipped if the wave was created with SKIP_EXPORT=1

• LDS_param_load / LDS-direct: are skipped when EXEC==0 and EXP_cnt==0
• LDS, Memory, GDS - do not skip

◦ VMEM can be skipped only if: VMcnt/VScnt==0 and EXEC==0
▪ otherwise for wave64 one pass can be skipped if EXEC==0 for that half, but not both halves.

◦ LDS can be skipped only if: LGKMcnt==0 and EXEC==0
◦ Does not skip GDS or GWS

3.3. Storage State: SGPR, VGPR, LDS

3.3.1. SGPRs

3.3.1.1. SGPR Allocation and storage

Every wave is allocated a fixed number of SGPRs:

• 106 normal SGPRs
• VCC_HI and VCC_LO (stored in SGPRs 106 and 107)
• 16 Trap-temporary SGPRs, meant for use by the trap handler

3.3.1.2. VCC

The Vector Condition Code (VCC) can be written by V_CMP and integer vector ADD/SUB instructions. VCC is
implicitly read by V_ADD_CI, V_SUB_CI, V_CNDMASK and V_DIV_FMAS. VCC is a named SGPR-pair and is
subject to the same dependency checks as any other SGPR.
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3.3.1.3. SGPR Alignment

There are a few cases where even-aligned SGPRs are required:

1. any time 64-bit data is used
a. this includes moves to/from 64-bit registers, including PC

2. Scalar memory reads when the address-base comes from an SGPR-pair

Quad-alignment of SGPRs is required for operation on more than 64-bits, and for the data GPR when a scalar
memory operation (read, write or atomic) operates on more than 2 DWORDs. Similarly, when a 64-bit SGPR
data value is used as a source to a VALU op, it must be even aligned regardless of size. In contrast, when a 32-
bit SGPR data value is used as a source to a VALU op, it can be arbitrarily aligned regardless of wave size.

When a 64-bit quantity is stored in SGPRs, the LSB’s are in SGPR[n], and the MSB’s are in SGPR[n+1].

It is illegal to use mis-aligned source or destination SGPRs for data larger than 32 bits and results are
unpredictable.

As an example, VALU ops with carry-in or carry-out:

• When used with wave32, these are 32 bit values and may have any arbitrary alignment
• When used with wave64, these are 64 bit values and must be aligned to an even SGPR address

Hardware enforces SGPR alignment by ignoring LSB’s as necessary and treating them as zero. For
*MOVREL*_B64, the LSB of the index is also ignored and treated as zero.

3.3.1.4. SGPR Out of Range Behavior

Scalar sources and dests use a 7-bit encoding:

Scalar 0-105=SGPR; 106,107=VCC, 108-123=TTMP0-15, and 124-127={NULL, M0, EXEC_LO, EXEC_HI}.

It is illegal to use GPR indexing or a multi-DWORD operand to cross SGPR regions. The regions are:

• SGPRs 0 - 107 (includes VCC)
• Trap Temp SGPRs
• All other SGPR & Scalar-source addresses must not be indexed and no single operand can reference

multiple register ranges.

General Rules:

• Out of range source SGPRs return zero (using a TTMP when STATUS.PRIV=0, NULL, M0 or EXEC where not
allowed)

• Writes to an out of range SGPR are ignored

TTMP0-15 can only be written while in the trap handler (STATUS.PRIV=1) and cannot be read by the user’s
shader (returns zero when STATUS.PRIV=0). Writes to TTMPs while outside the trap handler are ignored. SALU
instructions which try but fail to write a TTMP also do not update SCC.

• SALU: Above rules apply.
◦ WREXEC and SAVEEXEC write the EXEC mask even when the SDST is out-of-range

• VALU: Above rules apply.
• VMEM: S#, T#, V# must be contained within one region.
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◦ T# (128b), V# or S#: no possible range violation exists (forced alignment puts all in 1 range).
◦ T# (256b) starting at 104 and extending into TTMPs; or starting at TTMP12 and going past TTMP15 is a

violation. If this occurs, force to use S0.
• SMEM return data starting in SGPRs/VCC and extending into TTMPs, or starting in TTMPs and extending

outside TTMPs becomes out of range.
◦ No data gets written to dest-SGPRs that are out-of-range
◦ Addr and write-data are aligned and so cannot go out of range, except:

▪ Referencing M0, NULL, or EXEC* returns zero, and SMEM loads cannot load into these registers.
• S_MOVREL:

◦ Indexing is allowed only within SGPRs and TTMPs, and must not cross between the two. Indexing must
stay within the "base" range (the operand type where index==0).
The ranges are: [ SGPRs 0-105 and VCC_LO, VCC_HI ], [ Trap Temps 0-15 ], [ all other values ]

◦ Indexing must not reach M0, exec or inline constants, the rule is:
▪ Base is SGPR: addr > VCC_HI (or if 64-bit operand, addr > VCC_LO)
▪ Base is TTMP: addr > TTMP15 (or if B64 if addr > ttmp14)

◦ If the source is out of range, S0 is used.
If the dest is out of range, nothing is written.

3.3.2. VGPRs

3.3.2.1. VGPR Allocation and Alignment

VGPRs are allocated in blocks of 16 for wave32 or 8 for wave64, and a shader may have up to 256 VGPRs. In
other words, VGPRs are allocated in units of (16*32 or 8*64 = 512 DWORDs). A wave may not be created with zero
VGPRs. Devices which have 1536 VGPRs per SIMD allocate in blocks of 24 for wave32 and 12 for wave64.

A wave may voluntarily deallocate all of its VGPRs via S_SENDMSG. Once this is done, the wave may not
reallocate them and the only valid action is to terminate the wave. This can be useful if a wave has issued stores
to memory and is waiting for the write-confirms before terminating. Releasing the VGPRs while waiting may
allow a new wave to allocate them and start earlier.

3.3.2.2. VGPR Out of Range Behavior

Given an instruction operand that uses one or more DWORDs of VGPR data: "V"

Vs = the first VGPR DWORD (start) 
Ve = the last VGPR DWORD (end)

For a 32-bit operand, Vs==Ve; for a 64-bit operand Ve=Vs+1, etc.

Operand is out of range if:

• Vs < 0 || Vs >= VGPR_SIZE
• Ve < 0 || Ve >= VGPR_SIZE

V_MOVREL indexed operand out of range if either:

• Index > 255
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• (Vs + M0) >= VGPR_SIZE
• (Ve + M0) >= VGPR_SIZE

Out of range consequences:

• If a dest VGPR is out of range, the instruction is ignored (treat as NOP).
• V_SWAP & V_SWAPREL : since both arguments are destinations, if either is out of range, discard the

instruction.
◦ VALU instructions with multiple destination (e.g. VGPR and SGPR): nothing is written to any GPR

• If a source VGPR is out of range in a VMEM or Export instruction: VGPR0 is used
◦ Memory instructions that use a group of consecutive VGPRs that are out of range use VGPR0 for the

individual out of range VGPRs.
• If a source VGPR in a VALU instruction is out of range in a VALU instruction: VGPR0

◦ VOPD has different rules: the source address forced to (VGPRaddr % 4).

Instructions with multiple destinations (e.g. V_ADD_CO): if any destination is out of range, no results are
written.

3.3.3. Memory Alignment and Out-of-Range Behavior

This section defines the behavior when a source or destination GPR or memory address is outside the legal
range for a wave. Except where noted, these rules apply to LDS, GDS, buffer, global, flat and scratch memory
accesses.

Memory, LDS & GDS: Reads and Atomics with return:

• If any source VGPR or SGPR is out-of-range, the data value is undefined.
• If any destination VGPR is out-of-range, the operation is nullified by issuing the instruction as if the EXEC

mask were cleared to 0.
◦ This out-of-range test checks all VGPRs which could be returned (e.g. VDST to VDST+3 for a

BUFFER_LOAD_B128)
◦ This check also includes the extra PRT (partially resident texture) VGPR and nullifies the fetch if this

VGPR would be out of range no matter whether the texture system actually returns this value or not.
◦ Atomic operations with out-of-range destination VGPRs are nullified: issued, but with EXEC mask of

zero.
• Image loads and stores consider DMASK bits when making an out-of-bounds determination.
• Note: VDST is only checked for lds/gds/mem-atomic that actually return a value.

VMEM (texture) memory alignment rules are defined using the config register:
SH_MEM_CONFIG.alignment_mode. This setting also affects LDS, Flat/Scratch/Global operations.

DWORD Automatic alignment to multiple of the smaller of element size or a DWORD.

UNALIGNED No alignment requirements.

Formatted ops such as BUFFER_LOAD_FORMAT_* must be aligned as follows:

• 1-byte formats require 1-byte alignment
• 2-byte formats require 2-byte alignment
• 4-byte and larger formats require 4-byte alignment
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Atomics must be aligned to the data size, or triggers a MEMVIOL.

3.3.4. LDS

Waves may be allocated LDS memory, and waves in a work-group all share the same LDS memory allocation. A
wave may have 0 - 64kbyte of LDS space allocated, and it is allocated in blocks of 1024 bytes. All accesses to LDS
are restricted to the space allocated to that wave/work-group.

Internally LDS is composed of two blocks of memory of 64kB each. Each one of these two blocks is affiliated
with one CU or the other: byte addresses 0-65535 with CU0, 65536-131071 with CU1. Allocations of LDS space to
a wave or work-group do not wrap around: the allocation starting address is less than the ending address.

In CU mode, a wave’s entire LDS allocation resides in the same "side" of LDS as the wave is loaded. No access is
allowed to cross over or wrap around to the other side.

In WGP mode, a wave’s LDS allocation may be entirely in either the CU0 or CU1 part of LDS, or it may straddle
the boundary and be partially in each CU. The location of the LDS storage is unrelated to which CU the wave is
on.

Pixel parameters are loaded into the same CU side as the wave resides and do not cross over into the other side
of LDS storage. Pixel shaders are run only in CU mode. Pixel shader may request additional LDS space in addition
to what is required for vertex parameters.

3.3.4.1. LDS/GDS Alignment and Out-of-Range

Any DS_LOAD or DS_STORE of any size can be byte aligned if the alignment mode is set to "unaligned". For all
other alignment modes, LDS forces alignment by zeroing out address least significant bits.

• 32-bit Atomics must be aligned to a 4-byte address; 64-bit atomics to an 8-byte address.
• LDS operations report MEMVIOL if the LDS-address is out of range and

LDS_CONFIG.ADDR_OUT_OF_RANGE_REPORTING==1
• MEMVIOL is reported for misaligned LDS accesses when the alignment mode is set to STRICT or

DWORD_STRICT.

Out Of Range

• If the LDS-ADDRESS is out of range (addr < 0 or >= LDS_size):
◦ Writes out-of-range are discarded.
◦ Reads return the value zero. For multi-DWORD reads, if any part of the LDS-address is out of range, the

entire instruction returns zero.
• If any source-VGPR is out of range, the value from VGPR0 is used to supply the LDS address or data.
• If the dest-VGPR is out of range, nullify the instruction (issue with EXEC=0)

"Native" Alignment in LDS & GDS is:

B8: byte aligned
B16 or D16: 2 byte aligned
B32: 4 byte aligned
B64: 8 byte aligned
B128 and B96: 16 byte aligned
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If the alignment mode is set to "unaligned", the LDS disables its auto-alignment and doesn’t report error for
misaligned reads & writes.

        if (sh_alignment_mode == unaligned)     align = 0xffff
        else if (B32)                           align = 0xfffC
        else if (B64)                           align = 0xfff8
        else if (B96 or B128)                   align = 0xfff0
        LDSaddr = (addr + offset) & align

3.4. Wave State Registers
The following registers are accessed infrequently, and are only readable/writable via S_GETREG and S_SETREG
instructions. Some of these registers are read-only, some are writable and others are writable only when in the
trap handler ("PRIV").

Code Register
0 Reserved
1 MODE read / write
2 STATUS read / write. Only writable when priv=1
3 TRAPSTS read / write
14 FLUSH_IB write-only. Writing this causes all waves to flush their instruction buffers
15 SH_MEM_BASES read-only. Allows a wave to read the value of this register to do aperture checks and

memory space conversions. Bits [15:0] = Private Base; [31:16] = Shared Base.
20 FLAT_SCRATCH_LO read only (writable only while in trap handler)
21 FLAT_SCRATCH_HI read only (writable only while in trap handler)
23 HW_ID1 read only. debug only - not predictable values
24 HW_ID2 read only. debug only - not predictable values
29 SHADER_CYCLES Get the current graphics clock counter value

3.4.1. Status register

Status register fields can be read but not written to by the shader. While in the trap handler, certain STATUS fields
can be written. These bits are initialized at wave-creation time. The table below describes the status register
fields.

Table 5. Status Register Fields

Field Bit
Pos

Write
when
Priv?

Description

SCC 0 Y Scalar condition code. Used as a carry-out bit. For a comparison instruction, this bit
indicates failure or success. For logical operations, this is 1 if the result is non-zero.

SYS_PRIO 2:1 Y Wave priority set at wave creation time. See S_SETPRIO instruction for details. 0 is
lowest, 3 is highest priority.

USER_PRIO 4:3 Y Wave’s priority set by shader program itself. See S_SETPRIO instruction for details.
PRIV 5 N Privileged mode. Indicates that the wave is in the trap handler. Gives write access to

TTMP registers.
TRAP_EN 6 N Indicates that a trap handler is present. When set to zero, traps are not taken.
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Field Bit
Pos

Write
when
Priv?

Description

EXPORT_RDY 8 Y This status bit indicates if export buffer space has been allocated. The shader stalls
any export instruction until this bit becomes "1". It gets set to 1 when export buffer space
has been allocated.
Shader hardware checks this bit before executing any EXPORT instruction to
Position, Z or MRT targets, and put the wave into a waiting state if the alloc has not
yet been received. The alloc arrives eventually (unless SKIP_EXPORT is set) as a
message and the shader then continues with the export.

EXECZ 9 N Exec Mask is Zero.
VCCZ 10 N Vector Condition Code is Zero.
IN_WG 11 N Wave is a member of a work-group of more than one wave.
IN_BARRIER 12 N Wave is waiting at a barrier.
HALT 13 Y Wave is halted or scheduled to halt.

HALT can be set by the host via wave-control messages, or by the shader. The HALT
bit is ignored while in the trap handler (PRIV = 1). HALT is also ignored if a host-
initiated trap is received (request to enter the trap handler).

TRAP 14 N Wave is flagged to enter the trap handler as soon as possible.
VALID 16 N Wave is valid (has been created and not yet ended)
SKIP_EXPORT 18 Y For Pixel and Vertex Shaders only.

"1" means this shader is not allocated export buffer space, so export instructions are
ignored (treated as NOPs). For pixel shaders, this is set to 1 when both the
COL0_EXPORT_FORMAT and Z_EXPORT_FORMAT are set to ZERO. If
SKIP_EXPORT==1, Must_export must be zero and vice versa.

PERF_EN 19 N Performance counters are enabled for this wave
CDBG_USER 20 Y User-controlled conditional debug. Set at wave-create time by a user register. Can be

used in conditional branches.
CDBG_SYS 21 Y System-controlled conditional debug. Set at wave-create time by a system register.

Can be used in conditional branches.
FATAL_HALT 23 N Indicates that the wave has halted due to a fatal error:

illegal instruction . The difference between halt and fatal_halt is that fatal_halt stops
waves even when PRIV=1.

NO_VGPRS 24 N Indicates that this wave has released all of its VGPRs.
LDS_PARAM_RDY 25 Y PS shaders only: indicates that LDS has been written with vertex attribute data and

the shader may now execute LDS_PARAM_LOAD instructions. If the wave attempts to
issue LDS_PARAM_LOAD before this bit is set, it stalls until the bit is set.

MUST_GS_ALLOC 26 N GS shader must issue a GS_ALLOC_REQ message before terminating.
Sending this message clears this bit.

MUST_EXPORT 27 Y PS: this wave must export color ("export-done") before it terminates.
Set to 1 for PS waves unless "skip_export==1". Cleared when PS exports data with
export’s Done bit set to 1.
GS: this wave must perform a GDS_ordered_count before terminating. Cleared when
a GS shader issues a GDS_ordered_count. GS is initialized to 1 normally, but to zero
for "no export" passes (stream-out only).

IDLE 28 N Wave is idle (has no outstanding instructions). Used by the host (GRBM) to
determine if a wave is valid, halted and idle - able to read other wave state.

SCRATCH_EN 29 Y Indicate that the wave has scratch memory allocated. This bit gets set to 1 if the wave
has FLAT_SCRATCH initialized; otherwise is zero.
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3.4.2. Mode register

Mode register fields can be read from, and written to, by the shader through scalar instructions. The table
below describes the mode register fields.

Table 6. Mode Register Fields

Field Bit
Pos

Description

FP_ROUND 3:0 Controls round modes for math operations
[1:0] Single precision round mode
[3:2] Double precision and half precision (FP16) round mode
Round Modes: 0=nearest even, 1= +infinity, 2= -infinity, 3= toward zero
Round mode affects float ops in VALU, but not LDS or memory.

FP_DENORM 7:4 Controls whether floating point denormals are flushed or not.
[5:4] Single precision denormal mode
[7:6] Double precision and FP16 denormal mode 
Denormal modes: 2 bits = { allow_output_denorms, allow_input_denorms }
   0 = flush input and output denorms
   1 = allow input denorms, flush output denorms
   2 = flush input denorms, allow output denorms
   3 = allow input and output denorms
Denorm mode affects float ops in: VALU, LDS, and VMEM atomics.
Texture/Buffer/Flat considers only bits 4 and 6 (allowing mode control over input-denorm
flushing, and not flushing output denorms), while LDS uses all bits for DS ops (but not for
FLAT).

DX10_CLAMP 8 Used by the vector ALU to force DX10 style treatment of NaN’s. When set, clamp NaN to
zero, otherwise pass NaN thru and also suppress all VALU exceptions. The clamping only
occurs when the instruction has the CLAMP bit set to 1, but exceptions are suppressed
when DX10_CLAMP==1.

IEEE 9 IEEE==0: IEEE-754-1985/DX10 behavior for Min and Max, pass signaling NaN.
IEEE==1: IEEE-754-2008 behavior for Min and Max, quiet signaling NaN.
When set to 1, floating point opcodes that support exception flag gathering quiet and
propagate signaling NaN inputs per IEEE 754-2008. Min_f32/f64 and Max_f32/f64 become
IEEE 754-2008 compliant due to signaling NaN propagation and quieting. When set to 1,
MAX performs a ">" compare, but when set to zero (directX mode/IEEE 754-1985 mode)
MAX performs a ">=" compare. This only affects results for +/-0 and input denormals
which are flushed to zero.

LOD_CLAMPED 10 Sticky status bit - indicates that one or more texture accesses had their LOD clamped.
TRAP_AFTER_ INST 11 Forces the wave to jump to the exception handler after each instruction is executed (but

not after ENDPGM). Only works if TRAP_EN = 1.
EXCP_EN 21:12 Enable mask for exceptions. Enabled means if the exception occurs and if TRAP_EN==1, a

trap may be taken.

[12] : invalid
[13] : inputDenormal
[14] : float_div0
[15] : overflow
[16] : underflow
[17] : inexact
[18] : int_div0
[19] : addr_watch - take exception when TC sees wave access an "address of interest"
[21] : trap on wave end - h/w clears this upon entering trap handler for end-of-wave
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Field Bit
Pos

Description

FP16_OVFL 23 If set, an overflowed FP16 VALU result is clamped to +/- MAX_FP16 regardless of round
mode, while still preserving true INF values. (Inputs which are infinity may result in infinity,
as does divide-by-zero).

DISABLE_PERF 27 1 = disable performance counting for this wave.

3.4.3. M0 : Miscellaneous Register

There is one 32-bit M0 register per wave and is it used for:

Table 7. M0 Register Fields

Operation M0 Contents Notes
LDS_PARAM_LOAD { 1’b0, new_prim_mask[15:1],

parameter_offset[15:0] }
Offset is in bytes and offset[6:0] must be zero.
Wave32: new_prim_mask is {8’b0, mask[7:1] }

LDS_DIRECT_LOAD { 13’b0, DataType[2:0],
LDS_address[15:0] }

address is in bytes

LDS ADDTID { 16’h0, lds_offset[15:0] } offset is in bytes, must be 4-byte aligned
Global Data Share { base[15:0] , size[15:0] } base and size are in bytes
GDS Ordered Count { base[15:0], 3’h0,

logical_wave_id[12:0] }
used for deferred attribute shading (split-GS)

Global Wave Sync various uses see instruction definition
S/V_MOVREL GPR index See S_MOVREL and V_MOVREL instructions
S_SENDMSG / _RTN varies sendmsg data. See [Send_Message_Types]
EXPORT Row number for mesh shader POS

& Param exports
See Export chapter

SMEM address_offset[31:0] see SMEM section
Temporary data[31:0] can be used as general temporary data storage

M0 can only be written by the scalar ALU.

3.4.4. NULL

NULL is a scalar source and destination. Reading NULL returns zero, writing to NULL has no effect (write data
is discarded).

NULL may be used anywhere scalar sources can normally be used:

• When NULL is used as the destination of an SALU instruction, the instruction executes: SDST is not written
but SCC is updated (if the instruction normally updates SCC).

• NULL may not be used as an S#, V# or T#.

3.4.5. SCC: Scalar Condition Code

Many scalar ALU instructions set the Scalar Condition Code (SCC) bit, indicating the result of the operation.

Compare operations: 1 = true
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Arithmetic operations: 1 = carry out
Bit/logical operations: 1 = result was not zero
Move: does not alter SCC

The SCC can be used as the carry-in for extended-precision integer arithmetic, as well as the selector for
conditional moves and branches.

3.4.6. Vector Compares: VCC and VCCZ

Vector ALU comparison instructions (V_CMP) compare two values and return a bit-mask of the result, where
each bit represents one lane (work-item) where: 1= pass, 0 = fail. This result mask is the Vector Condition Code
(VCC). VCC is also set for selected integer ALU operations (carry-out).

These instructions write this mask either to VCC, an SGPR or to EXEC, but do not write to both EXEC and
SGPRs. Wave32 writes only the low 32 bits of VCC, EXEC or a single SGPR; Wave64 writes 64-bits of VCC, EXEC
or an aligned pair of SGPRs.

Whenever any instruction writes a value to VCC, the hardware automatically updates a "VCC summary" bit
called VCCZ. This bit indicates whether or not the entire VCC mask is zero for the current wave-size. Wave32
ignores VCC[63:32] and only bits[31:0] contribute to VCCZ. This is useful for early-exit branch tests. VCC is also set
for certain integer ALU operations (carry-out).

The EXEC mask determines which threads execute an instruction. The VCC indicates which executing threads
passed the conditional test, or which threads generated a carry-out from an integer add or subtract.

S_MOV_B64     EXEC, 0x00000001  // set just one thread active; others are inactive
V_CMP_EQ_B32  VCC, V0, V0       // compare (V0 == V0) and write result to VCC (all bits in VCC are
updated)


VCC physically resides in the SGPR register file in a specific pair of SGPRs, so when an
instruction sources VCC, that counts against the limit on the total number of SGPRs that can
be sourced for a given instruction.

Wave32 waves may use any SGPR for mask/carry/borrow operations, but may not use VCC_HI or EXEC_HI.

3.4.7. FLAT_SCRATCH

FLAT_SCRATCH is a 64-bit register that holds a pointer to the base of scratch memory for this wave. For waves
that have scratch space allocated, wave-launch hardware initializes the FLAT_SCRATCH register with the
scratch base address unique to this wave. This register is read-only, except while in the trap handler where it is
writable. The value is a byte address and must be 256byte aligned. If the wave has no scratch space allocated,
then reading FLAT_SCRATCH returns zero.

The value for FLAT_SCRATCH is computed in hardware and initialized for any wave that has scratch space
allocated:

scratch_base = scratch_base[63:0] + spi_scratch_offset[31:0]
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FLAT_SCRATCH_LO = scratch_base [31:0]
FLAT_SCRATCH_HI = scratch_base [63:32]

3.4.8. Hardware Internal Registers

These registers are read-only and can be accessed by the S_GETREG instruction. They return information
about hardware allocation and status. HW_ID and the various *_BASE values are not predictable and may
change over the lifetime of a wave if context-switching can occur.

HW_ID1

Field Bits Description
WAVE_ID 4:0 Wave id within the SIMD.
SIMD_ID 9:8 SIMD_ID within the WGP: [0] = row, [1] = column.
WGP_ID 13:10 Physical WGP ID.
SA_ID 16 Shader Array ID
SE_ID 20:18 Shader Engine ID
DP_RATE 31:29 Number of double-precision float units per SIMD. 1+log2(#DP-alu’s). 0=none, 1=1/32rate (1 dp

lane/clk), 2=1/16 rate (2 dp lanes/clk), 3=1/8, 4=1/4, 5=1/2, 6=full rate (32 dp lanes per clock).

HW_ID2

Field Bits Description
QUEUE_ID 3:0 Queue_ID (also encodes shader stage)
PIPE_ID 5:4 Pipeline ID
ME_ID 9:8 MicroEngine ID: 0 = graphics, 1 & 2 = ACE compute
STATE_ID 14:12 State context ID
WG_ID 20:16 Work-group ID (0-31) within the WGP.
VM_ID 27:24 Virtual Memory ID

Other S_GETREG, S_SETREG targets:

Register Bits Description
FLUSH_IB 1 Writing this with bit[0]=1 flushes the instruction fetch buffers for the targeted wave.
SH_MEM_BASES 16, 16 Per-VMID register, readable by the shader, which holds the private and shared

apertures.
PC_LO
PC_HI

32
32

Program counter low and high halves. GETREG should not be used to read the PC -
use S_GETPC instead.

FLAT_SCRATCH_HI
FLAT_SCRATCH_LO

32
32

Flat scratch base address. Only writable when in trap handler

Note: TMA and TBA are read using S_SENDMSG_RTN.

3.4.9. Trap and Exception registers

Each type of exception can be enabled or disabled independently by setting, or clearing, bits in the TRAPSTS
register’s EXCP_EN field. This section describes the registers that control and report shader exceptions.

Trap temporary SGPRs (TTMP*) are privileged for writes - they can be written only when in the trap handler
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(STATUS.PRIV = 1). TTMPs cannot be read by the user shader (returns zero).

When the shader is not privileged (STATUS.PRIV==0), writes to these are ignored. TMA and TBA are read-only;
they can be accessed through S_SENDMSG_RTN.

When a trap is taken (either user initiated, exception or host initiated), the shader hardware generates an
S_TRAP instruction. This loads trap information into a pair of SGPRS:

{TTMP1, TTMP0} = {7'h0, HT[0],trapID[7:0], PC[47:0]}.

HT is set to one for host initiated traps, and zero for user traps (s_trap) or exceptions. TRAP_ID is zero for
exceptions, or the user/host trapID for those traps.

STATUS . TRAP_EN

This bit tells the shader whether or not a trap handler is present. When one is not present, traps are not
taken no matter whether they’re floating point, user or host-initiated traps. When the trap handler is
present, the wave uses an extra 16 SGPRs for trap processing.
If trap_en == 0, all traps and exceptions are ignored, and s_trap is converted by hardware to NOP.

MODE . EXCP_EN[8:0]

Exception enable mask. Defines which of the sources of exception cause the shader to jump to the trap
handler when the exception occurs. 1 = enable traps; 0 = disable traps.
MEMVIOL and Illegal-Instruction jump to the trap handler and cannot be masked off.

Bit Exception Cause Result
0 invalid operand is invalid for operation: 0 * inf, 0/0, sqrt(-x), any input

is SNaN.
QNaN

1 Input
Denormal

one or more operands was subnormal ordinary result

2 Divide by zero Float X / 0 correct signed infinity
3 overflow The rounded result would be larger than the largest finite

number.
Depends on rounding mode.
Signed max# or infinity.

4 underflow The exact or rounded result is less than the smallest normal
(non-subnormal) representable number.

subnormal or zero

5 inexact The rounded result of a valid operation is different from the
infinitely precise result.

Operation result

6 integer divide
by zero

Integer X / 0 undefined

7 address watch VMEM or SMEM has witnessed a thread access an 'address of
interest'

8 reserved

TRAPSTS Register

TRAPSTS contains information about traps and exceptions, and may be written by user shader or trap handler.
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Field Bit
Pos

Description

EXCP 8:0 Status bits of which exceptions have occurred. These bits are sticky and
accumulate results until the shader program clears them. These bits are
accumulated regardless of the setting of EXCP_EN. These can be read or
written without shader privilege.

Bit Exception
0 invalid
1 Input Denormal
2 Divide by zero
3 overflow
4 underflow
5 inexact
6 integer divide by zero
7 address watch
8 memory violation

SAVECTX 10 A bit set by the host command via GRBM (or context-save/restore unit)
indicating that this wave must jump to its trap handler and save its context.
This bit should be cleared by the trap handler using S_SETREG.

ILLEGAL_INST 11 An illegal instruction has been detected. If a trap handler is present and the
wave is not in the trap handler: jump to the trap handler; Otherwise, send an
interrupt and halt.

ADDR_WATCH1-3 14:12 Indicates that address watch 1, 2 or 3 have been hit. [12]=addr_watch1.
Addr_watch0 is indicated by the existing bit TRAPSTS.EXCP[7].

BUFFER_OOB 15 Buffer Out Of Bounds indicator.
Set when a buffer (MUBUF, MTBUF) instruction requests an address that is
out of bounds. Does not cause a trap. Status bit is sticky.

HOST_TRAP 16 Trap handler has been called to service a host trap. Trap may simultaneously
have been called to handle other traps as well

WAVE_START 17 Trap handler has been called before the first instruction of a new wave.
WAVE_END 18 Trap handler has been called after the last instruction of a wave.
TRAP_AFTER_INST 20 Trap handler has been called due to "trap after instruction" mode

3.4.10. Time

There are two methods for measuring time in the shader:

• "TIME" - measure cycles in graphics core clocks (20 bit counter)
• "REALTIME" - measure time based on a fixed frequency, constantly running clock (typically 100MHz),

providing a 64bit value.

Shader programs have access to a free-running clock counter in order to measure the duration of portions of a
wave’s execution. This counter can be read via: "S_GETREG S0, SHADER_CYCLES" and returns a 20-bit cycle
counter value. This counter is not synchronized across different SIMDs and should only be used to measure
time-delta within one wave. Reading the counter is handled through the SALU which has a typical latency of
around 8 cycles.

For measuring time between different waves or SIMDs, or to reference a clock that does not stop counting
when the chip is idle, use "REALTIME". Real-time is a clock counter that comes from the clock-generator and
runs at a constant speed, regardless of the shader or memory clock speeds. This counter can be read by:
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    S_SENDMSG_RTN_B64 S[2:3] REALTIME
    S_WAITCNT LGKMcnt == 0

3.5. Initial Wave State
Before a wave begins execution, some of the state registers including SGPRs and VGPRs are initialized with
values derived either from state data, dynamic or derived data (e.g. interpolants or unique per-wave data). The
values are derived from register state and dynamic wave-launch state.

Note that some of this state is common across all waves in a draw call, and other state is unique per wave.

This section describes what state is initialized per shader stage. Note that as usual in this spec, the shader
stages refer to hardware shader stages and these often are not identical to software shader stages.

State initialization is controlled by state registers which are defined in other documentation.

3.5.1. EXEC initialization

Normally, EXEC is initialized with the mask of which threads are active in a wave. There are, however, cases
where the EXEC mask is initialized to zero indicating that this wave should do no work and exit immediately.
These are referred to as "Null waves" (EXEC==0) and exit immediately after starting execution.

3.5.2. FLAT_SCRATCH Initialization

Waves that have scratch memory space allocated to them are initialized with their FLAT_SCRATCH register
having a pointer to the address in global memory. Waves without scratch have this initialized to zero.

3.5.3. SGPR Initialization

SGPRs are initialized based on various SPI_PGM_RSRC* or COMPUTE_PGM_* register settings. Note that only
the enabled values are loaded, and they are packed into consecutive SGPRs, skipping over disabled values
regardless of the number of user-constants loaded. No SGPRs are skipped for alignment.

The tables below show how to control which values are initialized prior to shader launch.

3.5.3.1. Pixel Shader (PS)

Table 8. PS SGPR Load

SGPR Order Description Enable
First 0..32 of User data registers SPI_SHADER_PGM_RSRC2_PS.user_sgpr
then {bc_optimize, prim_mask[14:0], lds_offset[15:0]} N/A
then {ps_wave_id[9:0], ps_wave_index[5:0]} SPI_SHADER_PGM_RSRC2_PS.wave_cnt_en
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SGPR Order Description Enable
then Provoking Vtx Info:

{prim15[1:0], prim14[1:0], …, prim0[1:0]}
SPI_SHADER_PGM_RSRC1_PS .
LOAD_PROVOKING_VTX

PS_wave_index is (se_id[1:0] * GPU__GC__NUM_PACKER_PER_SE + packer_id).

PS_wave_id is an index value which is incremented for every wave. There is a separate counter per
packer, so the combination of { ps_wave_id, ps_wave_index } forms a unique ID for any wave on the
chip. The wave-id counter wraps at SPI_PS_MAX_WAVE_ID.

3.5.3.2. Geometry Shader (GS)

ES and GS are launched as a combined wave, of type GS. The shader is initialized as a GS wave type, with the PC
pointing to the ES shader and with GS user-SGPRs preloaded, along with a memory pointer to more GS user
SGPRs. The shader executes to the ES program first, then upon completion executes the GS shader. Once the ES
shader completes, it may re-use the SGPRs which contain ES user data and the GS shader address.

The first 8 SGPRs are automatically initialized - no values are skipped (unused ones are written with zero).

State registers:

• SPI_SHADER_PGM_{LO,HI}_ES : address of the GS shader
• SPI_SHADER_PGM_RSRC1: resources of combined ES + GS shader

◦ GS_VGPR_COMP_CNT = # of GS VGPRs to load (2 bits)
• SPI_SHADER_PGM_RSRC2: resources of combined ES + GS shader

◦ VGPR_COMP_CNT = # of VGPRs to load (2 bits)
◦ OC_LDS_EN

• SPI_SHADER_PGM_RSRC{3,4}: resources of combined ES + GS shader

Table 9. GS SGPR Load

SGPR # GS with FAST_LAUNCH != 2 GS with FAST_LAUNCH == 2 Enable
0 GS Program Address [31:0]

comes from:
SPI_SHADER_PGM_LO_GS

GS Program Address [31:0]
comes from:
SPI_SHADER_PGM_LO_GS

automatically loaded

1 GS Program Address [63:32]
comes from:
SPI_SHADER_PGM_HI_GS

GS Program Address [63:32]
comes from:
SPI_SHADER_PGM_HI_GS

automatically loaded

2 {1’b0, gsAmpPrimPerGrp[8:0],
1’b0, esAmpVertPerGrp[8:0],
ordered_wave_id[11:0]}

32’h0 Must not be overwritten, in some cases listed
below.

3 { TGsize[3:0],
WaveInGroup[3:0], 8’h0,
gsInputPrimCnt[7:0],
esInputVertCnt[7:0] }

{ TGsize[3:0],
WaveInGroup[3:0], 24’h0 }

automatically loaded.

4 Off-chip LDS base [31:0] { TGID_Y[15:0],
TGID_X[15:0] }

SPI_SHADER_PGM_RSRC2_GS.oc_lds_en

5 { 17’h0, attrSgBase[14:0] } { TGID_Z[15:0], 1’b0,
attrSgBase[14:0] }

-

6 SPI is loading flat_scratch[63:0] at this time -
7 -
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SGPR # GS with FAST_LAUNCH != 2 GS with FAST_LAUNCH == 2 Enable
8 - (up to)
39

User data registers of GS
shader

User data registers of GS shader SPI_SHADER_PGM_RSRC2_GS.user_sgpr

When stream-out is used, SGPR[2] must not be modified or overwritten any time before the final stream out is
issued (GDS ordered count with 'done' = 1). This is because the pipeline reset sequence which hardware
automatically executes reads SGPR to fabricate a GDS-ordered-count instruction and relies on this value.

3.5.3.3. Front End Shader (HS)

LS and HS are launched as a combined wave, of type HS. The shader is initialized as an HS wave type, with the
PC pointing to the LS shader and with HS user-SGPRs preloaded, along with a memory pointer to more HS user
SGPRs. The shader executes to the LS program first, then upon completion executes the HS shader. Once the
LS shader completes, it may re-use the SGPRs which contain LS user data and the HS shader address.

The first 8 SGPRs are automatically initialized - no values are skipped (unused ones are written with zero).

Other registers:

• SPI_SHADER_PGM_{LO,HI}_LS : address of the LS shader
• SPI_SHADER_PGM_RSRC1: resources of combined LS + HS shader

◦ LS_VGPR_COMP_CNT = # of LS VGPRs to load (2 bits)
• SPI_SHADER_PGM_RSRC{2,3,4}: resources of combined LS + HS shader

Table 10. HS (LS) SGPR Load

SGPR # Description Enable
0 HS Program Address Low ([31:0]) SPI_SHADER_USER_DATA_LO_HS
1 HS Program Address High ([63:32]) SPI_SHADER_USER_DATA_HI_HS
2 Off-chip LDS base [31:0] automatically loaded
3 {first_wave[0], lshs_TGsize[6:0],

lshs_PatchCount[7:0], HS_vertCount[7:0],
LS_vertCount[7:0]}

automatically loaded

4 TF buffer base [15:0] automatically loaded
5 { 27’b0, wave_id_in_group[4:0] } SPI_SHADER_PGM_RSRC2_HS.scratch_en
8 - (up to) 39 User data registers of HS shader SPI_SHADER_PGM_RSRC2_HS.user_sgpr

3.5.3.4. Compute Shader (CS)

Table 11. CS SGPR Load

SGPR Order Description Enable
First 0.. 16 of User data registers COMPUTE_PGM_RSRC2.user_sgpr
then work_group_id0[31:0] COMPUTE_PGM_RSRC2.tgid_x_en
then work_group_id1[31:0] COMPUTE_PGM_RSRC2.tgid_y_en
then work_group_id2[31:0] COMPUTE_PGM_RSRC2.tgid_z_en
then {first_wave, 6’h00, wave_id_in_group[4:0], 2’h0,

ordered_append_term[11:0], work-
group_size_in_waves[5:0]}

COMPUTE_PGM_RSRC2.tg_size_en
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3.5.4. Which VGPRs Get Initialized

The table shows the VGPRs which may be initialized prior to wave launch. COMPUTE_PGM_RSRC* or
SPI_SHADER_PGM_RSRC* control registers can select a reduced set per shader stage.

3.5.4.1. Pixel Shader VGPR Input Control

Pixel Shader VGPR input loading is quite a bit more complicated. There is a CAM which maps VS outputs to PS
inputs. Of the PS inputs which need loading, they are loaded in this order:

I persp sample
J persp sample
I persp center
J persp center
I persp centroid
J persp centroid
I/W
J/W
1/W

I linear sample
J linear sample
I linear center
J linear center
I linear centroid
J linear centroid
Line stipple

X float
Y float
Z float
W float
Facedness
Ancillary: RTA, ISN, PT,
eye-id
Sample mask
X/Y fixed

Two registers (SPI_PS_INPUT_ENA and SPI_PS_INPUT_ADDR) control the enabling of IJ calculations and
specifying of VGPR initialization for PS waves. SPI_PS_INPUT_ENA is used to determine what gradients are
enabled for setup, whether per-pixel Z is enabled, what terms are calculated and/or passed through the
barycentric logic, and what is loaded into VGPR for PS. SPI_PS_INPUT_ADDR can be used to manipulate the
VGPR destination of terms that are enabled by INPUT_ENA, typically providing a way to maintain consistent
VGPR addressing when terms are removed from INPUT_ENA. It is valid to set a bit in ADDR when the
corresponding bit in ENA is not set, but if the ENA bit is set then the corresponding bit in ADDR must also be
set.

The two Pixel Staging Register (PSR) control registers contain an identical set of fields and consist of the
following:
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Field Name IJ / VGPR Terms BITS VGPR Dest with Full
Load

PERSP_SAMPLE_ENA PERSP_SAMPLE I 32 VGPR0
PERSP_SAMPLE J 32 VGPR1

PERSP_CENTER_ENA PERSP_CENTER I 32 VGPR2
PERSP_CENTER J 32 VGPR3

PERSP_CENTROID_ENA PERSP_CENTROID I 32 VGPR4
PERSP_CENTROID J 32 VGPR5

PERSP_PULL_MODEL_ENA PERSP_PULL_MODEL I/W 32 VGPR6
PERSP_PULL_MODEL J/W 32 VGPR7
PERSP_PULL_MODEL 1/W 32 VGPR8

LINEAR_SAMPLE_ENA LINEAR_SAMPLE I 32 VGPR9
LINEAR_SAMPLE J 32 VGPR10

LINEAR_CENTER_ENA LINEAR_CENTER I 32 VGPR11
LINEAR_CENTER J 32 VGPR12

LINEAR_CENTROID_ENA LINEAR_CENTROID I 32 VGPR13
LINEAR_CENTROID J 32 VGPR14

LINE_STIPPLE_TEX_ENA LINE_STIPPLE_TEX 32 VGPR15
POS_X_FLOAT_ENA POS_X_FLOAT 32 VGPR16
POS_Y_FLOAT_ENA POS_Y_FLOAT 32 VGPR17
POS_Z_FLOAT_ENA POS_Z_FLOAT 32 VGPR18
POS_W_FLOAT_ENA POS_W_FLOAT 32 VGPR19
FRONT_FACE_ENA FRONT_FACE 32 VGPR20
ANCILLARY_ENA RTA_Index[28:16],

Sample_Num[11:8],
Eye_id[7],
VRSrateY[5:4],
VRSrateX[3:2],
Prim Typ[1:0]

29 VGPR21

SAMPLE_COVERAGE_ENA SAMPLE_COVERAGE 16 VGPR22
POS_FIXED_PT_ENA Position {Y[16], X[16]} 32 VGPR23

The above table shows VGPR destinations for PS when all possible terms are enabled. If PS_INPUT_ADDR ==
PS_INPUT_ENA, then PS VGPRs pack towards VGPR0 as terms are disabled, as shown in the table below:

Field Name ENA ADDR IJ / VGPR Terms VGPR Dest
PERSP_SAMPLE_ENA 1 1 PERSP_SAMPLE I VGPR0

PERSP_SAMPLE J VGPR1
PERSP_CENTER_ENA 1 1 PERSP_CENTER I VGPR2

PERSP_CENTER J VGPR3
PERSP_CENTROID_ENA 0 0 PERSP_CENTROID I X

PERSP_CENTROID J X
PERSP_PULL_MODEL_ENA 0 0 PERSP_PULL_MODEL I/W X

PERSP_PULL_MODEL J/W X
PERSP_PULL_MODEL 1/W X

LINEAR_SAMPLE_ENA 0 0 LINEAR_SAMPLE I X
LINEAR_SAMPLE J X

LINEAR_CENTER_ENA 0 0 LINEAR_CENTER I X
LINEAR_CENTER J X
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Field Name ENA ADDR IJ / VGPR Terms VGPR Dest
LINEAR_CENTROID_ENA 0 0 LINEAR_CENTROID I X

LINEAR_CENTROID J X
LINE_STIPPLE_TEX_ENA 0 0 LINE_STIPPLE_TEX X
POS_X_FLOAT_ENA 1 1 POS_X_FLOAT VGPR4
POS_Y_FLOAT_ENA 1 1 POS_Y_FLOAT VGPR5
POS_Z_FLOAT_ENA 0 0 POS_Z_FLOAT X
POS_W_FLOAT_ENA 0 0 POS_W_FLOAT X
FRONT_FACE_ENA 0 0 FRONT_FACE X
ANCILLARY_ENA 0 0 Ancil Data X
SAMPLE_COVERAGE_ENA 0 0 SAMPLE_COVERAGE X
POS_FIXED_PT_ENA 0 0 Position {Y[16], X[16]} X

However, if PS_INPUT_ADDR != PS_INPUT_ENA then the VGPR destination of enabled terms can be
manipulated. An example is this is shown in the table below:

Field Name ENA ADDR IJ / VGPR Terms VGPR Dest
PERSP_SAMPLE_ENA 1 1 PERSP_SAMPLE I VGPR0

PERSP_SAMPLE J VGPR1
PERSP_CENTER_ENA 1 1 PERSP_CENTER I VGPR2

PERSP_CENTER J VGPR3
PERSP_CENTROID_ENA 0 1 PERSP_CENTROID I VGPR4 skipped

PERSP_CENTROID J VGPR5 skipped
PERSP_PULL_MODEL_ENA 0 1 PERSP_PULL_MODEL I/W VGPR6 skipped

PERSP_PULL_MODEL J/W VGPR7 skipped
PERSP_PULL_MODEL 1/W VGPR8 skipped

LINEAR_SAMPLE_ENA 0 0 LINEAR_SAMPLE I X
LINEAR_SAMPLE J X

LINEAR_CENTER_ENA 0 0 LINEAR_CENTER I X
LINEAR_CENTER J X

LINEAR_CENTROID_ENA 0 1 LINEAR_CENTROID I VGPR9 skipped
LINEAR_CENTROID J VGPR10 skipped

LINE_STIPPLE_TEX_ENA 0 1 LINE_STIPPLE_TEX VGPR11 skipped
POS_X_FLOAT_ENA 1 1 POS_X_FLOAT VGPR12
POS_Y_FLOAT_ENA 1 1 POS_Y_FLOAT VGPR13
POS_Z_FLOAT_ENA 0 0 POS_Z_FLOAT X
POS_W_FLOAT_ENA 0 0 POS_W_FLOAT X
FRONT_FACE_ENA 0 0 FRONT_FACE X
ANCILLARY_ENA 0 0 Ancil Data X
SAMPLE_COVERAGE_ENA 0 0 SAMPLE_COVERAGE X
POS_FIXED_PT_ENA 0 0 Position {Y[16], X[16]} X

3.5.5. LDS Initialization

Only pixel shader (PS) waves have LDS pre-initialized with data before the wave launches. For PS wave, LDS is
preloaded with vertex parameter data that can be interpolated using barycentrics (I and J) to compute per-pixel
parameters.
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Chapter 4. Shader Instruction Set
This chapter describes the shader instruction set. Instructions are divided into the following groups:

• Program Flow
• Scalar ALU
• Scalar memory read from constant cache
• Vector ALU & Parameter-Interpolate
• Vector Memory read/write :

◦ buffers
◦ Flat, Global and Scratch
◦ LDS

• GDS
• Misc: wait on counter, barrier, send message

Instructions are encoded in various microcode formats. The formats are defined by a set of "encoding" bits (in
red) that define the family of instructions and the meaning of the rest of the bits in the instruction. Not every
instruction uses every field in its encoding. Fields which can specify an SGPR as a source or dest are typically
set to NULL when unused; other fields are typically set to zero.

4.1. Common Instruction Fields
"inline constant" - a constant specified in place of a source argument, # 128-248. E.g 1.0, -0.5, 32 etc.

Float constants work with single, double and 16bit float instructions, and when used in non-float
instructions, the data is not converted (remains a float).

Float constants are encoded according to the size of the source operand. For 16-bit operations (both
packed and non-packed), a float constant is treated as zero-extended 32-bit data, i.e. with the 16-bit
floating point in the low bits and zeros in the high bits.

Integer constants used with 32-bit or smaller operands are treated as 32-bit signed integers. Integer
constants are signed extended for 64-bit sources.

"literal constant" - a 32-bit constant in the instruction stream immediately after a 32- or 64-bit instruction.

When used in a 64-bit signed integer operation, it is sign-extended to 64 bits. For unsigned 64-bit integer
ops (and 64-bit binary ops) it is zero extended. When used in a double-float operation, the 32-bit literal is
the most-significant bits, and the LSBs are zero. Other operations (32 bits or less, or packed math) treat it
as 32-bit data.
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Code Meaning
Vector
Source
(when 9
bits)

Scalar
Source (8
bits)

Scalar
Dest (7
bits)

0-105 SGPR 0 .. 105 SGPRs. One DWORD each.
106 VCC_LO VCC[31:0]
107 VCC_HI VCC[63:32]
108-123 ttmp0 .. ttmp15 Trap handler temporary SGPRs (privileged)
124 NULL Reads return zero, writes are ignored. When used

as a destination, nullifies the instruction.
125 M0 Temporary register, use for a variety of functions
126 EXEC_LO EXEC[31:0]
127 EXEC_HI EXEC[63:32]

Integer
Inline
Constants

128 0 Inline constant zero
129-192 int 1 .. 64 Integer inline constants
193-208 int -1 .. -16
209-232 Reserved Reserved
233 DPP8 8-lane DPP (only valid as SRC0)
234 DPP8FI 8-lane DPP with Fetch-Invalid (only valid as SRC0)
235 SHARED_BASE Memory Aperture Definition
236 SHARED_LIMIT
237 PRIVATE_BASE
238 PRIVATE_LIMIT
239 Reserved Reserved

Float
Inline
Constants

240 0.5 Inline floating point constants. Can be used in 16,
32 and 64 bit floating point math. They may be
used with non-float instructions but the value
remains a float.
 
1/(2*PI) is 0.15915494. The hex values are:
half: 0x3118
single: 0x3e22f983
double: 0x3fc45f306dc9c882

241 -0.5
242 1.0
243 -1.0
244 2.0
245 -2.0
246 4.0
247 -4.0
248 1.0 / (2 * PI)
249 Reserved Reserved
250 DPP16 data parallel primitive
251 Reserved Reserved
252 Reserved Reserved
253 SCC { 31’b0, SCC }
254 Reserved Reserved
255 Literal constant 32 bit constant from instruction stream

Vector Src/Dst
(8 bits)

256 - 511 VGPR 0 .. 255 Vector GPRs. One DWORD each.

4.1.1. Cache Controls: SLC, GLC and DLC

Scalar and vector memory instructions contain bits that control cache behavior. The SLC, GLC and DLC
instruction bits influence cache behavior for loads, stores, and atomics.

GLC controls the graphics first-level cache
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SLC controls the graphics L2 cache

DLC controls the Memory-Attached Last-Level cache (MALL) if it is present (ignored otherwise)

Typically loads use GLC=0 (except for load-acquire). GLC=1 forces a miss in the first level cache and reads data
rom the L2 cache. If there was a line in the GPU L0 that matched, it is invalidated; L2 is reread.

Shader LOAD ops (load, sample, gather, etc…)

SRD ISA Resulting Policy in Cache SCOPE Non-Temporal Hint
llc_
noalloc

DLC SLC GLC MALL
(NOA)

GL2 GL1 Tex(L0) MALL GL2 GL1 Tex(L0)

0 or 1 0 0 0 0 LRU HIT_LRU HIT_LRU CU no no no no

0 or 1 0 0 1 0 LRU MISS_EVICT MISS_EVICT DEVICE no no _NA_ _NA_

0 or 1 0 1 0 0 STREAM HIT_EVICT HIT_LRU CU no yes yes no

0 or 1 0 1 1 0 STREAM MISS_EVICT MISS_EVICT DEVICE no yes _NA_ _NA_

0 or 1 1 0 0 1 LRU HIT_LRU HIT_LRU CU yes no no no

0 or 1 1 0 1 1 LRU MISS_EVICT MISS_EVICT DEVICE yes no _NA_ _NA_

0 or 1 1 1 0 1 STREAM HIT_EVICT HIT_LRU CU yes yes yes no

0 or 1 1 1 1 1 STREAM MISS_EVICT MISS_EVICT DEVICE yes yes _NA_ _NA_

2 or 3 0 0 0 1 LRU HIT_LRU HIT_LRU CU no no no no

2 or 3 0 0 1 1 LRU MISS_EVICT MISS_EVICT DEVICE no no _NA_ _NA_

2 or 3 0 1 0 1 STREAM HIT_EVICT HIT_LRU CU no yes yes no

2 or 3 0 1 1 1 STREAM MISS_EVICT MISS_EVICT DEVICE no yes _NA_ _NA_

2 or 3 1 0 0 1 LRU HIT_LRU HIT_LRU CU yes no no no

2 or 3 1 0 1 1 LRU MISS_EVICT MISS_EVICT DEVICE yes no _NA_ _NA_

2 or 3 1 1 0 1 STREAM HIT_EVICT HIT_LRU CU yes yes yes no

2 or 3 1 1 1 1 STREAM MISS_EVICT MISS_EVICT DEVICE yes yes _NA_ _NA_

• For S_BUFFER_LOAD instructions, LLC_NOALLOC comes from V#.LLC_noalloc.
For S_LOAD, LLC_NOALLOC is zero.

• SMEM operations have SLC set to zero.

Shader STORE / ATOMIC ops (all are device scope)

SRD ISA Policy in Cache Non-Temporal Hint
llc_
noalloc

DLC SLC MALL
(NOA)

GL2 MALL GL2

0 or 2  0 0 0 LRU no no

0 or 2  0 1 0 STREAM no yes

0 or 2  1 0 1 LRU yes no

0 or 2  1 1 1 STREAM yes yes

1 or 3  0 0 1 LRU no no

1 or 3  0 1 1 STREAM no yes

1 or 3  1 0 1 LRU no no

1 or 3  1 1 1 STREAM no yes

"Temporal Hint" = expect data to have temporal reuse.
"SRD" = Shader Resource Descriptor

• ISA.GLC ⇒ this is a scope bit for load operations (including sample, gather, etc…)
◦ 0 : CU (work-group) scope
◦ 1 : DEVICE scope
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◦ All stores/atomic ops are device scope (GLC has non-perf related functionality)
• ISA.SLC ⇒ Temporal Hint for graphic client caches

◦ 0 : Regular
◦ 1 : Stream (non-temporal)

• ISA.DLC ⇒ Temporal Hint for Infinity Cache
◦ 0 : Regular
◦ 1 : Non-temporal

GLC is used by atomics to indicate:

• 0: return nothing
• 1: return pre-operation value from memory to VGPR
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Chapter 5. Program Flow Control
Program flow control is programmed using scalar ALU instructions. This includes loops, branches, subroutine
calls, and traps. The program uses SGPRs to store branch conditions and loop counters. Constants can be
fetched from the scalar constant cache directly into SGPRs.

5.1. Program Control
The instructions in the table below control the priority and termination of a shader program, as well as provide
support for trap handlers.

Table 12. Wave Termination and Traps

Instructions Description
S_ENDPGM Terminates the wave. It can appear anywhere in the shader program and can appear

multiple times.
S_ENDPGM_SAVED Terminates the wave due to context save. Intended for use only within the trap handler.
S_TRAP Jump to the trap handler and pass in 8-bit TRAP id from SIMM[7:0].

It does not affect SCCZ.

<wait for outstanding instructions to finish>
{TTMP1,TTMP0} = {7'h0,HT[0],trapID[7:0],PC[47:0]}
PC = TBA (trap base address)
PRIV = 1

"HT" : 1 = this is a host-initiated trap, 0 = user (s_trap). Host traps cause the shader
hardware to generate an S_TRAP instruction. Note: the save-PC points to the S_TRAP
instruction. TRAPID 0 is reserved for hardware use.

S_RFE_B64 Return from exception (trap handler) and continue.
Start executing at PC (trap handler must increment PC past the faulting instruction).
MOVE PC, <src> ; STATUS.PRIV = 0.
This instruction may only be used within a trap handler.

S_SETKILL Set the KILL bit to 1, causing the shader to s_endpgm immediately. Used primarily for
debugging 'kill' wave-command behavior.

S_SETHALT Set the HALT bit to the value of SIMM16[0].
Setting to 1 halts the shader when PRIV=0 (not in trap handler);
setting to 0 resumes the shader (can only occur in trap handler).
Fatal Halt control: SIMM16[2] 1 : set fatal halt; 0 : clear fatal halt.

Table 13. Dependency, Delay and Scheduling Instructions

Instructions Description
S_NOP NOP. Repeat SIMM16[3:0] times. (1..16)

Like a short version of S_SLEEP
S_SLEEP Cause a wave to sleep for approx. 64*SIMM16[6:0] clocks.

"s_sleep 0" sleeps the wave for 0 cycles.
S_WAKEUP Causes one wave in a work-group to signal all other waves in the same work-group to wake

up from S_SLEEP early. If waves are not sleeping, they are not affected by this instruction.
S_SETPRIO Set 2-bits of USER_PRIO: user-settable wave priority. 0 = low, 3 = high.

Overall wave priority is: {MIN(3,(SysPrio[1:0] + UserPrio[1:0])), WaveAge[3:0]}
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Instructions Description
S_CLAUSE Begin a clause consisting of instructions matching the instruction after the s_clause. The

clause length is: (SIMM16[5:0] + 1), and clauses must be between 2 and 63 instructions.
SIMM16[5:0] must be 1-62, not 0 or 63. The clause breaks after every N instructions, N =
simm[11:8] (0 - 15; 0 = no breaks)

S_BARRIER Synchronize waves within a work-group. If not all waves in group have been created yet,
waits for entire group before proceeding. Waves that have ended do not prevent barriers
from being satisfied. Waves not in a work-group (or work-group size = 1 wave), treat this as
S_NOP.

Table 14. Control Instructions

Instructions Description
S_VERSION Does nothing (treated as S_NOP), but can be used as a code comment to indicate the

hardware version the shader is compiled for (using the SIMM16 field).
S_CODE_END Treated as an illegal instruction. Used to pad past the end of shaders.
S_SENDMSG Send a message upstream to the Interrupt handler or dedicated hardware. SIMM[9:0] is an

immediate value holding the message type. There is no "s_waitcnt" enforced before this.
S_SENDMSG_RTN_B32
S_SENDMSG_RTN_B64

Send a message upstream to that requests that some data be returned to an SGPR. Uses
LGKMcnt to track when data is returned. (or an aligned SGPR-pair for "_B64").
SDST = SGPR to return to.
SSRC0 = enum, not an SGPR with the code for what data is requested. (see the message table
below).
If this is used to write VCC, then VCCZ is undefined.

S_SENDMSGHALT S_SENDMSG and then HALT.
S_ICACHE_INV Invalidate first-level shader instruction cache for the WGP associated with this wave.

5.2. Instruction Clauses
An instruction clause is a group of instructions of the same type that are to be executed in an uninterrupted
sequence. Normally hardware may interleave instructions from different waves, but a clause can be used to
override that behavior and force the hardware to service only one wave for a given instruction type for the
duration of the clause, even if that leaves the execution hardware idle.

Clauses are defined and started using the S_CLAUSE instruction, and must contain only a single type of
instruction. The clause-type is implicitly defined by the type of instruction immediately following the clause.

Clause Types are:

• Image (no sampler) load
• Image store
• Image atomic
• Image sample
• Buffer / Global / Scratch load
• Buffer / Global / Scratch store
• Buffer / Global / Scratch atomic
• Flat load
• Flat store
• Flat atomic
• LDS load / store / atomic / bvh_stack
• IMAGE_BVH
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• SMEM
• VALU

May also be in a clause ("clause internal instructions"):

• S_DELAY_ALU is legal inside a clause (internal) but is pointless.
◦ S_DELAY_ALU must not occur within a VALU clause.

• S_NOP and S_SLEEP may be used inside a clause, but the first instruction of the clause must be the clause-
type instruction (ALU, memory).

Cannot be in a clause:

• Instructions of a different type those of the clause type are illegal
• S_CLAUSE
• S_ENDPGM
• SALU, Export, branch, message, GDS, lds_param_load, lds_direct_load
• S_WAITCNT, S_WAIT_IDLE, S_WAIT_DEPCTR

S_CLAUSE defines both the total length of the clause, and how often it should be broken to allow other waves a
chance to go. For instance, it could say: clause of 16 instructions, but break after every 4th to allow a higher
priority wave to get access to the execution unit. "clause internal instructions" count against this clause size.

If a clause defines regular clause breaks (e.g. a clause of 16 instructions, but break every 4th), the first
instruction of each sub-clause (every 4 instructions) must be of the clause-type, not a "clause internal
instruction". Each group of instructions must have at least two of the clause-type of instructions. E.g. a clause of
12 VALU instructions broken up into 4 groups of 3 instructions - each group of 3 instructions must have at least two
VALU instructions. Clause groups with only 1 VALU instruction per group make no sense - they are no longer a clause.

If the first instruction in a VALU clause has EXEC==0, then the clause is ignored and instructions are issued as
if there were no clause. If the VALU clause starts with EXEC!=0 but EXEC becomes zero in the middle of the
clause, the clause continues until the last instruction of the specified clause.

If an S_DELAY_ALU is needed before starting a clause, the order must be:

    S_DELAY_ALU // must not come immediately after S_CLAUSE - that inst declares clause type
    S_CLAUSE
    <first instruction in clause>

If the first instruction after S_CLAUSE is skipped (e.g. due to EXEC==0, or VMEM-load skipped due to EXEC==0
and VMcnt==0) then then a clause is not started. Subsequent instructions within what would have been the
clause that are not skipped and are still executed but individually, not as part of a clause.

5.2.1. Clause Breaks

The following conditions can break a clause:

1. VALU exception (trap) breaks a VALU clause
2. Host commands to wave (halt, resume, single step, etc) breaks all active clauses.

Context-save breaks clauses of affected waves.
This allows the host to read and write SGPRs & VGPRs while debugging. If clauses were not broken by host
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commands, the GPRs could not be read from waves other than the one currently in a clause.
If a wave halts or is kill, its clauses are ended.

3. Any action that cause a wave to jump to its trap handler breaks clause (includes context-save).
A wave entering HALT (including for host-initiated single-step) may break clauses.

5.3. Send Message Types
S_SENDMSG is used to send messages to fixed function hardware, the host, or to request that a value be
returned to the wave. S_SENDMSG encodes the message type in the SIMM16 field and the message payload in
M0. S_SENDMSG_RTN encodes the message type in the SSRC0 field (does not read an SGPR), the payload (if
any) in M0, and the destination SGPR in SDST.

Completion is tracked with LGKMcnt.

The table below lists the messages that can be generated using the S_SENDMSG command.

S_SENDMSG_RTN_B* instructions return data to the shader: increment LGKMcnt by 2, and then decrement by
1 when the messages goes out, and by another 1 when the data returns. This allows the user to simply use
"s_waitcnt LGKMcnt==0" to wait for the data to be returned.

All message codes not listed are reserved (illegal).

Table 15. S_SENDMSG Messages

Message SIMM16
[7:0]

Payload

Reserved 0x00 Reserved
Interrupt 0x01 Software-generated interrupt. M0[23:0] carries user data. ID’s are also sent (wave_id,

cu_id, etc.)
HS TessFactor 0x02 Indicates HS tessellation factor is all zero or one for all patches in this HS work-group.

Data from M0[0]: 1 = "all are zero or one". This message is optional, but do not send
more than once or from any shader stage other than HS.

Dealloc VGPRs 0x03 Deallocate all VGPRs for this wave, allowing another wave to allocate these VGPRs
before this wave ends. Use only when next instruction is S_ENDPGM. Typically used
when a shader is waiting memory-write-acknowledgments before ending.

GS alloc req 0x09 Request GS space in parameter cache. M0[9:0] = number of vertices, M0[22:12] =
number of primitives. Response: a GS-alloc response to non-zero requests (broadcast to
work-group).

S_SENDMSG_RTN is used to send messages that return a value to the wave. The instruction specifies which
SGPR receives the data in SDST field. The message is encoded in SSRC0 (in the instruction field, not in an
SGPR).

Table 16. S_SENDMSG_RTN Messages

Message SSRC0 Payload
Get Doorbell ID 0x80 Get the doorbell ID associated with this wave.

(does not exist for ME0. Return 0x0bad. Also returns 0x0bad for invalid pipeID or
queueID).

Get Draw ID 0x81 Get the Draw or dispatch ID associated with this wave.
Get TMA 0x82 Get the Trap Memory Address: [31:0] or [63:0] depending on the request size.
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Message SSRC0 Payload
Get REALTIME 0x83 Get the value of the constant frequency (REFCLK) time counter: [31:0] or [63:0]

depending on the request size.
Save wave 0x84 Used in context switching in indicate this wave is ready to be context saved.

Only the trap handler can send this message (user shaders have this converted to
MSG_ILLEGAL_RTN).

Get TBA 0x85 Gets the Trap Base Address [31:0] or [63:0] depending on request size
MSG_ILLEGAL _RTN 0xFF Illegal message with data return to wave

5.4. Branching
Branching is done using one of the following scalar ALU instructions. "SIMM16" is a sign-extended 16 bit
integer constant, treated as a DWORD offset for branches.

Table 17. Branch Instructions

Instructions Description
S_BRANCH Unconditional branch. PC = PC + (SIMM16 * 4) + 4
S_CBRANCH_<test> Conditional branch. Branch only if <condition> is true. 

if (cond) PC = PC + (SIMM16 *4) +4; else NOP;
If SIMM16=0, the branch goes to the next instruction).
<cond> : SCC1, SCC0, VCCZ, VCCNZ, EXECZ, EXECNZ (SCC==1, SCC==0, VCC==0, VCC!=0,
EXEC==0, EXEC!=0)

S_CBRANCH_CDBGSYS Conditional branch, taken if the COND_DBG_SYS status bit is set.
if (cond) PC = PC + (SIMM16 *4) +4; else NOP;
<cond> = SYS, USER, SYS_AND_USER, SYS_OR_USER.

S_CBRANCH_CDBGUSER Conditional branch, taken if the COND_DBG_USER status bit is set.
S_CBRANCH_CDBGSYS_AND
_USER

Conditional branch, taken only if both COND_DBG_SYS and COND_DBG_USER are set.

S_CBRANCH_CDBGSYS_OR_U
SER

Conditional branch, taken if either COND_DBG_SYS or COND_DBG_USER is set.

S_SETPC_B64 Directly set the PC from an SGPR pair: PC = SGPR-pair
S_SWAPPC_B64 Swap the current PC with an address in an SGPR pair. SWAP (PC+4, SGPR-pair).

(result is: PC of this instruction + 4, zero extended)
S_GETPC_B64 Retrieve the current PC value (does not cause a branch). (SGPR-pair = PC of this instruction

+ 4, zero extended)
S_CALL_B64 Jump to a subroutine, and save return address. SGPR_pair = PC+4; PC = PC+4+SIMM16*4.

For conditional branches, the branch condition can be determined by either scalar or vector operations. A
scalar compare operation sets the Scalar Condition Code (SCC) which then can be used as a conditional branch
condition. Vector compare operations set the VCC mask, and VCCZ or VCCNZ then can be used to determine
branching.

5.5. Work-groups and Barriers
Work-groups are collections of waves running on the same work-group processor that can synchronize and
share data. Up to 1024 work-items (16 wave64’s or 32 wave32’s) can be combined into a work-group. When
multiple waves are in a work-group, the S_BARRIER instruction can be used to force each wave to wait until all
other waves reach the same instruction; then, all waves continue. Work-groups of a single wave treat all
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barrier instructions as S_NOP.

If a wave executes an S_BARRIER before all of the waves of the work-group have been created, the wave waits
until the work-group is complete.

Any wave may terminate early using S_ENDPGM, and the barrier is considered satisfied when the remaining
live waves reach their barrier instruction.

5.6. Data Dependency Resolution
Shader hardware can resolve most data dependencies, but a few cases must be explicitly handled by the shader
program. In these cases, the program must insert S_WAITCNT instructions to ensure that previous operations
have completed before continuing.

The shader has four counters that track the progress of issued instructions. S_WAITCNT waits for the values of
these counters to be at, or below, specified values before continuing. These allow the shader writer to schedule
long-latency instructions, execute unrelated work, and specify when results of long-latency operations are
needed.

Inserting S_NOP is not required to achieve correct operation.

Table 18. Data Dependency Instructions

Instructions Description
S_WAITCNT Wait for count of outstanding instruction counters to be less-than or equal-to all of these

values before continuing.
SIMM16 = { VMcnt[5:0], LGKMcnt[5:0], 1’b0, EXPcnt[2:0] }

S_WAITCNT_VSCNT Wait for VSCNT, VMCNT, EXPCNT or LGKMcnt to be less-than or equal-to the count in
SIMM16 before continuing.S_WAITCNT_LGKMCNT

S_WAITCNT_EXPCNT
S_WAITCNT_VMCNT
S_WAIT_EVENT Wait for an event to occur before proceeding

SIMM16[0] : 1=don’t wait, 0= wait for export-ready; other bits are reserved.
Any exception waits for this to complete before being processed, including: KILL, save-
context, host trap, memviol and anything that causes a trap to be taken.

S_DELAY_ALU Insert delay between dependent SALU/VALU instructions.
SIMM16[3:0] = InstID0
SIMM16[6:4] = InstSkip
SIMM16[10:7] = InstID1
This instruction describes dependencies for two instructions, directing the hardware to insert
delay if the dependent instruction was issued too recently to forward data to the second. For
details, see: S_DELAY_ALU.

S_WAITCNT* waits for outstanding instructions that use the specified counter to complete. Instructions within
a type often return in the order they were issued compared to other instructions of that type, but typically
return out of order with respect to instructions of different types. These counters count instructions, not threads.

These are the memory instruction groups - each returns out of order with respect to the others:

• VMcnt:
◦ Texture SAMPLE
◦ Texture/Buffer/Global/Scratch/Flat Loads and atomic-with-return
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• VScnt:
◦ Texture/Buffer/Global/Scratch/Flat Stores and atomic-without-return

• LGKMcnt:
◦ LDS indexed operations
◦ SMEM: scalar memory loads may return completely out-of-order with respect to other scalar memory

loads
◦ GDS & GWS
◦ FLAT instructions (uses both LGKMcnt and either VMcnt or VScnt)
◦ Messages

• EXPcnt:
◦ LDS parameter-load and direct-load
◦ Exports: stay in order within a type (MRT, Z, position, primitive data) but out of order between types

It is possible for data to be written to VGPRs out-of-order, but the counter-decrement still reflects in-order
completion. Stores from a wave are not kept in order with stores from that same wave when they write to
different addresses.

Simple S_WAITCNT Example

  global_load_b32 V0, V[4:5], 0x0   // load memory[ {V5, V4} ] into V0
  global_load_b32 V1, V[4:5], 0x8   // load memory[ {V5, V4} +8 ] into V1
  s_waitcnt VMcnt <= 1              // wait for first global_load to have completed
  v_mov_b32  V9, V0                 // move V0 into V9

5.7. ALU Instruction Software Scheduling
The shader program may include instructions to delay ALU instructions from being issued in order to attempt
to avoid pipeline stalls caused by issuing dependent instructions too closely together.

This is accomplished with the: S_DELAY_ALU instruction: "insert delay with respect to a previous VALU
instruction". The compiler may insert S_DELAY_ALU instructions to indicate data dependencies that might
benefit from having extra idle cycles inserted between them.

This instruction is inserted before the instruction which the user wants to delay, and it specifies which
previous instructions this one is dependent on. The hardware then determines the number of cycles of delay to
add.

This instruction is optional - it is not necessary for correct operation. It should be inserted only when necessary
to avoid dependency stalls. If enough independent instructions are between dependent ones then no delay is
necessary. For wave64, the user may not know the status of the EXEC mask and hence not know if instructions
take 1 or 2 passes to issue.

The S_DELAY_ALU instruction says: wait for the VALU-Inst N ago to have completed. To reduce instruction
stream overhead, the S_DELAY_ALU instructions packs two delay values into one instruction, with a "skip"
indicator so the two delayed instructions don’t need to be back-to-back.

S_DELAY_ALU may be executed in zero cycles - it may be executed in parallel with the instruction before it.
This avoids extra delay if no delay is needed.
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S_DELAY_ALU InstID1[4], Skip[3], InstID0[4] // packed into SIMM16

INSTID counts backwards N VALU instructions that were issued. This means it does not count
instructions which were branched over. VALU instructions skipped due to EXEC==0 do count
(scoreboard immediately marked 'ready').

SKIP counts the number of instructions skipped before the instruction which has the second
dependency. Every instruction is counted for skipping - all types.

If another S_DELAY_ALU is encountered before the info from the previous one is consumed, the current
S_DELAY_ALU replaces any previous dependency info. This means if an instruction is dependent on two
separate previous instructions, both of those dependencies can be expressed in a single S_DELAY_ALU op, but
not in two separate S_DELAY_ALU ops.

S_DELAY_ALU is applied to any type of opcode, even non-alu (but serves no purpose).

S_DELAY_ALU should not be used within VALU clauses.

Table 19. S_DELAY_ALU Instruction Codes

DEP
Code

Dep Code Meaning SKIP
Code

SKIP Code Meaning

0 no dependency 0 Same op. Both DEP codes apply to the next instruction
1-4 dependent on previous VALU

1-4 back
1 No skip. Dep0 applies to the following instruction, and DEP1 applies to

the instruction after that one.
5-7 dependent on previous trans.

VALU 1-4 back
2 Skip 1. Dep0 applies to the following instruction. Dep1 applies to 2

instructions ahead (skip 1 instruction).
8 Reserved 3-5 Skip 2-4 instructions between Dep0 and Dep1.
9-11 Wait 1-3 cycles for previous

SALU ops
6 Reserved

Codes 9-11: SALU ops typically complete in a single cycle, so waiting for 1 cycle is roughly equivalent to waiting
for 1 SALU op to execute before continuing.
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Chapter 6. Scalar ALU Operations
Scalar ALU (SALU) instructions operate on values that are common to all work-items in the wave. These
operations consist of 32-bit integer or float arithmetic, and 32- or 64-bit bit-wise operations. The SALU also can
perform operations directly on the Program Counter, allowing the program to create a call stack in SGPRs.
Many operations also set the Scalar Condition Code bit (SCC) to indicate the result of a comparison, a carry-out,
or whether the instruction result was zero.

6.1. SALU Instruction Formats
SALU instructions are encoded in one of five microcode formats, shown below:

Name Size Function
SOP1 32 bit SALU op with 1 input
SOP2 32 bit SALU op with 2 inputs
SOPK 32 bit SALU op with 1 constant signed 16-bit integer input
SOPC 32 bit SALU compare op
SOPP 32 bit SALU program control op

Each of these instruction formats uses some of these fields:

Field Description
OP Opcode: instruction to be executed.
SDST Destination SGPR, M0, NULL or EXEC.
SSRC0 First source operand.
SSRC1 Second source operand.
SIMM16 Signed immediate 16-bit integer constant.

The lists of similar instructions sometimes use a condensed form using curly braces { } to express a list of
possible names. For example, S_AND_{B32, B64} defines two legal instructions: S_AND_B32 and S_AND_B64.

6.2. Scalar ALU Operands
Valid operands of SALU instructions are:

"RDNA3" Instruction Set Architecture

6.1. SALU Instruction Formats 46 of 600



• SGPRs, including trap temporary SGPRs
• Mode register
• Status register (read-only)
• M0 register
• EXEC mask
• VCC mask
• SCC
• Inline constants: integers from -16 to 64, and select floating point values
• Hardware registers (at most 1 of: EXEC, M0, SCC)
• One 32-bit literal constant
• If the destination is NULL, the instruction does not execute: nothing is written and SCC is not modified

In the table below, 0-127 can be used as scalar sources or destinations; 128-255 can only be used as sources.

Table 20. Scalar Operands
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Code Meaning
Scalar
Source (8
bits)

Scalar Dest
(7 bits)

0-105 SGPR 0 .. 105 SGPRs. One DWORD each.
106 VCC_LO VCC[31:0]
107 VCC_HI VCC[63:32]
108-123 ttmp0 .. ttmp15 Trap handler temporary SGPRs (privileged)
124 NULL Reads return zero, writes are ignored. When used as a

destination, nullifies the instruction.
125 M0 Temporary register, use for a variety of functions
126 EXEC_LO EXEC[31:0]
127 EXEC_HI EXEC[63:32]

Integer
Inline
Constants

128 0 Inline constant zero
129-192 int 1 .. 64 Integer inline constants
193-208 int -1 .. -16
209-232 Reserved Reserved
233 DPP8 8-lane DPP (only valid as SRC0)
234 DPP8FI 8-lane DPP with Fetch-Invalid (only valid as SRC0)
235 SHARED_BASE Memory Aperture Definition
236 SHARED_LIMIT
237 PRIVATE_BASE
238 PRIVATE_LIMIT
239 Reserved Reserved

Float
Inline
Constants

240 0.5 Inline floating point constants. Can be used in 16, 32 and
64 bit floating point math. They may be used with non-
float instructions but the value remains a float.
 
1/(2*PI) is 0.15915494. The hex values are:
half: 0x3118
single: 0x3e22f983
double: 0x3fc45f306dc9c882

241 -0.5
242 1.0
243 -1.0
244 2.0
245 -2.0
246 4.0
247 -4.0
248 1.0 / (2 * PI)
249 Reserved Reserved
250 DPP16 data parallel primitive
251 Reserved Reserved
252 Reserved Reserved
253 SCC { 31’b0, SCC }
254 Reserved Reserved
255 Literal constant 32 bit constant from instruction stream

SALU destinations are in the range 0-127.

SALU instructions can use a 32-bit literal constant. This constant is part of the instruction stream and is
available to all SALU microcode formats except SOPP and SOPK (except literal is allowed in
S_SETREG_IMM32_B32). Literal constants are used by setting the source instruction field to "literal" (255), and
then the following instruction DWORD is used as the source value.

If the destination SGPR is out-of-range, no SGPR is written with the result and SCC is not updated.

If an instruction uses 64-bit data in SGPRs, the SGPR pair must be aligned to an even boundary. For example, it
is legal to use SGPRs 2 and 3 or 8 and 9 (but not 11 and 12) to represent 64-bit data.
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6.3. Scalar Condition Code (SCC)
The scalar condition code (SCC) is written as a result of executing most SALU instructions. For integer
arithmetic it is used as carry/borrow in for extended integer arithmetic.

The SCC is set by many instructions:

• Compare operations: 1 = true.
• Arithmetic operations: 1 = carry out.

◦ SCC = overflow for signed add and subtract operations. For add ops, overflow = both operands are of
the same sign, and the MSB (sign bit) of the result is different than the sign of the operands. For
subtract (A - B), overflow = A and B have opposite signs and the resulting sign is not the same as the
sign of A.

• Bit/logical operations: 1 = result was not zero.

6.4. Integer Arithmetic Instructions
This section describes the arithmetic operations supplied by the SALU. The table below shows the scalar
integer arithmetic instructions:

Table 21. Integer Arithmetic Instructions

Instruction Encoding Sets SCC? Operation
S_ADD_I32 SOP2 Ovfl D = S0 + S1, SCC = overflow.
S_ADD_U32 SOP2 Cout D = S0 + S1, SCC = carry out.
S_ADDC_U32 SOP2 Cout D = S0 + S1 + SCC, SCC = overflow.
S_SUB_I32 SOP2 Ovfl D = S0 - S1, SCC = overflow.
S_SUB_U32 SOP2 Cout D = S0 - S1, SCC = carry out.
S_SUBB_U32 SOP2 Cout D = S0 - S1 - SCC, SCC = carry out.
S_ADD_LSH{1,2,3,4}_U32 SOP2 D!=0 D = S0 + (S1 << {1,2,3,4})
S_ABSDIFF_I32 SOP2 D!=0 D = abs (S0 - S1), SCC = result not zero.
S_MIN_I32
S_MIN_U32

SOP2 D!=0 D = (S0 < S1) ? S0 : S1
SCC = (S0 < S1)

S_MAX_I32
S_MAX_U32

SOP2 D!=0 D = (S0 > S1) ? S0 : S1
SCC = (S0 > S1)

S_MUL_I32 SOP2 No D = S0 * S1 low 32bits of result
works identically for unsigned data

S_ADDK_I32 SOPK Ovfl D = D + simm16, SCC = overflow. Sign extended version of
simm16.

S_MULK_I32 SOPK No D = D * simm16. Return low 32bits. Sign extended version of
simm16.

S_ABS_I32 SOP1 D!=0 D.i = abs (S0.i). SCC=result not zero.
S_SEXT_I32_I8 SOP1 No D = { 24{S0[7]}, S0[7:0] }.
S_SEXT_I32_I16 SOP1 No D = { 16{S0[15]}, S0[15:0] }.
S_MUL_HI_I32 SOP2 No D = S0 * S1 high 32bits of result
S_MUL_HI_U32 SOP2 No D = S0 * S1 high 32bits of result
S_PACK_LL_B32_B16 SOP2 No D = { S1[15:0], S0[15:0] }
S_PACK_LH_B32_B16 SOP2 No D = { S1[31:16], S0[15:0] }
S_PACK_HL_B32_B16 SOP2 No D = { S1[15:0], S0[31:16] }
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Instruction Encoding Sets SCC? Operation
S_PACK_HH_B32_B16 SOP2 No D = { S1[31:16], S0[31:16] }

6.5. Conditional Move Instructions
Conditional instructions use the SCC flag to determine whether to perform the operation, or (for CSELECT)
which source operand to use.

Table 22. Conditional Instructions

Instruction Encoding Sets SCC? Operation
S_CSELECT_{B32, B64} SOP2 No D = SCC ? S0 : S1.
S_CMOVK_I32 SOPK No if (SCC) D = signext(simm16).
S_CMOV_{B32,B64} SOP1 No if (SCC) D = S0, else NOP.

6.6. Comparison Instructions
These instructions compare two values and set the SCC to 1 if the comparison yielded a TRUE result.

Table 23. Conditional Instructions

Instruction Encoding Sets SCC? Operation
S_CMP_EQ_U64, S_CMP_LG_U64 SOPC Test Compare two 64-bit source values. SCC = S0 <cond> S1.
S_CMP_{EQ,LG,GT,GE,LE,LT}_{I32
,U32}

SOPC Test Compare two source values. SCC = S0 <cond> S1.

S_BITCMP0_{B32,B64} SOPC Test Test for "is a bit zero". SCC = !S0[S1].
S_BITCMP1_{B32,B64} SOPC Test Test for "is a bit one". SCC = S0[S1].

6.7. Bit-Wise Instructions
Bit-wise instructions operate on 32- or 64-bit data without interpreting it has having a type. For bit-wise
operations if noted in the table below, SCC is set if the result is nonzero.

Table 24. Bit-Wise Instructions

Instruction Encoding Sets SCC? Operation
S_MOV_{B32,B64} SOP1 No D = S0
S_MOVK_I32 SOPK No D = signext(simm16)
{S_AND,S_OR,S_XOR}_{B32,B64} SOP2 D!=0 D = S0 & S1, S0 OR S1, S0 XOR S1
{S_AND_NOT1,S_OR_NOT1}_{B32,B64} SOP2 D!=0 D = S0 & ~S1, S0 OR ~S1
{S_NAND,S_NOR,S_XNOR}_{B32,B64} SOP2 D!=0 D = ~(S0 & S1), ~(S0 OR S1), ~(S0 XOR S1)
S_LSHL_{B32,B64} SOP2 D!=0 D = S0 << S1[4:0], [5:0] for B64.
S_LSHR_{B32,B64} SOP2 D!=0 D = S0 >> S1[4:0], [5:0] for B64.
S_ASHR_{I32,I64} SOP2 D!=0 D = sext(S0 >> S1[4:0]) ([5:0] for I64).
S_BFM_{B32,B64} SOP2 No Bit field mask

D = ( (1 << S0[4:0]) -1) << S1[4:0] 
(uses [5:0] for the B64 version)
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Instruction Encoding Sets SCC? Operation
S_BFE_U32, S_BFE_U64
S_BFE_I32, S_BFE_I64
(signed/unsigned)

SOP2 D!=0 Bit Field Extract, then sign extend result for I32/64
instructions.
S0 = data, S1[22:16]= width
I32/U32: S1[4:0] = offset
I64/U64: S1[5:0] = offset

S_NOT_{B32,B64} SOP1 D!=0 D = ~S0.
S_WQM_{B32,B64} SOP1 D!=0 D = wholeQuadMode(S0)

Per quad (4 bits): set the result to 1111 if any of the 4
bits in the corresponding source mask are set to 1.
D[n*4] = (S[n*4] || S[n*4+1] || S[n*4+2] || S[n*4+3] )
D[n*4+1] = (S[n*4] || S[n*4+1] || S[n*4+2] || S[n*4+3] )
D[n*4+2] = (S[n*4] || S[n*4+1] || S[n*4+2] || S[n*4+3] )
D[n*4+3] = (S[n*4] || S[n*4+1] || S[n*4+2] || S[n*4+3] )

S_QUADMASK_{B32,B64} SOP1 D!=0 Create a 1-bit per quad mask from a 1 bit per pixel
mask.
Creates an 8-bit mask from 32-bits, or 16 bits from 64.
D[0] = (S0[3:0] != 0),
D[1] = (S0[7:4] != 0), …

S_BITREPLICATE_B64_B32 SOP1 No Replicate each bit in 32-bit S0 twice:
D = { … S0[1], S0[1], S0[0], S0[0] }.
Two of these instructions is the inverse of
S_QUADMASK.
Two of these instructions expands a quad mask into a
thread-mask.

S_BREV_{B32,B64} SOP1 No D = S0[0:31] are reverse bits.
S_BCNT0_I32_{B32,B64} SOP1 D!=0 D = CountZeroBits(S0).
S_BCNT1_I32_{B32,B64} SOP1 D!=0 D = CountOneBits(S0).
S_CTZ_I32_{B32,B64} SOP1 No Count Trailing zeroes: Find-first One from LSB. 

D = Bit position of first one in S0
starting from LSB. -1 if not found

S_CLZ_I32_{B32,B64} SOP1 No Count Leading zeroes. D = "how many zeros before
the first one starting from the MSB".
Returns -1 if none.

S_CLS_I32_{B32,B64} SOP1 N Count Leading Sign-bits: Count how many bits in a
row (from MSB to LSB) are the same as the sign bit.
Return -1 if the input is zero or all 1’s (-1). 32-bit
pseudo-code:

if (S0 == 0 || S0 == -1) D = -1
else
    D = 0
    for (I = 31 .. 0)
      if (S0[I] == S0[31])
         D++
      else break

S_BITSET0_{B32,B64} SOP1 No D[S0[4:0], [5:0] for B64] = 0
S_BITSET1_{B32,B64} SOP1 No D[S0[4:0], [5:0] for B64] = 1
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Instruction Encoding Sets SCC? Operation
S_{and, or, xor, and_not0,
and_not1,or_not0, or_not1, nand, nor,
xnor}_SAVEEXEC_{B32,B64}

SOP1 D!=0 Save the EXEC mask, then apply a bit-wise operation
to it.
D = EXEC
EXEC = S0 <op> EXEC
SCC = (EXEC != 0)
("not1" version inverts EXEC)
("not0" version inverts SGPR)

S_{AND_NOT{0,1}_WREXEC_B{32,64} SOP1 D!=0 NOT0: EXEC, D = ~S0 & EXEC
NOT1: EXEC, D = S0 & ~EXEC
Both D and EXEC get the same result. SCC = (result !=
0). D cannot be EXEC.

S_MOVRELS_{B32,B64}
S_MOVRELD_{B32,B64}

SOP1 No Move a value into an SGPR relative to the value in M0.
MOVRELS: D = SGPR[S0+M0]
MOVRELD: SGPR[D+M0] = S0 
Index must be even for B64. M0 is an unsigned index.

6.8. Access Instructions
These instructions access hardware internal registers.

Table 25. Hardware Internal Registers

Instruction Encoding Sets
SCC?

Operation

S_GETREG_B32 SOPK No Read a hardware register into the LSBs of SDST.
S_SETREG_B32 SOPK No Write the LSBs of SDST into a hardware register. (Note that SDST is

used as a source SGPR).
S_SETREG_IMM32_B32 SOPK No S_SETREG where 32-bit data comes from a literal constant (so this is

a 64-bit instruction format).
GETREG/SETREG : #SIMM16 = { Size[4:0], Offset[4:0], hwRegId[5:0] }
    Offset is 0..31. Size is 1..32.

S_ROUND_MODE SOPP No Set the round mode from an immediate: simm16[3:0]
S_DENORM_MODE SOPP No Set the denorm mode from an immediate: simm16[3:0]

For hardware register index values, see Hardware Registers .

6.9. Memory Aperture Query
Shaders can query the memory aperture base and size for shared and private space through scalar operands:

• PRIVATE_BASE
• PRIVATE_LIMIT
• SHARED_BASE
• SHARED_LIMIT

These values originate from the SH_MEM_BASES register ("SMB"), and are used primarily with FLAT memory
instructions. Setting Shared Base or Private Base to zero disables that aperture.

"PTR32" is short for "Address mode is 32bit", and "SMB" is short for "SH_MEM_BASES". These constants can be
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used by SALU and VALU ops, and are 64-bit unsigned integers:

SHARED_BASE = ptr32 ? {32’h0, SMB.shared_base[15:0], 16’h0000} : {SMB.shared_base[15:0], 48’h000000000000}
SHARED_LIMIT = ptr32 ? {32’h0, SMB.shared_base[15:0], 16’hFFFF} : {SMB.shared_base[15:0], 48’h0000FFFFFFFF}
PRIVATE_BASE = ptr32 ? {32’h0, SMB.private_base[15:0], 16’h0000} : {SMB.private_base[15:0], 48’h000000000000}
PRIVATE_LIMIT =ptr32 ? {32’h0, SMB.private_base[15:0], 16’hFFFF} : {SMB.private_base[15:0], 48’h0000FFFFFFFF}

"Hole" = (addr[63:47] != all zeros or all ones) and is the illegal address section of memory
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Chapter 7. Vector ALU Operations
Vector ALU instructions (VALU) perform an arithmetic or logical operations on data for each of 32 or 64
threads and write results back to VGPRs, SGPRs or the EXEC mask.

Parameter interpolation is a two step process involving an LDS instruction followed by a VALU instruction and
is described in: Parameter Interpolation

Vector ALU (VALU) instructions control the SIMD32’s math unit and operate on 32 work-items of data at a time.
Each instruction may take input from either VGPRs, SGPRs or constants and typically returns results to VGPRs.
Mask results and carry-out are returned to SGPRs. The ALU provides operations that work on 16, 32 and 64-bit
data of both integer and float types. The ALU also supports "packed" data types that pack 2 16-bit values into
one VGPR, or 4 8-bit values into a VGPR.

7.1. Microcode Encodings
VALU instructions are encoded in one of these ways:

Name Size Function Modifiers
VOP1 32 bit VALU op with 1 input -
VOP2 32 bit VALU op with 2 inputs -
VOP3 64 bit VALU op with 3 inputs, or a VOP1,2,C instruction abs, neg, omod, clamp
VOP3SD 64 bit VALU op with 3 inputs and SDST neg, omod, clamp
VOPC 32 bit VALU compare op with 2 inputs, writes to VCC/EXEC -
VOP3P 64 bit VALU op with 3 inputs using packed math neg, clamp
VOPD 64 bit VALU dual opcode : 2 operations in one instruction -

Many VALU instructions are available in two encodings: VOP3 that uses 64-bits of instruction, and one of three
32-bit encodings that offer a restricted set of capabilities but smaller code size. Some instructions are only
available in the VOP3 encoding. When an instruction is available in two microcode formats, it is up to the user
to decide which to use. It is recommended to use the 32-bit encoding whenever possible. VOP2 can also be used
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for "ACCUM" type ops where the third input is implied to be the same as the dest.

Advantages of using VOP3 include:

• More flexibility in source addressing (all source fields are 9 bits)
• NEG, ABS, and OMOD fields (for floating point only)
• CLAMP field for output range limiting
• Ability to select alternate source and destination registers for VCC (carry in and out)

The following VOP1 and VOP2 instructions may not be promoted to VOP3:

• swap and swaprel
• fmamk, fmaak, pk_fmac

The VOP3 encoding has two variants:

• VOP3 - used for most instructions including V_CMP*; has OPSEL and ABS fields
• VOP3SD - has an SDST field instead of OPSEL and ABS. This encoding is used only for:

◦ V_{ADD,SUB,SUBREV}_CO_CI_U32, V_{ADD,SUB,SUBREV}_CO_U32 (adds with carry-out)
◦ V_DIV_SCALE_{F32, F64}, V_MAD_U64_U32, V_MAD_I64_I32.
◦ V_DOT2ACC_F32_F16
◦ VOP3SD is not used for V_CMP*.

Any of the VALU microcode formats may use a 32-bit literal constant, as well VOP3. Note however that VOP3
plus a literal makes a 96-bit instruction and excessive use of this combination may reduce performance.

VOP3P is for instructions that use "packed math": instructions that performs an operation on a pair of input
values that are packed into the high and low 16-bits of each operand; the two 16-bit results are written to a
single VGPR as two packed values.

Field Size Description
OP varies instruction opcode
SRC0 9 first instruction argument. May come from: vgpr, sgpr, VCC, M0, EXEC, SCC, or a constant
SRC1 9 second instruction argument. May come from: vgpr, sgpr, VCC, M0, EXEC, SCC, or a constant
VSRC1 8 second instruction argument. May come from: vgpr only
SRC2 9 third instruction argument. May come from: vgpr, sgpr, VCC, M0, EXEC, SCC, or a constant
VDST 8 VGPR that takes the result.

For V_READLANE and V_CMP, indicates the SGPR that receives the result. This cannot be M0 or EXEC.
SDST 8 SGPR that takes the result of operations that produce a scalar output. Can’t be M0 or EXEC. Supports

NULL to not write any SDST.
Used for: V_{ADD,SUB,SUBREV}_CO_U32, V_{ADD,SUB,SUBREV}_CO_CI_U32, V_DIV_SCALE*; not
used for V_CMP.

OMOD 2 output modifier. for float results only.
0 = no modifier, 1=multiply result by 2, 2=multiply result by 4, 3=divide result by 2

NEG 3 negate the input (invert sign bit). float inputs only.
bit 0 is for src0, bit 1 is for src1 and bit 2 is for src2.

ABS 3 apply absolute value on input. float inputs only. applied before 'neg'.
bit 0 is for src0, bit 1 is for src1 and bit 2 is for src2.
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Field Size Description
CLMP 1 clamp or compare-signal (depends on opcode):

V_CMP: clmp=1 means signaling-compare when qNaN detected; 0 = non-signaling
Float arithmetic: clamp result to [0, 1.0]; -0 is clamped to +0.
Signed integer arithmetic: clamp result to [min_int, +max_int]
Unsigned integer arithmetic: clamp result to [0, +max_uint]
Where "min_int" and "max_int" are the largest negative and positive representable integers for the size
of integer being used (16, 32 or 64 bit). "max_uint" is the largest unsigned int.

OPSEL 4 Operation select for 16-bit math: 1=select high half, 0=select low half
[0]=src0, [1]=src1, [2]=src2, [3]=dest
For dest=0, dest_vgpr[31:0] = {prev_dst_vgpr[31:16], result[15:0] }
For dest=1, dest_vgpr[31:0] = {result[15:0], prev_dst_vgpr[15:0] }
OPSEL may only be used for 16-bit operands, and must be zero for any other operands/results.
For V_PERMLANE*, OPSEL[0] is "fetch invalid"; OPSEL[1] is "bounds control" (like DPP8).
DOT2_F16 and_BF16: src0 and src1 must have OPSEL[1:0] = 0

7.2. Operands
Most VALU instructions take at least one input operand. The data-size of the operands is explicitly defined in
the name of the instruction. For example, V_FMA_F32 operates on 32-bit floating point data.

VGPR Alignment: there is no alignment restriction for single or double-float operations.

Table 26. VALU Instruction Operands
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Code Meaning
Vector
Source
(when 9
bits)

Scalar
Source (8
bits)

Scalar
Dest (7
bits)

0-105 SGPR 0 .. 105 SGPRs. One DWORD each.
106 VCC_LO VCC[31:0]
107 VCC_HI VCC[63:32]
108-123 ttmp0 .. ttmp15 Trap handler temporary SGPRs (privileged)
124 NULL Reads return zero, writes are ignored. When used

as a destination, nullifies the instruction.
125 M0 Temporary register, use for a variety of functions
126 EXEC_LO EXEC[31:0]
127 EXEC_HI EXEC[63:32]

Integer
Inline
Constants

128 0 Inline constant zero
129-192 int 1 .. 64 Integer inline constants
193-208 int -1 .. -16
209-232 Reserved Reserved
233 DPP8 8-lane DPP (only valid as SRC0)
234 DPP8FI 8-lane DPP with Fetch-Invalid (only valid as SRC0)
235 SHARED_BASE Memory Aperture Definition
236 SHARED_LIMIT
237 PRIVATE_BASE
238 PRIVATE_LIMIT
239 Reserved Reserved

Float
Inline
Constants

240 0.5 Inline floating point constants. Can be used in 16,
32 and 64 bit floating point math. They may be
used with non-float instructions but the value
remains a float.
 
1/(2*PI) is 0.15915494. The hex values are:
half: 0x3118
single: 0x3e22f983
double: 0x3fc45f306dc9c882

241 -0.5
242 1.0
243 -1.0
244 2.0
245 -2.0
246 4.0
247 -4.0
248 1.0 / (2 * PI)
249 Reserved Reserved
250 DPP16 data parallel primitive
251 Reserved Reserved
252 Reserved Reserved
253 SCC { 31’b0, SCC }
254 Reserved Reserved
255 Literal constant 32 bit constant from instruction stream

Vector Src/Dst
(8 bits)

256 - 511 VGPR 0 .. 255 Vector GPRs. One DWORD each.

7.2.1. Non-Standard Uses of Operand Fields

A few instructions use the operand fields in non-standard ways:
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Opcode Encoding VDST SDST VSRC0 VSRC1 VSRC2
V_{ADD,SUB,SUBREV}
_CO_U32,
V_{ADD,SUB,SUBREV}
_CO_CI_U32

VOP2 add result
(VCC=carry-out)

n/a in0 in1 unused
(carry-in=VCC)

VOP3SD add result carry-out in0 in1 carry-in

V_DIV_SCALE VOP3SD result carry-out in0 in1 in2
V_READLANE VOP3 scalar dst (SGPR

only)
n/a vgpr# lane-sel: sgpr, M0,

inline
n/a

V_READFIRSTLANE VOP1 scalar dst (SGPR
only)

n/a vgpr# n/a (lane-sel = exec) n/a

V_WRITELANE VOP3 vgpr dst n/a sgpr#, const,
M0

lane-sel: sgpr, M0,
inline

n/a

V_CMP* VOPC "VCC" implied n/a in0 in1 n/a
VOP3SD cmp-result (sgpr) unused in0 in1 unused

V_CNDMASK VOP2 dest vgpr n/a in0 in1 unused (implied:
VCC)

VOP3 dest vgpr unused in0 in1 select sgpr (e.g.
VCC)

The readlane lane-select is limited to the valid range of lanes (0-31 for wave32, 0-63 for wave64) by ignoring
upper bits of the lane number.

Inline constants with DOT2_F16_F16 and DOT2_BF16_BF16
For these 2 instructions, the inline constant for sources 0 and 1 replicate the inline constant value into
bits[31:16]. For source2, the OPSEL bit is used to control replication or not (gets zero if not replicating low
bits).

7.2.2. Inputs Operands

VALU instructions can use any of the following sources for input, subject to restrictions listed below:

• VOP1, VOP2, VOPC:
◦ SRC0 is 9 bits and may be a VGPR, SGPR (including TTMPs and VCC), M0, EXEC, inline or literal

constant.
◦ SRC1 is 8 bits and may specify only a VGPR

• VOP3 : all 3 sources are 9 bits but still have restrictions:
◦ Not all VOPC/1/2 instructions are available in VOP3 (only those that benefit from VOP3 encoding).

• See complete operand list: VALU Instruction Operands

7.2.2.1. Input Operand Modifiers

The input modifiers ABS and NEG apply to floating point inputs and are undefined for any other type of input.
In addition, input modifiers are supported for: V_MOV_B32, V_MOV_B16, V_MOVREL*_B32 and V_CNDMASK.
ABS returns the absolute value, and NEG negates the input.

Input modifiers are not supported for:

• readlane, readfirstlane, writelane
• integer arithmetic or bitwise operations
• permlane
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• QSAD

7.2.2.2. Literal Expansion to 64 bits

Literal constants are 32-bits, but they can be used as sources that normally require 64-bit data.

They are expanded to 64 bits following these rules:

• 64 bit float: the lower 32-bit are padded with zero
• 64-bit unsigned integer: zero extended to 64 bits
• 64-bit signed integer: sign extended to 64 bits

7.2.2.3. Source Operand Restrictions

Not every combination of source operands that can be expressed in the microcode format is legal. This section
describes the legal and illegal settings.

Terminology for this section:
    "scalar value" = SGPR, EXEC, VCC, M0, SCC or literal constant; can be 32 or 64 bits.

• Instructions may use at most two Scalar Values: SGPR, VCC, M0, EXEC, SCC, Literal
• All instruction formats including VOP3 and VOP3P may use one literal constant

◦ Inline constants are free (do not count against 2 scalar value limit).
◦ Literals may not be used with DPP
◦ It is permissible for both scalar values to be SGPRs, although VCC counts as an SGPR.

▪ VCC when used implicitly counts against this limit: addci, subci, fmas, cndmask
◦ 64-bit shift instructions can use only one scalar value input, and can’t use the same one twice

(inlines don’t count against this limit)
◦ Using the same scalar value twice only counts as a single scalar value, however using the same scalar

value twice, but with different sizes has specific rules and limits:
▪ Using the same literal with different sizes counts as 2 scalar values, not 1.
▪ S[0] and S[0:1] can be considered as 1 scalar value, but S[1] and S[0:1] count as 2.

In general, these rules apply to any S[2n] and S[2n:2n+1] count as one, but S[2n+1] and S[2n:2n+1] count
as 2.

• SGPR source rules must be met for both passes of a wave64, bearing in mind that sources that read a mask
(bit-per-lane) increment the SGPR address for the second pass, and they may not be shared with other
sources.

7.2.2.4. OPSEL Field Restrictions

The OPSEL field (of VOP3) is usable only for a subset of VOP3 instructions, as well as VOP1/2/C instructions
promoted to VOP3.

Table 27. Opcodes usable with OPSEL

 V_MAD_I16  V_MAD_U16  V_FMA_F16

 V_ADD_NC_U16  V_ADD_NC_I16  V_CVT_PKNORM_I16_F16

 V_SUB_NC_U16  V_SUB_NC_I16  V_CVT_PKNORM_U16_F16
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 V_MUL_LO_U16  V_MAD_U32_U16  V_MAD_I32_I16

 V_LSHLREV_B16  V_LSHRREV_B16  V_ASHRREV_I16

 V_ALIGNBIT_B32  V_ALIGNBYTE_B32  V_DIV_FIXUP_F16

 V_MIN3_{F16,I16,U16}  V_MAX3_{F16,I16,U16}  V_MED3_{F16,I16,U16}

 V_MAX_{I16,U16}  V_MIN_{I16,U16}  V_PACK_B32_F16

 V_MAXMIN_F16  V_MINMAX_F16  V_CNDMASK_B16

 V_XOR_B16  V_AND_B16  V_OR_B16

 V_DOT2_F16_F16  V_DOT2_BF16_BF16

 V_INTERP_P10_RTZ_F16_F32  V_INTERP_P2_RTZ_F16_F32  V_INTERP_P2_F16_F32

 V_INTERP_P10_F16_F32

7.2.3. Output Operands

VALU instructions typically write their results to VGPRs specified in the VDST field of the microcode word. A
thread only writes a result if the associated bit in the EXEC mask is set to 1.

V_CMPX instructions write the result of their comparison (one bit per thread) to the EXEC mask.

Instructions producing a carry-out (integer add and subtract) write their result to VCC when used in the VOP2
form, and to an arbitrary SGPR-pair when used in the VOP3 form.

When the VOP3 form is used, instructions with a floating-point result may apply an output modifier (OMOD
field) that multiplies the result by: 0.5, 2.0, or 4.0. Optionally, the result can be clamped (CLAMP field) to the
min and max representable range (see next section).

7.2.3.1. Output Operand Modifiers

Output modifiers (OMOD) apply to half, single and double floating point results only and scale the result by :
0.5, 2.0, 4.0 or do not scale. Integer and packed float 16 results ignore the omod setting. Output modifiers are
not compatible with output denormals: if output denormals are enabled, then output modifiers are ignored. If
output denormals are disabled, then the output modifier is applied and denormals are flushed to zero. These
are not IEEE compatible: -0 is flushed to +0. Output modifiers are ignored if the IEEE mode bit is set to 1. A few
opcodes force output denorms to be disabled.

Output Modifiers are not supported for:

• V_PERMLANE
• DOT2_F16_F16
• DOT2_BF16_BF16

The clamp bit has multiple uses. For V_CMP instructions, setting the clamp bit to 1 indicates that the compare
signals if a floating point exception occurs. For integer operations, it clamps the result to the largest and
smallest representable value. For floating point operations, it clamps the result to the range: [0.0, 1.0].

Output Clamping: The clamp instruction bit applies to the following operations and data types:

• Float clamp to [0.0, 1.0]
• Signed Int [-max_int, +max_int]
• Unsigned int [0, +max_int]
• Bool (V_CMP) enables signaling compare
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The clamp bit is not supported for (ignored):

V_PERMLANE* V_PERM_B32 Float DOT instructions
V_SWAP and V_SWAPREL WMMA ops V_ADD3
V_ADD_LSHL V_ALIGN* Bitwise ops
V_CMP*_CLASS V_CMP on integers
V_READLANE V_READFIRSTLANE V_WRITELANE

7.2.3.2. Wave64 Destination Restrictions

When a VALU instruction is issued from a wave64, it may issue twice as two wave32 instructions. While in most
cases the programmer need not be aware of this, it does impose a prohibition on wave64 VALU instructions
that both write and read the same SGPR value. Doing this may lead to unpredictable results. Specifically, the first
pass of a wave64 VALU instruction may not overwrite a scalar value used by the second half.

7.2.4. Denormalized and Rounding Modes

The shader program has explicit control over the rounding mode applied and the handling of denormalized
inputs and results. The MODE register is set using the S_SETREG instruction; it has separate bits for controlling
the behavior of single and double-precision floating-point numbers.

Round and denormal modes can also be set using S_ROUND_MODE and S_DENORM_MODE which is the
preferred method over using S_SETREG.

16-bit floats support denormals, infinity and NaN.

Table 28. Round and Denormal Modes

Field Bit Position Description
FP_ROUND 3:0 [1:0] Single-precision round mode.

[3:2] Double and Half-precision (FP16) round mode.
Round Modes:
    0=nearest even
    1= +infinity
    2= -infinity
    3= toward zero

FP_DENORM 7:4 [5:4] Single-precision denormal mode.
[7:6] Double and Half-precision (FP16) denormal mode.
Denormal modes:
    0 = Flush input and output denorms
    1 = Allow input denorms, flush output denorms
    2 = Flush input denorms, allow output denorms
    3 = Allow input and output denorms

These mode bits do not affect rounding and denormal handling of F32 global memory atomics.

DOT2_F16_F16 and DOT2_BF16_BF16 support round-to-nearest-even rounding. DOT2_F16_F16 supports
denorms, and DOT2_BF16_BF16 disables all denorms.
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7.2.5. Instructions using SGPRs as Mask or Carry

Every VALU instruction can use SGPRs as a constant, but the following can read or write SGPRs as masks or
carry:

Read Mask or Carry in Write Carry out Implicitly Reads VCC Implicitly Writes VCC
V_CNDMASK_B32 V_CMP* V_DIV_FMAS_F32 V_DIV_SCALE_F32
V_ADD_CO_CI_U32 V_ADD_CO_CI_U32 V_DIV_FMAS_F64 V_DIV_SCALE_F64
V_SUB_CO_CI_U32 V_SUB_CO_CI_U32 (fmas reads 3 operands + VCC) V_CMP (not V_CMPX)
V_SUBREV_CO_CI_U32 V_SUBREV_CO_CI_U32 V_CNDMASK in VOP2

V_ADD_CO_U32 V_{ADD,SUB,SUBREV}_CO_CI_U
32 in VOP2

V_SUB_CO_U32
V_SUBREV_CO_U32
V_MAD_U64_U32
V_MAD_I64_I32

Write Data out (not carry)
V_READLANE
V_READFIRSTLANE

"VCC" in the above table refers to VCC in a VOP2 or VOPC encoding, or any SGPR specified in the SRC2 or SDST
field for VOP3 encoding, except for DIV_FMAS that implicitly reads VCC (no choice).

V_CMPX is the only VALU instruction that writes EXEC.

7.2.6. Wave64 use of SGPRs

VALU instructions may use SGPRs as a uniform input, shared by all work-items. If the value is used as simple
data value, then the same SGPR is distributed to all 64 work-items. If, on the other hand, the data value
represents a mask (e.g. carry-in, mask for CNDMASK), then each work-item receives a separate value, and two
consecutive SGPRs are read.

7.2.7. Out-of-Range GPRs

When a source VGPR is out-of-range, the instruction uses as input the value from VGPR0.

When the destination GPR is out-of-range, the instruction executes but does not write the results.

See VGPR Out Of Range Behavior for more information.

7.2.8. PERMLANE Specific Rules

V_PERMLANE may not occur immediately after a V_CMPX. To prevent this, any other VALU opcode may be
inserted (e.g. V_NOP).
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7.3. Instructions
The table below lists the complete VALU instruction set by microcode encoding, except for VOP3P instructions
which are listed in a later section.

VOP3 VOP3 - 2 operands VOP2 VOP1
V_ADD3_U32 V_ADD_CO_U32 V_ADD_CO_CI_U32 V_BFREV_B32

V_ADD_LSHL_U32 V_ADD_F64 V_ADD_F16 V_CEIL_F16

V_ALIGNBIT_B32 V_ADD_NC_I16 V_ADD_F32 V_CEIL_F32

V_ALIGNBYTE_B32 V_ADD_NC_I32 V_ADD_NC_U32 V_CEIL_F64

V_AND_OR_B32 V_ADD_NC_U16 V_AND_B32 V_CLS_I32

V_BFE_I32 V_AND_B16 V_ASHRREV_I32 V_CLZ_I32_U32

V_BFE_U32 V_ASHRREV_I16 V_CNDMASK_B32 V_COS_F16

V_BFI_B32 V_ASHRREV_I64 V_CVT_PK_RTZ_F16_F32 V_COS_F32

V_CNDMASK_B16 V_BCNT_U32_B32 V_DOT2ACC_F32_F16 V_CTZ_I32_B32

V_CUBEID_F32 V_BFM_B32 V_FMAAK_F16 V_CVT_F16_F32

V_CUBEMA_F32 V_CVT_PK_I16_F32 V_FMAAK_F32 V_CVT_F16_I16

V_CUBESC_F32 V_CVT_PK_I16_I32 V_FMAC_DX9_ZERO_F32 V_CVT_F16_U16

V_CUBETC_F32 V_CVT_PK_NORM_I16_F16 V_FMAC_F16 V_CVT_F32_F16

V_CVT_PK_U8_F32 V_CVT_PK_NORM_I16_F32 V_FMAC_F32 V_CVT_F32_F64

V_DIV_FIXUP_F16 V_CVT_PK_NORM_U16_F16 V_FMAMK_F16 V_CVT_F32_I32

V_DIV_FIXUP_F32 V_CVT_PK_NORM_U16_F32 V_FMAMK_F32 V_CVT_F32_U32

V_DIV_FIXUP_F64 V_CVT_PK_U16_F32 V_LDEXP_F16 V_CVT_F32_UBYTE0

V_DIV_FMAS_F32 V_CVT_PK_U16_U32 V_LSHLREV_B32 V_CVT_F32_UBYTE1

V_DIV_FMAS_F64 V_LDEXP_F32 V_LSHRREV_B32 V_CVT_F32_UBYTE2

V_DIV_SCALE_F32 V_LDEXP_F64 V_MAX_F16 V_CVT_F32_UBYTE3

V_DIV_SCALE_F64 V_LSHLREV_B16 V_MAX_F32 V_CVT_F64_F32

V_DOT2_BF16_BF16 V_LSHLREV_B64 V_MAX_I32 V_CVT_F64_I32

V_DOT2_F16_F16 V_LSHRREV_B16 V_MAX_U32 V_CVT_F64_U32

V_FMA_DX9_ZERO_F32 V_LSHRREV_B64 V_MIN_F16 V_CVT_FLOOR_I32_F32

V_FMA_F16 V_MAX_F64 V_MIN_F32 V_CVT_I16_F16

V_FMA_F32 V_MAX_I16 V_MIN_I32 V_CVT_I32_F32

V_FMA_F64 V_MAX_U16 V_MIN_U32 V_CVT_I32_F64

V_LERP_U8 V_MBCNT_HI_U32_B32 V_MUL_DX9_ZERO_F32 V_CVT_I32_I16

V_LSHL_ADD_U32 V_MBCNT_LO_U32_B32 V_MUL_F16 V_CVT_NEAREST_I32_F32

V_LSHL_OR_B32 V_MIN_F64 V_MUL_F32 V_CVT_NORM_I16_F16

V_MAD_I16 V_MIN_I16 V_MUL_HI_I32_I24 V_CVT_NORM_U16_F16

V_MAD_I32_I16 V_MIN_U16 V_MUL_HI_U32_U24 V_CVT_OFF_F32_I4

V_MAD_I32_I24 V_MUL_F64 V_MUL_I32_I24 V_CVT_U16_F16

V_MAD_I64_I32 V_MUL_HI_I32 V_MUL_U32_U24 V_CVT_U32_F32

V_MAD_U16 V_MUL_HI_U32 V_OR_B32 V_CVT_U32_F64

V_MAD_U32_U16 V_MUL_LO_U16 V_PK_FMAC_F16 V_CVT_U32_U16

V_MAD_U32_U24 V_MUL_LO_U32 V_SUBREV_CO_CI_U32 V_EXP_F16

V_MAD_U64_U32 V_OR_B16 V_SUBREV_F16 V_EXP_F32

V_MAX3_F16 V_PACK_B32_F16 V_SUBREV_F32 V_FLOOR_F16

V_MAX3_F32 V_READLANE_B32 V_SUBREV_NC_U32 V_FLOOR_F32

V_MAX3_I16 V_SUBREV_CO_U32 V_SUB_CO_CI_U32 V_FLOOR_F64

V_MAX3_I32 V_SUB_CO_U32 V_SUB_F16 V_FRACT_F16

V_MAX3_U16 V_SUB_NC_I16 V_SUB_F32 V_FRACT_F32

V_MAX3_U32 V_SUB_NC_I32 V_SUB_NC_U32 V_FRACT_F64

V_MAXMIN_F16 V_SUB_NC_U16 V_XNOR_B32 V_FREXP_EXP_I16_F16

V_MAXMIN_F32 V_TRIG_PREOP_F64 V_XOR_B32 V_FREXP_EXP_I32_F32

V_MAXMIN_I32 V_WRITELANE_B32 V_FREXP_EXP_I32_F64
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VOP3 VOP3 - 2 operands VOP2 VOP1
V_MAXMIN_U32 V_XOR_B16 V_FREXP_MANT_F16

V_MED3_F16 V_FREXP_MANT_F32

V_MED3_F32 V_FREXP_MANT_F64

V_MED3_I16 V_LOG_F16

V_MED3_I32 V_LOG_F32

V_MED3_U16 V_MOVRELD_B32

V_MED3_U32 V_MOVRELSD_2_B32

V_MIN3_F16 V_MOVRELSD_B32

V_MIN3_F32 V_MOVRELS_B32

V_MIN3_I16 V_MOV_B16

V_MIN3_I32 V_MOV_B32

V_MIN3_U16 V_NOP

V_MIN3_U32 V_NOT_B16

V_MINMAX_F16 V_NOT_B32

V_MINMAX_F32 V_PERMLANE64_B32

V_MINMAX_I32 V_PIPEFLUSH

V_MINMAX_U32 V_RCP_F16

V_MQSAD_PK_U16_U8 V_RCP_F32

V_MQSAD_U32_U8 V_RCP_F64

V_MSAD_U8 V_RCP_IFLAG_F32

V_MULLIT_F32 V_READFIRSTLANE_B32

V_OR3_B32 V_RNDNE_F16

V_PERMLANE16_B32 V_RNDNE_F32

V_PERMLANEX16_B32 V_RNDNE_F64

V_PERM_B32 V_RSQ_F16

V_QSAD_PK_U16_U8 V_RSQ_F32

V_SAD_HI_U8 V_RSQ_F64

V_SAD_U16 V_SAT_PK_U8_I16

V_SAD_U32 V_SIN_F16

V_SAD_U8 V_SIN_F32

V_XAD_U32 V_SQRT_F16

V_XOR3_B32 V_SQRT_F32

V_SQRT_F64

V_SWAPREL_B32

V_SWAP_B16

V_SWAP_B32

V_TRUNC_F16

V_TRUNC_F32

V_TRUNC_F64

VOPC - Compare Ops
VOPC writes to VCC, VOP3 writes compare result to any SGPR

V_CMP
I16, I32, I64, U16, U32, U64 F, LT, EQ, LE, GT, LG, GE, T

write VCC
V_CMPX write exec
V_CMP F16, F32, F64 F, LT, EQ, LE, GT, LG, GE, T,

O, U, NGE, NLG, NGT, NLE, NEQ, NLT
(T = True, F = False, O = total order, U = unordered, "N"
= Not (inverse) compare)

write VCC

V_CMPX write exec

V_CMP_CLASS F16, F32, F64 Test for any combination of: signaling-NaN, quiet-NaN,
positive or negative: infinity, normal, subnormal, zero.

write VCC
V_CMPX_CLASS write exec

"RDNA3" Instruction Set Architecture

7.3. Instructions 64 of 600



7.4. 16-bit Math and VGPRs
VALU instructions that operate on 16-bit data (non-packed) can separately address the two halves of a 32-bit
VGPR.

16-bit VGPR-pairs are packed into a 32-bit VGPRs: the 32-bit VGPR "V0" contains two 16-bit VGPRs: "V0.L"
representing V0[15:0] and "V0.H" representing V0[31:16].

How this addressing is encoded in the ISA varies by the instruction encoding: The 16-bit instructions can be
encoded using VOP1/2/C as well as VOP3/VOP3P/VINTERP.

16bit VGPR Naming
The 32-bit VGPR is "V0". The two halves are called "V0.L" and "V0.H".

VOP1, VOP2, VOPC Encoding
16-bit VGPRs are encoded as:
SRC/DST[6:0] = 32-bit VGPR address;
SRC/DST[7] = (1=hi, 0=lo half)
In this encoding, only 256 16-bit VGPRs can be addressed.

VOP3, VOP3P, VINTERP
16-bit VGPRs are encoded as:
SRC/DST[7:0] = 32-bit VGPR address, OPSEL = high/low.
In this encoding, a wave can address 512 16-bit VGPRs.

The packing shown below allows reading or writing in one cycle:

• 32 lanes of one 32-bit VGPR: V0
• 64 lanes of one 16-bit VGPR: V0.L
• 32 lanes of two 16-bit VGPRs (a pair, as used by packed math): V0.L and V0.H

7.5. Packed Math
Packed math is a form of operation that accelerates arithmetic on two values packed into the same VGPR. It
performs operations on two 16-bit values within a DWORD as if they were separate threads. For example, a
packed add of V0=V1+V2 is really two separate adds: adding the low 16 bits of each DWORD and storing the
result in the low 16 bits of V0, and adding the high halves and storing the result in the high 16 bits of V0.

Packed math uses the instructions below and the microcode format "VOP3P". This format has OPSEL and NEG
fields for both the low and high operands, and does not have ABS and OMOD.

Table 29. Packed Math Opcodes:

Packed Math ops
V_PK_MUL_F16 V_PK_FMA_F16 V_PK_MIN_F16
V_PK_ADD_F16 V_PK_FMAC_F16 V_PK_MAX_F16
V_PK_ADD_I16 V_PK_MAD_I16 V_PK_MIN_I16 V_PK_LSHLREV_B16
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Packed Math ops
V_PK_ADD_U16 V_PK_MAD_U16 V_PK_MIN_U16 V_PK_LSHRREV_B16
V_PK_SUB_I16 V_PK_MUL_LO_U16 V_PK_MAX_I16 V_PK_ASHRREV_I16
V_PK_SUB_U16 V_PK_MAX_U16
V_FMA_MIX_F32 V_FMA_MIXLO_F16 V_FMA_MIXHI_F16
V_WMMA_F32_16X16X16_F16 V_DOT2_F32_BF16
V_WMMA_F32_16X16X16_BF16 V_DOT2_F32_F16
V_WMMA_F16_16X16X16_F16 V_DOT4_I32_IU8
V_WMMA_BF16_16X16X16_BF16 V_DOT4_U32_U8
V_WMMA_I32_16X16X16_IU8 V_DOT8_I32_IU4
V_WMMA_I32_16X16X16_IU4 V_DOT8_U32_U4


V_FMA_MIX_* and WMMA instructions are not packed math, but perform a single MAD
operation on a mixture of 16- and 32-bit inputs. They are listed here because they use the
VOP3P encoding.

VOP3P Instruction Fields

Field Size Description
OP 7 instruction opcode
SRC0 9 first instruction argument. May come from: vgpr, sgpr, VCC, M0, exec or a constant

WMMA: must be a VGPR
SRC1 9 second instruction argument. May come from: vgpr, sgpr, VCC, M0, exec or a constant

WMMA: must be a VGPR
SRC2 9 third instruction argument. May come from: vgpr, sgpr, VCC, M0, exec or a constant
VDST 8 vgpr that takes the result.

For V_READLANE, indicates the SGPR that receives the result.
NEG 3 negate the input (invert sign bit) for the lower-16bit operand. float inputs only.

bit 0 is for src0, bit 1 is for src1 and bit 2 is for src2.
For V_FMA_MIX_* opcodes, this modifies all inputs.
For DOT…IU… and WMMA…IU… NEG[1:0] = signed(1)/unsigned(0) for src0 and src1,
and Neg[2] behavior is undefined.

NEG_HI 3 negate the input (invert sign bit) for the higher-16bit operand. float inputs only.
bit 0 is for src0, bit 1 is for src1 and bit 2 is for src2.
For V_FMA_MIX_* opcodes, this acts as an ABS (absolute value) modifier.
For DOT…IU… and WMMA…IU… NEG_HI behavior is undefined.

OPSEL
[13:11]

3 Select the high (1) or low (0) operand as input to the operation that results in the lower-half of the
destination. [0] = src0, [1] = src1, [2] = src2
If either the source operand or destination operand is 32bits, the corresponding OPSEL bit must set
to zero. This rule does not apply to MIX instructions, which have a unique interpretation of OPSEL. See
notes below. OPSEL works for 16-bit VGPR, SGPR and literal-constant sources; for inline constant
sources OPSEL must be zero (value only exists in lower 16 bits).
OPSEL[0] and [1] are unused for WMMA ops, and OPSEL[2] is used only with WMMA ops with 16-bit
output to control whether the C matrix is read from upper or lower bits in the VGPR, and whether
the D matrix is stored into upper or lower bits.
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Field Size Description
OPSEL_HI
{[60:59],[14]}

3 Select the high (1) or low (0) operand as input to the operation that results in the upper-half of the
destination. [0] = src0, [1] = src1, [2] = src2. Concatenation of ISA fields { OPSLH, OPSLH0 }. If either
the source operand or destination operand is 32bits or is a constant, the corresponding OPSEL_HI
bit must set to zero. This rule does not apply to MIX instructions, which have a unique interpretation of
OPSEL. See notes below.

CLMP 1 clamp result.
Float arithmetic: clamp result to [0, 1.0]; -0 is clamped to +0.
Signed integer arithmetic: clamp result to [min_int, +max_int]
Unsigned integer arithmetic: clamp result to [0, +max_uint]
Where "min_int" and "max_int" are the largest negative and positive representable integers for the
size of integer being used (16, 32 or 64 bit). "max_uint" is the largest unsigned int.

OPSEL for MIX instructions

MIX, MIXLO and MIXHI interpret OPSEL and OPSEL_HI as three 2-bit fields, one per source operand:
{ OPSEL_HI[0], OPSEL[0] } controls source0;
{ OPSEL_HI[1], OPSEL[1] } controls source1;
{ OPSEL_HI[2], OPSEL[2] } controls source2.

These 2-bit fields control source-selection for each of the 3 source operands:

2’b00: Src[31:0] as FP32
2’b01: Src[31:0] as FP32
2’b10: Src[15:0] as FP16
2’b11: Src[31:16] as FP16

V_WMMA…IU… and V_DOT4…IU… with NEG::

These instructions use the NEG[1:0] bits to indicate signed (0=unsigned, 1=signed) per input source
instead of meaning "negate". NEG[2] should be set to zero (behavior is undefined). NEG_HI must be zero.

7.5.1. Inline Constants with Packed Math

Inline constants may be used with packed math, but they require the use of OPSEL. Inline constants produce a
value in only the low 16-bits of the 32-bit constant value. Inline constants used with float 16-bit sources produce
an F16 constant value. Without using OPSEL, only the lower half of the source would contain the constant. To
use the inline constant in both halves, use OPSEL to select the lower input for both low and high sources.

BF16 uses 32-bit float constants and then the BF16 operand selects the upper 16 bits of the FP32 constant
(matches the definition of BF16).

For the WMMA_F16_F16_16x16x16 or VOPD DOT2_F32_F16, hardware automatically selects the low 16 bits of
the constant.

Any packed math instructions that use data sizes less than 16 bits do not work with inline constants, other than
the DOT instructions below:

Opcode inline OPSEL
DOT4_I32_IU8 use 32bit inline src0/1 (ignore OPSEL) OPSEL/OPSEL_HI on src0/1
DOT8_I32_IU4 use 32bit inline src0/1 (ignore OPSEL) OPSEL/OPSEL_HI on src0/1
DOT4_U32_U8 use 32bit inline src0/1 (ignore OPSEL) OPSEL/OPSEL_HI on src0/1
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Opcode inline OPSEL
DOT8_U32_U4 use 32bit inline src0/1 (ignore OPSEL) OPSEL/OPSEL_HI on src0/1
DOT2_F32_F16 use FP32 inline, supports OPSEL OPSEL/OPSEL_HI on src0/1
DOT2_F32_BF16 upper16(FP32)/same as replicate (src0/1) ignore OPSEL OPSEL/OPSEL_HI on src0/1
DOT2ACC_F32_F16 Duplicate lo to hi, ignore OPSEL none
DOT2ACC_F32_BF16 Duplicate lo to hi, ignore OPSEL none

7.6. Dual Issue VALU
The VOPD instruction encoding allows a single shader instruction to encode two separate VALU operations
that are executed in parallel. The two operations must be independent of each other. This instruction has
certain restrictions that must be met - hardware does not function correctly if they are not. This instruction
format is legal only for wave32. It must not be used by wave64’s. It is skipped for wave64.

The instruction defines 2 operations, named "X" and "Y", each with their own sources and destination VGPRs.
The two instructions packed into this one ISA are referred to as OpcodeX and OpcodeY.

• OpcodeX sources data from SRC0X (a VGPR, SGPR or constant), and SRC1X (a VGPR);
• OpcodeY sources data from SRC0Y (a VGPR, SGPR or constant), and SRC1Y (a VGPR).

The two instructions in the VOPD are executed at the same time, so there are no races between them if one
reads a VGPR and the other writes the same VGPR. The 'read' gets the old value.

Restrictions:

• Each of the two instructions may use up to 2 VGPRs
• Each instruction in the pair may use at most 1 SGPR or they may share a single literal

◦ Legal combinations for the dual-op: at most 2 SGPRs, or 1 SGPR + 1 literal, or share a literal.
• SRC0 can be either a VGPR or SGPR (or constant)
• VSRC1 can only be a VGPR
• Instructions must not exceed the VGPR source-cache port limits

◦ There are 4 VGPR banks (indexed by SRC[1:0]), and each bank has a cache
◦ Each cache has 3 read ports: one dedicated to SRC0, one dedicated to SRC1 and one for SRC2

▪ A cache can read all 3 of them at once, but it can’t read two SRC0’s at once (or SRC1/2).
◦ SRCX0 and SRCY0 must use different VGPR banks;
◦ VSRCX1 and VSRCY1 must use different banks.

▪ FMAMK is an exception : V = S0 + K * S1 ("S1" uses the SRC2 read port)
◦ If both operations use the SRC2 input, then one SRC2 input must be even and the other SRC2 input

must be odd. The following operations use SRC2: FMAMK_F32 (second input operand);
DOT2ACC_F32_F16, DOT2ACC_F32_BF16, FMAC_F32 (destination operand).

◦ These are hard rules - the instruction does not function if these rules are broken
• The pair of instructions combined have the following restrictions:

◦ At most one literal constant, or they may share the same literal
◦ Dest VGPRs: one must be even and the other odd
◦ The instructions must be independent of each other

• Must not use DPP
• Must be wave32.
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VOPD Instruction Fields

Field Size Description
opX 4 instruction opcode for the X operation
opY 5 instruction opcode for the Y operation
src0X 9 Source 0 for X operation. May be a VGPR, SGPR, exec, inline or literal constant
src0Y 9 Source 0 for Y operation. May be a VGPR, SGPR, exec, inline or literal constant
vsrc1X 8 Source 1 for X operation. Must be a VGPR. Ignored for V_MOV_B32
vsrc1Y 8 Source 1 for Y operation. Must be a VGPR. Ignored for V_MOV_B32
vdstX 8 Destination VGPR for X operation.
vdstY 7 Destination VGPR for Y operation. vdstY specifies bits [7:1]. The LSB of the destination address is:

!vdstX[0]. vdstX and vdstY: one must be even and the other is an odd VGPR.

See VOPD for a list of opcodes usable in the X and Y opcode fields.

V_CNDMASK_B32 is the "VOP2" form that uses VCC as the select. VCC counts as one SGPR read.

VOPD instruction pairs generate only a single exception if either or both raise an exception.

7.7. Data Parallel Processing (DPP)
Data Parallel Processing (DPP) operations allow VALU instruction to select operands from different lanes
(threads) rather than just using a thread’s own data. DPP operations are indicated by the use of the inline
constant: DPP8 or DPP16 in the SRC0 operand. Note that since SRC0 is set to the DPP value, the actual VGPR
address for SRC0 comes from the DPP DWORD.

One example of using DPP is for scan operations. A scan operation is one that computes a value per thread that
is based on the values of the previous threads and possibly itself. E.g. a running sum is the sum of the values
from previous threads in the vector. A reduction operation is essentially a scan that returns a single value from
the highest numbered active thread. A scan operation requires that the EXEC mask to be set to all 1’s for proper
operation. Unused threads (lanes) should be set to a value that does not change the result prior to the scan.

There are two forms of the DPP instruction word:

DPP8 allows arbitrary swizzling between groups of 8 lanes

DPP16 allows a set of predefined swizzles between groups of 16 lanes

DPP may be used only with: VOP1, VOP2, VOPC, VOP3 and VOP3P (but not "packed math" ops).
DPP instructions incur an extra cycle of delay to execute.

Table 30. Which instructions support DPP
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Encoding Opcodes * Rule* Encoding Opcodes Rule
VOP1 All 64-bit opcodes NO DPP VOP3 All 64bit opcodes NO DPP

READFIRSTLANE_B32 NO DPP MUL_LO_U32 NO DPP
SWAP_B32 NO DPP MUL_HI_U32 NO DPP
PIPEFLUSH NO DPP MUL_HI_I32 NO DPP
WRITELANE_REGWR_B32 NO DPP QSAD_PK_U16_U8 NO DPP
PERMUTE64 NO DPP MQSAD_PK_U16_U8 NO DPP
All Others Allow DPP MQSAD_U32_U8 NO DPP

VOP2 ALL 64bit opcodes NO DPP READLANE_REGRD_B32 NO DPP
FMAMK/AD_F32/16 NO DPP READLANE_B32 NO DPP
All Others Allow DPP WRITELANE_B32 NO DPP

VOP3P V_DOT4_I32_IU8
V_DOT4_U32_U8
V_DOT8_I32_IU4
V_DOT8_U32_U4
V_PK_*
WMMA

NO DPP PERMLANE16_B32 NO DPP

ALL Others:
V_FMA_MIX_*
V_DOT2_F32_{BF16, F16}

Allow DPP PERMLANEX16_B32 NO DPP

VINTERP ALL NO DPP
The others Allow DPP

VOPD ALL NO DPP VOPC All 64bit opcodes NO DPP
The others Allow DPP

V_CMP and V_CMPX write the full mask, not a partial mask. When using DPP with V_CMP or V_CMPX and
setting bound_ctrl=0, lanes that have their EXEC mask bit set to zero instead of not writing the bit, a zero bit is
written. "FI" (Fetch Inactive) with DPP16 causes a lane to act as if it is active when supplying data, but the
compare result for that lane is still zero for V_CMPX (V_CMPX with FI=1 does not turn on a lane that was off).

7.7.1. DPP16

DPP16 allows selection of data within groups of 16 lanes with a fixed set of possible swizzle patterns.

Both VOP3/VOP3P and DPP16 have ABS and NEG fields:

• VOP3’s ABS & NEG fields are used, and DPP16’s are ignored
• VOP3P’s NEG/NEG_HI fields are used and DPP16’s ABS & NEG are ignored.

DPP16 Instruction Fields

Field BITS Description
row_mask 31:28 Applies to the VGPR destination write only, does not impact the thread mask when fetching

source VGPR data. For VOPC, the SGPR/VCC bit associated with the disabled lane receives
zero.
31==0: lanes[63:48] are disabled (wave 64 only)
30==0: lanes[47:32] are disabled (wave 64 only)
29==0: lanes[31:16] are disabled
28==0: lanes[15:0] are disabled

"RDNA3" Instruction Set Architecture

7.7. Data Parallel Processing (DPP) 70 of 600



Field BITS Description
bank_mask 27:24 Applies to the VGPR destination write only, does not impact the thread mask when fetching

source VGPR data. For VOPC, the SGPR/VCC bit associated with the disabled lane receives
zero.
In wave32 mode:
27==0: lanes[12:15, 28:31] are disabled
26==0: lanes[8:11, 24:27 are disabled
25==0: lanes[4:7, 20:23] are disabled
24==0: lanes[0:3, 16:19] are disabled
In wave64 mode:
27==0: lanes[12:15, 28:31, 44:47, 60:63] are disabled
26==0: lanes[8:11, 24:27, 40:43, 56:59] are disabled
25==0: lanes[4:7, 20:23, 36:39, 52:55] are disabled
24==0: lanes[0:3, 16:19, 32:35, 48:51] are disabled
Notice: the term "bank" here is not the same as was used for the VGPR bank.

src1_imod 23:22 23: Apply Absolute value to SRC1
22: Apply Negate to SRC1 (done after absolute value)

src0_imod 21:20 21: Apply Absolute value to SRC0
20: Apply Negate to SRC0 (done after absolute value)

BC 19 Bound_ctrl is used to determine what a thread should do if its source operand is from a
disabled thread or invalid input: use the value zero, or disable the write. For example, a right
shift into lane 0 is an invalid input, so the VALU uses Bound_ctrl to decide if lane 0’s src0 should
be 0 or if it’s VGPR write enable should be disabled.
19==0: Do not write when source is invalid or out-of-range (DPP_BOUND_OFF)
19==1: User zero as input if source is invalid or out-of-range. (DPP_BOUND_ZERO)

FI 18 Fetch inactive lane behavior:
18 == 0: If source lane is invalid (disabled thread or out-of-range), use "bound_ctrl" to
determine the source value.
18 == 1: If the source lane is disabled, fetch the source value anyway (ignoring the
bound_ctrl bit). If the source lane is out-of-range, behavior is decided by the bound_ctrl bit.

rsvd 17 Reserved
dpp_ctrl 16:8 Data Share control word.

DPP_QUAD_PERM{00:FF} 000-0FF
DPP_UNUSED 100
DPP_ROW_SL{1:15} 101-10F
DPP_ROW_SR{1:15} 111-11F
DPP_ROW_RR{1:15} 121-12F
DPP_ROW_MIRROR 140
DPP_ROW_HALF_MIRROR 141
DPP_ROW_SHARE{0:15} 150 - 15F
DPP_ROW_XMASK{0:15} 160 - 16F

Src0 7:0 VGPR address of srcA operand

Table 31. BC and FI Behavior

BC FI Source lane out-of-
range

Source lane in-range
but disabled

Source lane in-range
and active

0 0 Disable write Disable write Normal
1 0 Src0 = 0 Src0 = 0 Normal
0 1 Src0 = 0 Normal Normal
1 1 Normal Normal Normal
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Where "out of range" means the lane offset goes outside a group of 16 lanes (e.g. 0..15, or 16..31).

7.7.2. DPP8

DPP8 allows arbitrary cross-lane swizzling within groups of 8 lanes. There are two forms of DPP8: normal,
which reads zero from lanes whose EXEC mask bit is zero, and DPP8FI, which fetches data from inactive lanes
instead of using the value zero.

DPP8 follows DPP16’s "BC = 1" behavior and assumes all source lanes are in-range.

DPP8 Instruction Fields

Field Size Description
SRC 8 Source 0 (VGPR). Since the VOP1/VOP2 source0 slot was filled with the constant "DPP" or

"DPPFI", this field provides the actual source-0 vgpr.
SEL0
SEL1
SEL2
SEL3
SEL4
SEL5
SEL6
SEL7

3 Selects which lane to pull data from, within a group of 8 lanes.
SEL0 selects which lane to read from to supply data into lane 0.
SEL1 selects which lane to read from to supply data into lane 1.
etc.
0 = read from lane 0, 1 = read from lane 1, … 7 = read from lane 7.
Lanes 0-7 can pull from any of lanes 0-7; lanes 8-15 can pull from lanes 8-15, etc.

7.8. VGPR Indexing
The VALU provides a set of instructions that move or swap VGPRs where the source, dest or both are indexed
by a value in the M0 register. Indices are unsigned.

Table 32. VGPR Indexing Instructions

Instruction Index Function
V_MOVRELD_B32 M0[31:0] Move with relative destination:

VGPR[dst + M0[31:0]] = VGPR[src]
V_MOVRELS_B32 Move with relative source: 

VGPR[dst] = VGPR[src + M0[31:0]]
V_MOVRELSD_B32 Move with relative source and destination:

VGPR[dst + M0[31:0]] = VGPR[src + M0[31:0]]
V_MOVRELSD_2_B32 Src: M0[9:0]

Dst: M0[25:16]
Move with relative source and destination, each different:
VGPR[dst + M0[25:16]] = VGPR[src + M0[9:0]]

V_SWAPREL_B32 Swap two VGPRs, each relative to a separate index:
tmp = VGPR[src + M0[9:0]]
VGPR[src + M0[9:0]] = VGPR[dst + M0[25:16]]
VGPR[dst + M0[25:16]] = tmp

7.9. Wave Matrix Multiply Accumulate (WMMA)
Wave Matrix Multiply-Accumulate (WMMA) instructions provide acceleration for common matrix arithmetic
operations. The instructions are encoded using the VOP3P encoding.
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These perform: A * B + C ⇒ D, where A, B, C and D are matrices.

Additional information can be found on the GPUOpen blog: https://gpuopen.com/learn/
wmma_on_rdna3/

The AMD Matrix Instruction Calculator (https://github.com/RadeonOpenCompute/
amd_matrix_instruction_calculator) contains a helper tool that allows developers to view detailed
information about the WMMA instructions in the RDNA architecture. It allows users to query instruction-
level information such as computational throughput and register usage. It also allows users to generate
mappings between matrix element and hardware registers for each matrix instruction and their
modifiers.

WMMA does not generate any ALU exceptions.

These are all encoded using VOP3P. The NEG[1:0] field is repurposed for the "IU" integer types to indicate
whether the inputs are signed or not (0=unsigned, 1=signed). For WMMA_*UI8/UI4, NEG[1:0] indicates whether
SRC0 and 1 are signed or unsigned, and NEG[2] and NEG_HI[2:0] must be zero. For WMMA*_F16/BF16, NEG[1:0] is
applied on SRC1 and SRC0’s low 16bit. NEG_HI[1:0] is applied on SRC1 and SRC0’s high 16bit. {NEG_HI[2],
NEG[2]} is applied on SRC2, act as {ABS, NEG}. The destination is signed for the integer types. Neg[0] applies to
the A-matrix, and Neg[1] to the B-matrix. Neg[2] must be set to zero.

Table 33. WMMA Instructions

Instruction Matrix A Matrix B Matrix C Result Matrix
V_WMMA_F32_16X16X16_F16 16x16 F16 16x16 F16 16x16 F32 16x16 F32
V_WMMA_F32_16X16X16_BF16 16x16 BF16 16x16 BF16 16x16 F32 16x16 F32
V_WMMA_F16_16X16X16_F16 16x16 F16 16x16 F16 16x16 F16 16x16 F16
V_WMMA_BF16_16X16X16_BF16 16x16 BF16 16x16 BF16 16x16 BF16 16x16 BF16
V_WMMA_I32_16X16X16_IU8 16x16 IU8 16x16 IU8 16x16 I32 16x16 I32
V_WMMA_I32_16X16X16_IU4 16x16 IU4 16x16 IU4 16x16 I32 16x16 I32

"IU4" and "IU8" mean that the operand is either signed or unsigned (4 or 8 bits) as indicate by the NEG bits.

These instructions work over multiple cycles to compute the result matrix and internally use the DOT
instructions. In order to achieve this performance, the user must arrange the data such that:

• A and B matrices: lanes 0-15 data are replicated into lanes 16-31 (for wave64: also into lanes 32-47 and 48-
63).

WMMA supports only round-to-nearest-even rounding for float types.

Inline constants: can only be used for C-matrix. For F16 and BF16, the inline value is replicated into both low
and high halves of the DWORD.

Back-to-back dependent WMMA instructions require one V_NOP (or independent VALU op) between them if
the first instruction’s matrix D is the same or overlaps with the second instruction’s matrices A or B. Matrix A/B
can overlap C as long as C is distinct from D. The typical case is that C and D are the same.

Simplified example of matrix multiplication on 4x4 matrices:
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This diagram below shows the A, B, C and D matrices in the traditional point of view: one row is a horizontal
strip of entries, and columns are a vertical strip. This is the linear algebra view, regardless of layout in memory
or in VGPRs. The matrix operation is defined as: D = A * B + C. Each entry in D is the result of multiplication of
a row from A with a column from B, added to the C value for that entry.

This diagram below shows how the matrices are laid out in VGPRs when M = N = K = 16. Note that the A matrix
is column-major while the others are in row-major order.
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Chapter 8. Scalar Memory Operations
Scalar Memory Loads (SMEM) instructions allow a shader program to load data from memory into SGPRs
through the Constant Cache ("Kcache"). Instructions can load from 1 to 16 DWORDs. Data is loaded directly
into SGPRs without any format conversion.

The scalar unit loads consecutive DWORDs from memory to the SGPRs. This is intended primarily for loading
ALU constants and for indirect T#/S# lookup. No data formatting is supported, nor is byte or short data.

Loads come in two forms: one that simply takes a base-address pointer, and the other that uses a vertex-buffer
constant to provide: base, size and stride.

8.1. Microcode Encoding
Scalar memory load instructions are encoded using the SMEM microcode format.

The fields are described in the table below:

Table 34. SMEM Encoding Field Descriptions

Field Size Description
OP 8 Opcode. See the next table.
SDATA 7 SGPRs to return Load data to.

• Loads of 2 DWORDs must have an even SDST-sgpr.
• Loads of 4 or more DWORDs must have their DST-gpr aligned to a multiple of 4.
• SDATA must be: SGPR or VCC. Not: EXEC, M0 or NULL except for instructions that return nothing: these

may use NULL
SBASE 6 SGPR-pair (SBASE has an implied LSB of zero) that provides a base address, or for BUFFER instructions, a

set of 4 SGPRs (4-sgpr aligned) that hold the resource constant. 
For BUFFER instructions, the only resource fields used are: base, stride, num_records.

OFFSET 21 Instruction Address Offset : An immediate signed byte offset.
Negative offsets only work with S_LOAD; a negative offset applied to S_BUFFER results in a MEMVIOL.

SOFFSET 7 SGPR that has the 32-bit unsigned byte offset. May only specify an SGPR, M0 or set to "NULL" to not use
(offset=0).

GLC 1 Globally Coherent.
DLC 1 Device Coherent.

Table 35. SMEM Instructions

Opcode # Name Opcode # Name
0 S_LOAD_B32 9 S_BUFFER_LOAD_B64
1 S_LOAD_B64 10 S_BUFFER_LOAD_B128
2 S_LOAD_B128 11 S_BUFFER_LOAD_B256
3 S_LOAD_B256 12 S_BUFFER_LOAD_B512
4 S_LOAD_B512 32 S_GL1_INV
8 S_BUFFER_LOAD_B32 33 S_DCACHE_INV
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These instructions load 1-16 DWORDs from memory. The data in SGPRs is specified in SDATA, and the address
is composed of the SBASE, OFFSET, and SOFFSET fields.

8.1.1. Scalar Memory Addressing

Non-buffer S_LOAD instructions use the following formula to calculate the memory address:

ADDR = SGPR[base] + inst_offset + { M0 or SGPR[offset] or zero }

All components of the address (base, offset, inst_offset, M0) are in bytes, but the two LSBs are ignored and
treated as if they were zero.

It is illegal and undefined for the inst_offset to be negative if the resulting
(inst_offset + (M0 or SGPR[offset])) is negative.

8.1.2. Loads using Buffer Constant

S_BUFFER_LOAD instructions use a similar formula, but the base address comes from the buffer constant’s
base_address field.

Buffer constant fields used: base_address, stride, num_records. Other fields are ignored.

Scalar memory load does not support "swizzled" buffers. Stride is used only for memory address bounds
checking, not for computing the address to access.

The SMEM supplies only a SBASE address (byte) and an offset (byte or DWORD). Any "index * stride" must be
calculated manually in shader code and added to the offset prior to the SMEM. Inst_offset must be non-
negative - a negative value of inst_offset results in a MEMVIOL.

The two LSBs of V#.base and of the final address are ignored to force DWORD alignment.

"m_*" components come from the buffer constant (V#):
  offset     = OFFSET + SOFFSET (M0, SGPR or zero)
  m_base     = { SGPR[SBASE * 2 +1][15:0], SGPR[SBASE*2] }
  m_stride   = SGPR[SBASE * 2 +1][31:16]
  m_num_records = SGPR[SBASE * 2 + 2]
  m_size     = (m_stride == 0 ? 1 : m_stride) * m_num_records
  addr       = (m_base & ~3) + (offset & ~0x3)
  SGPR[SDST] = load_dword_from_dcache(addr, m_size)

  If more than 1 DWORD is being loaded, it is returned to SDST+1, SDST+2, etc,
  and the offset is incremented by 4 bytes per DWORD.

8.1.3. S_DCACHE_INV and S_GL1_INV

This instruction invalidates the entire scalar cache or L1 cache. It does not return anything to SDST.
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S_GL1_INV and S_DCACHE_INV do not have any address or data arguments.

8.2. Dependency Checking
Scalar memory loads can return data out-of-order from how they were issued; they can return partial results at
different times when the load crosses two cache lines. The shader program uses the LGKMcnt counter to
determine when the data has been returned to the SDST SGPRs. This is done as follows.

• LGKMcnt is incremented by 1 for every fetch of a single DWORD, or cache invalidates.
• LGKMcnt is incremented by 2 for every fetch of two or more DWORDs.
• LGKMcnt is decremented by an equal amount when each instruction completes.

Because the instructions can return out-of-order, the only sensible way to use this counter is to implement
"S_WAITCNT LGKMcnt 0"; this imposes a wait for all data to return from previous SMEMs before continuing.

Cache invalidate instructions are not known to have completed until the shader waits for LGKMcnt==0.

8.3. Scalar Memory Clauses and Groups
A clause is a sequence of instructions starting with S_CLAUSE and continuing for 2-63 instructions. Clauses
lock the instruction arbiter onto this wave until the clause completes.

A group is a set of the same type of instruction that happen to occur in the code but are not necessarily
executed as a clause. A group ends when a non-SMEM instruction is encountered. Scalar memory instructions
are issued in groups. The hardware does not enforce that a single wave executes an entire group before issuing
instructions from another wave.

Group restrictions:

• INV must be in a group by itself and may not be in a clause

8.4. Alignment and Bounds Checking
SDST

The value of SDST must be even for fetches of two DWORDs, or a multiple of four for larger fetches. If this
rule is not followed, invalid data can result.

SBASE
The value of SBASE must be even for S_BUFFER_LOAD (specifying the address of an SGPR which is a
multiple of four). If SBASE is out-of-range, the value from SGPR0 is used.

OFFSET
The value of OFFSET has no alignment restrictions.
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8.4.1. Address and GPR Range Checking

The hardware checks for both the address being out of range (BUFFER instructions only), and for the source or
destination SGPRs being out of range.

Address Out-of-Range if offset >= ( (stride==0 ? 1 : stride) * num_records).
where "offset" is: inst_offset + {M0 or sgpr-offset}
Any DWORDs that are out of range in memory from a buffer_load
return zero. If a multi-DWORD request (e.g. S_BUFFER_LOAD_B256) is
partially out of range, the DWORDs that are in range return data as
normal, and the out-of-range DWORDs return zero.

Source SGPR out of range If any source data is out of the range of SGPRs (either partially or
completely), the value 'zero' is used instead.

Destination SGPR out of range If the destination SGPR is partially or fully out of range, no data is
written back to SGPRs for this instruction.
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Chapter 9. Vector Memory Buffer Instructions
Vector-memory (VM) buffer operations transfer data between the VGPRs and buffer objects in memory
through the texture cache (TC). Vector means that one or more piece of data is transferred uniquely for every
thread in the wave, in contrast to scalar memory loads that transfer only one value that is shared by all threads
in the wave.

The instruction defines which VGPR(s) supply the addresses for the operation, which VGPRs supply or receive
data from the operation, and a series of SGPRs that contain the memory buffer descriptor (V#). Buffer atomics
have the option of returning the pre-op memory value to VGPRs.

Examples of buffer objects are vertex buffers, raw buffers, stream-out buffers, and structured buffers.

Buffer objects support both homogeneous and heterogeneous data, but no filtering of load-data (no samplers).
Buffer instructions are divided into two groups:

MUBUF: Untyped buffer objects
• Data format is specified in the resource constant.
• Load, store, atomic operations, with or without data format conversion.

MTBUF: Typed buffer objects
• Data format is specified in the instruction.
• The only operations are Load and Store, both with data format conversion.

All buffer operations use a buffer resource constant (V#) that is a 128-bit value in SGPRs. This constant is sent
to the texture cache when the instruction is executed. This constant defines the address and characteristics of
the buffer in memory. Typically, these constants are fetched from memory using scalar memory loads prior to
executing VM instructions, but these constants also can be generated within the shader.

Memory operations of different types (loads, stores) can complete out of order with respect to each other.

Simplified view of buffer addressing

The equation below shows how the memory address is calculated for a buffer access:

Memory instructions return MEMVIOL for any misaligned access when the alignment mode does not allow it.

9.1. Buffer Instructions
Buffer instructions (MTBUF and MUBUF) allow the shader program to load from, and store to, linear buffers in
memory. These operations can operate on data as small as one byte, and up to four DWORDs per work-item.
Atomic operations take data from VGPRs and combine them arithmetically with data already in memory.
Optionally, the value that was in memory before the operation took place can be returned to the shader.
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The D16 instruction variants of buffer ops convert the results to and from packed 16-bit values. For example,
BUFFER_LOAD_D16_FORMAT_XYZW stores two VGPRs with 4 16-bit values.

Table 36. Buffer Instructions

MTBUF Instructions
TBUFFER_LOAD_FORMAT_{x,xy,xyz,xyzw}
TBUFFER_STORE_FORMAT_{x,xy,xyz,xyzw}
TBUFFER_LOAD_D16_FORMAT_{x,xy,xyz,xyzw}
TBUFFER_STORE_D16_FORMAT_{x,xy,xyz,xyzw}

Load from or store to a Typed buffer object.
 
Convert data to 16-bits before loading into VGPRs.
Convert data from 16-bits to tex-format before storing to memory

MUBUF Instructions
BUFFER_LOAD_FORMAT_{x,xy,xyz,xyzw}
BUFFER_STORE_FORMAT_{x,xy,xyz,xyzw}
BUFFER_LOAD_D16_FORMAT_{x,xy,xyz,xyzw}
BUFFER_STORE_D16_FORMAT_{x,xy,xyz,xyzw}
BUFFER_LOAD_<size> BUFFER_STORE_<size>
BUFFER_{LOAD,STORE}_D16_FORMAT_X
BUFFER_{LOAD,STORE}_D16_HI_FORMAT_X

Load from or store to an Untyped Buffer object
<size> = I8, U8, I16, U16, B32, B64, B96, B128

BUFFER_ATOMIC_<op> Buffer object atomic operation. Automatically globally coherent.
Operates on 32bit or 64bit values.

BUFFER_GL{0,1}_INV Cache invalidate: either L0 or L1 cache for the CU (L0) and Shader
Array (L1) associated with this wave.

Table 37. Microcode Formats

Field Bit Size Description
OP 4

8
MTBUF: Opcode for Typed buffer instructions.
MUBUF: Opcode for Untyped buffer instructions.

VADDR 8 Address of VGPR to supply first component of address (offset or index). When both index and offset are
used, index is in the first VGPR, offset in the second.

VDATA 8 Address of VGPR to supply first component of store data or receive first component of load-data.
SOFFSET 8 SGPR to supply unsigned byte offset. SGPR, M0, NULL, or inline constant.
SRSRC 5 Specifies which SGPR supplies V# (resource constant) in four consecutive SGPRs. This field is missing

the two LSBs of the SGPR address, since this address is be aligned to a multiple of four SGPRs.
FORMA
T

7 Data Format of data in memory buffer. See: Buffer Image Format Table

OFFSET 12 Unsigned byte offset.
OFFEN 1 1 = Supply an offset from VGPR (VADDR). 0 = Do not (offset = 0).
IDXEN 1 1 = Supply an index from VGPR (VADDR). 0 = Do not (index = 0).
GLC 1 Globally Coherent. Controls how loads and stores are handled by the L0 texture cache.

ATOMIC
GLC = 0 Previous data value is not returned.
GLC = 1 Previous data value is returned.

DLC 1 Device Level Coherent.
SLC 1 System Level Coherent.
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Field Bit Size Description
TFE 1 Texel Fault Enable for PRT (partially resident textures). When set to 1 and fetch returns a NACK, status

is written to the VGPR after the last fetch-dest VGPR.

Table 38. MTBUF Instructions

Opcode Description - all address components for buffer ops are uint
TBUFFER_LOAD_FORMAT_X load X component w/ format convert
TBUFFER_LOAD_FORMAT_XY load XY components w/ format convert
TBUFFER_LOAD_FORMAT_XYZ load XYZ components w/ format convert
TBUFFER_LOAD_FORMAT_XYZW load XYZW components w/ format convert
TBUFFER_STORE_FORMAT_X store X component w/ format convert
TBUFFER_STORE_FORMAT_XY store XY components w/ format convert
TBUFFER_STORE_FORMAT_XYZ store XYZ components w/ format convert
TBUFFER_STORE_FORMAT_XYZW store XYZW components w/ format convert
TBUFFER_LOAD_D16_FORMAT_X load X component w/ format convert, 16bit
TBUFFER_LOAD_D16_FORMAT_XY load XY components w/ format convert, 16bit
TBUFFER_LOAD_D16_FORMAT_XYZ load XYZ components w/ format convert, 16bit
TBUFFER_LOAD_D16_FORMAT_XYZW load XYZW components w/ format convert, 16bit
TBUFFER_STORE_D16_FORMAT_X store X component w/ format convert, 16bit
TBUFFER_STORE_D16_FORMAT_XY store XY components w/ format convert, 16bit
TBUFFER_STORE_D16_FORMAT_XYZ store XYZ components w/ format convert, 16bit
TBUFFER_STORE_D16_FORMAT_XYZW store XYZW components w/ format convert, 16bit

• TBUFFER*_FORMAT instructions include a data-format conversion specified in the instruction.

Table 39. MUBUF Instructions

Opcode Description - all address components for buffer ops are uint
BUFFER_LOAD_U8 load unsigned byte (extend 0’s to MSB’s of DWORD VGPR)
BUFFER_LOAD_D16_U8 load unsigned byte into VGPR[15:0]
BUFFER_LOAD_D16_HI_U8 load unsigned byte into VGPR[31:16]
BUFFER_LOAD_I8 load signed byte (sign extend to MSB’s of DWORD VGPR)
BUFFER_LOAD_D16_I8 load signed byte into VGPR[15:0]
BUFFER_LOAD_D16_HI_I8 load signed byte into VGPR[31:16]
BUFFER_LOAD_U16 load unsigned short (extend 0’s to MSB’s of DWORD VGPR)
BUFFER_LOAD_I16 load signed short (sign extend to MSB’s of DWORD VGPR)
BUFFER_LOAD_D16_B16 load short into VGPR[15:0]
BUFFER_LOAD_D16_HI_B16 load short into VGPR[31:16]
BUFFER_LOAD_B32 load DWORD
BUFFER_LOAD_B64 load 2 DWORD per element
BUFFER_LOAD_B96 load 3 DWORD per element
BUFFER_LOAD_B128 load 4 DWORD per element
BUFFER_LOAD_FORMAT_X load X component w/ format convert
BUFFER_LOAD_FORMAT_XY load XY components w/ format convert
BUFFER_LOAD_FORMAT_XYZ load XYZ components w/ format convert
BUFFER_LOAD_FORMAT_XYZW load XYZW components w/ format convert
BUFFER_LOAD_D16_FORMAT_X load X component w/ format convert, 16b
BUFFER_LOAD_D16_HI_FORMAT_X load X component w/ format convert, 16b
BUFFER_LOAD_D16_FORMAT_XY load XY components w/ format convert, 16b
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Opcode Description - all address components for buffer ops are uint
BUFFER_LOAD_D16_FORMAT_XYZ load XYZ components w/ format convert, 16b
BUFFER_LOAD_D16_FORMAT_XYZW load XYZW components w/ format convert, 16b
BUFFER_STORE_B8 store byte (ignore MSB’s of DWORD VGPR)
BUFFER_STORE_D16_HI_B8 store byte from VGPR bits [23:16]
BUFFER_STORE_B16 store short (ignore MSB’s of DWORD VGPR)
BUFFER_STORE_D16_HI_B16 store short from VGPR bits [32:16]
BUFFER_STORE_B32 store DWORD
BUFFER_STORE_B64 store 2 DWORD per element
BUFFER_STORE_B96 store 3 DWORD per element
BUFFER_STORE_B128 store 4 DWORD per element
BUFFER_STORE_FORMAT_X store X component w/ format convert
BUFFER_STORE_FORMAT_XY store XY components w/ format convert
BUFFER_STORE_FORMAT_XYZ store XYZ components w/ format convert
BUFFER_STORE_FORMAT_XYZW store XYZW components w/ format convert
BUFFER_STORE_D16_FORMAT_X store X component w/ format convert, 16b
BUFFER_STORE_D16_HI_FORMAT_X store X component w/ format convert, 16b
BUFFER_STORE_D16_FORMAT_XY store XY components w/ format convert, 16b
BUFFER_STORE_D16_FORMAT_XYZ store XYZ components w/ format convert, 16b
BUFFER_STORE_D16_FORMAT_XYZW store XYZW components w/ format convert, 16b
BUFFER_ATOMIC_ADD_U32 32b , dst += src, returns previous value if glc==1
BUFFER_ATOMIC_ADD_F32 32b , dst += src, returns previous value if glc==1
BUFFER_ATOMIC_ADD_U64 64b , dst += src, returns previous value if glc==1
BUFFER_ATOMIC_AND_B32 32b , dst &= src, returns previous value if glc==1
BUFFER_ATOMIC_AND_B64 64b , dst &= src, returns previous value if glc==1
BUFFER_ATOMIC_CMPSWAP_B32 32b , dst = (dst == cmp) ? src : dst, returns previous value if glc==1. Src is from

vdata, cmp from vdata+1
BUFFER_ATOMIC_CMPSWAP_B64 64b , dst = (dst == cmp) ? src : dst, returns previous value if glc==1
BUFFER_ATOMIC_CSUB_U32 32b , dst = if (src > dst) ? 0 : dst - src, returns previous . GLC must be set to 1.
BUFFER_ATOMIC_DEC_U32 32b , dst = dst == 0) | (dst > src ? src : dst-1, returns previous value if glc==1
BUFFER_ATOMIC_DEC_U64 64b , dst = dst == 0) | (dst > src ? src : dst-1, returns previous value if glc==1
BUFFER_ATOMIC_CMPSWAP_F32 32b , dst = (dst == cmp) ? src : dst, returns previous value if glc==1. Src is from

vdata, cmp from vdata+1
BUFFER_ATOMIC_MAX_F32 32b , dst = (src > dst) ? src : dst, (float) returns previous value if glc==1
BUFFER_ATOMIC_MIN_F32 32b , dst = (src < dst) ? src : dst, (float) returns previous value if glc==1
BUFFER_ATOMIC_INC_U32 32b , dst = (dst >= src) ? 0 : dst+1, returns previous value if glc==1
BUFFER_ATOMIC_INC_U64 64b , dst = (dst >= src) ? 0 : dst+1, returns previous value if glc==1
BUFFER_ATOMIC_OR_B32 32b , dst |= src, returns previous value if glc==1
BUFFER_ATOMIC_OR_B64 64b , dst |= src, returns previous value if glc==1
BUFFER_ATOMIC_MAX_I32 32b , dst = (src > dst) ? src : dst, (signed) returns previous value if glc==1
BUFFER_ATOMIC_MAX_I64 64b , dst = (src > dst) ? src : dst, (signed) returns previous value if glc==1
BUFFER_ATOMIC_MIN_I32 32b , dst = (src < dst) ? src : dst, (signed) returns previous value if glc==1
BUFFER_ATOMIC_MIN_I64 64b , dst = (src < dst) ? src : dst, (signed) returns previous value if glc==1
BUFFER_ATOMIC_SUB_U32 32b , dst -= src, returns previous value if glc==1
BUFFER_ATOMIC_SUB_U64 64b , dst -= src, returns previous value if glc==1
BUFFER_ATOMIC_SWAP_B32 32b , dst = src, returns previous value of dst if glc==1
BUFFER_ATOMIC_SWAP_B64 64b , dst = src, returns previous value of dst if glc==1
BUFFER_ATOMIC_MAX_U32 32b , dst = (src > dst) ? src : dst, (unsigned) returns previous value if glc==1
BUFFER_ATOMIC_MAX_U64 64b , dst = (src > dst) ? src : dst, (unsigned) returns previous value if glc==1
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Opcode Description - all address components for buffer ops are uint
BUFFER_ATOMIC_MIN_U32 32b , dst = (src < dst) ? src : dst, (unsigned) returns previous value if glc==1
BUFFER_ATOMIC_MIN_U64 64b , dst = (src < dst) ? src : dst, (unsigned) returns previous value if glc==1
BUFFER_ATOMIC_XOR_B32 32b , dst ^= src, returns previous value if glc==1
BUFFER_ATOMIC_XOR_B64 64b , dst ^= src, returns previous value if glc==1
BUFFER_GL0_INV invalidate the shader L0 cache (texture cache) associated with this wave.
BUFFER_GL1_INV invalidate the GL1 (L1) cache associated with this wave, for this wave’s VMID

• BUFFER*_FORMAT instructions include a data-format conversion specified in the resource constant (V#).
• In the table above, "D16" means the data in the VGPR is 16-bits, not the usual 32 bits.

"D16_HI" means that the upper 16-bits of the VGPR is used instead of "D16" that uses the lower 16 bits.

9.2. VGPR Usage
VGPRs supply address and store-data, and they can be the destination for return data.

Address
Zero, one or two VGPRs are used, depending on the index-enable (IDXEN) and offset-enable (OFFEN) in the
instruction word. These are unsigned ints.
For 64-bit addresses the LSBs are in VGPRn and the MSBs are in VGPRn+1.

Table 40. Address VGPRs

IDXEN OFFEN VGPRn VGPRn+1
0 0 nothing
0 1 uint offset
1 0 uint index
1 1 uint index uint offset

Store Data : N consecutive VGPRs, starting at VDATA. The data format specified in the instruction word’s
opcode and D16 setting determines how many DWORDs the shader provides to store.

Load Data : Same as stores. Data is returned to consecutive VGPRs.

Load Data Format : Load data is 32 or 16 bits, based on the data format in the instruction or resource and D16.
Float or normalized data is returned as floats; integer formats are returned as integers (signed or unsigned,
same type as the memory storage format). Memory loads of data in memory that is 32 or 64 bits do not undergo
any format conversion unless they return as 16-bit due to D16 being set to 1.

Atomics with Return : Data is read out of the VGPR(s) starting at VDATA to supply to the atomic operation. If
the atomic returns a value to VGPRs, that data is returned to those same VGPRs starting at VDATA.

Table 41. Data format in VGPRs and Memory

Instruction Memory Format VGPR Format Notes
BUFFER_LOAD_U8 ubyte V0[31:0] = {24’b0, byte}
BUFFER_LOAD_D16_U8 ubyte V0[15:0] = {8’b0, byte} writes only 16 bits
BUFFER_LOAD_D16_HI_U8 ubyte V0[31:16] = {8’h0, byte} writes only 16 bits
BUFFER_LOAD_S8 sbyte V0[31:0] = { 24{sign}, byte}
BUFFER_LOAD_D16_S8 sbyte V0[15:0] {8{sign}, byte} writes only 16 bits

"RDNA3" Instruction Set Architecture

9.2. VGPR Usage 84 of 600



Instruction Memory Format VGPR Format Notes
BUFFER_LOAD_D16_HI_S8 sbyte V0[31:16] = {8{sign}, byte} writes only 16 bits
BUFFER_LOAD_U16 ushort V0[31:0] = { 16’b0, short}
BUFFER_LOAD_S16 sshort V0[31:0] = { 16{sign}, short}
BUFFER_LOAD_D16_B16 short V0[15:0] = short writes only 16 bits
BUFFER_LOAD_D16_HI_B16 short V0[31:16] = short writes only 16 bits
BUFFER_LOAD_B32 DWORD DWORD
BUFFER_LOAD_FORMAT_X FORMAT field float, uint or sint

Load X into V0[31:0]
data type in VGPR is
based on FORMAT
field.
(D16_X and D16_HI_X
write only 16 bits)

BUFFER_LOAD_FORMAT_XY FORMAT field float, uint or sint
Load X,Y into V0[31:0], V1[31:0]

BUFFER_LOAD_FORMAT_XYZ FORMAT field float, uint or sint
Load X,Y,Z into V0[31:0],
V1[31:0], V2[31:0]

BUFFER_LOAD_FORMAT_XYZW FORMAT field float, uint or sint
Load X,Y,Z,W into V0[31:0],
V1[31:0], V2[31:0], v3[31:0]

BUFFER_LOAD_D16_FORMAT_X FORMAT field float, uint or sint
Load X into in V0[15:0]

BUFFER_LOAD_D16_HI_FORMAT_X FORMAT field float, ushort or sshort
Load X into in V0[31:16]

BUFFER_LOAD_D16_FORMAT_XY FORMAT field float, ushort or sshort
Load X,Y into in V0[15:0],
V0[31:16]

BUFFER_LOAD_D16_FORMAT_XYZ FORMAT field float, ushort or sshort
Load X,Y,Z into in V0[15:0],
V0[31:16], V1[15:0]

BUFFER_LOAD_D16_FORMAT_XYZW FORMAT field float, ushort or sshort
Load X,Y,Z,W into in V0[15:0],
V0[31:16], V1[15:0], V1[31:16]

Where "V0" is the VDATA VGPR; V1 is the VDATA+1 VGPR, etc.

Instruction VGPR Format Memory
Format

Notes

BUFFER_STORE_B8 byte in [7:0] byte
BUFFER_STORE_D16_HI_B8 byte in [23:16] byte
BUFFER_STORE_B16 short in [15:0] short
BUFFER_STORE_D16_HI_B16 short in [31:16] short
BUFFER_STORE_B32 data in [31:0] DWORD
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Instruction VGPR Format Memory
Format

Notes

BUFFER_STORE_FORMAT_X float, uint or sint
data in V0[31:0]

FORMAT field data type in VGPR is
based on FORMAT
field.BUFFER_STORE_D16_FORMAT_X float, ushort or sshort

data in V0[15:0]
BUFFER_STORE_D16_FORMAT_XY float, ushort or sshort

data in V0[15:0], V0[31:16]
BUFFER_STORE_D16_FORMAT_XYZ float, ushort or sshort

data in V0[15:0], V0[31:16], V1[15:0]
BUFFER_STORE_D16_FORMAT_XYZW float, ushort or sshort

data in V0[15:0], V0[31:16], V1[15:0],
V1[31:16]

BUFFER_STORE_D16_HI_FORMAT_X float, ushort or sshort
data in V0[31:16]

9.3. Buffer Data
The amount and type of data that is loaded or stored is controlled by the following: the resource format field,
destination-component-selects (dst_sel), and the opcode.

Data-format can come from the resource, instruction fields, or the opcode itself. MTBUF derives data-format
from the instruction, MUBUF-"format" instructions use format from the resource, and other MUBUF opcode
derive data-format from the instruction itself.

DST_SEL comes from the resource, but is ignored for many operations.

Table 42. Buffer Instructions

Instruction Data Format DST SEL
TBUFFER_LOAD_FORMAT_* instruction identity
TBUFFER_STORE_FORMAT_* instruction identity
BUFFER_LOAD_<type> derived identity
BUFFER_STORE_<type> derived identity
BUFFER_LOAD_FORMAT_* resource resource
BUFFER_STORE_FORMAT_* resource resource
BUFFER_ATOMIC_* derived identity

Instruction : The instruction’s format field is used instead of the resource’s fields.

Data format derived : The data format is derived from the opcode and ignores the resource definition. For
example, BUFFER_LOAD_U8 sets the data-format to uint-8.


The resource’s data format must not be INVALID; that format has specific meaning
(unbound resource), and for that case the data format is not replaced by the instruction’s
implied data format.

DST_SEL identity : Depending on the number of components in the data-format, this is: X000, XY00, XYZ0, or
XYZW.
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9.3.1. D16 Instructions

Load-format and store-format instructions also come in a "D16" variant. The D16 buffer instructions allow a
shader program to load or store just 16 bits per work-item between VGPRs and memory. For stores, each 32bit
VGPR holds two 16bit data elements that are passed to the texture unit which in turn, converts to the texture
format before writing to memory. For loads, data returned from the texture unit is converted to 16 bits and a
pair of data are stored in each 32bit VGPR (LSBs first, then MSBs). Control over int vs. float is controlled by
FORMAT. Conversion of float32 to float16 uses truncation; conversion of other input data formats uses round-
to-nearest-even.

There are two variants of these instructions:

• D16 loads data into or stores data from the lower 16 bits of a VGPR.
• D16_HI loads data into or stores data from the upper 16 bits of a VGPR.

For example, BUFFER_LOAD_D16_U8 loads a byte per work-item from memory, converts it to a 16-bit integer,
then loads it into the lower 16 bits of the data VGPR.

9.3.2. LOAD/STORE_FORMAT and DATA-FORMAT mismatches

The "format" instructions specify a number of elements (x, xy, xyz or xyzw) and this could mismatch with the
number of elements in the data format specified in the instruction’s or resource’s data-format field. When that
happens.

• buffer_load_format_x and dfmt is "32_32_32_32" : load 4 DWORDs from memory, but only load first into
the shader

• buffer_store_format_x and dfmt is "32_32_32_32" : stores 4 DWORDs to memory based on dst_sel
• buffer_load_format_xyzw and dfmt is "32" : load 1 DWORD from memory, return 4 to shader (dst_sel)
• buffer_store_format_xyzw and dfmt is "32" : store 1 DWORD (X) to memory, ignore YZW.

9.4. Buffer Addressing
A buffer is a data structure in memory that is addressed with an index and an offset. The index points to a
particular record of size stride bytes, and the offset is the byte-offset within the record. The stride comes from
the resource, the index from a VGPR (or zero), and the offset from an SGPR or VGPR and also from the
instruction itself.

Table 43. BUFFER Instruction Fields for Addressing

Field Size Description
inst_offset 12 Literal byte offset from the instruction.
inst_idxen 1 Boolean: get per-lane index from VGPR when true, or no index when false.
inst_offen 1 Boolean: get per-lane offset from VGPR when true, or no offset when false. Note that inst_offset is present

regardless of this bit.

The "element size" for a buffer instruction is the amount of data the instruction transfers in bytes. It is
determined by the FORMAT field for MTBUF instructions, or from the opcode for MUBUF instructions, and is:
1, 2, 4, 8, 12 or 16 bytes. For example, format "16_16" has an element size of 4-bytes.
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Table 44. Buffer Resource Constant Fields for Addressing

Field Size Description
const_base 48 Base address of the buffer resource, in bytes.
const_stride 14 Stride of the record in bytes (0 to 16,383 bytes).
const_num_records 32 Number of records in the buffer. In units of:

Bytes if: const_stride == 0 || const_swizzle_enable == false 
Otherwise, in units of "stride".

const_add_tid_enable 1 Boolean. Add thread_ID within the wave to the index when true.
const_swizzle_enable 2 Swizzle AOS according to stride, index_stride and element_size:

0: disabled
1: enabled with element_size = 4-byte
2: Reserved
3: enabled with element_size = 16-byte

const_index_stride 2 Used only when const_swizzle_en = true. Number of contiguous indices for a single
element (of const_element_size=4 or 16 bytes) before switching to the next element.
8, 16, 32 or 64 indices.

Table 45. Address Components from GPRs

Field Size Description
SGPR_offset 32 An unsigned byte-offset to the address. Comes from an SGPR or M0.
VGPR_offset 32 An optional unsigned byte-offset. It is per-thread, and comes from a VGPR.
VGPR_index 32 An optional index value. It is per-thread and comes from a VGPR.

The final buffer memory address is composed of three parts:

• the base address from the buffer resource (V#),
• the offset from the SGPR, and
• a buffer-offset that is calculated differently, depending on whether the buffer is linearly addressed (a

simple Array-of-Structures calculation) or is swizzled.

Address Calculation for a Linear Buffer

9.4.1. Range Checking

Buffer addresses are checked against the size of the memory buffer. Loads that are out of range return zero,
and stores and atomics are dropped. Range checking is per-component for non-formatted loads and stores that
are larger than one DWORD. Note that load/store_B64, B96 and B128 are considered "2-DWORD/3-DWORD/4-
DWORD load/store", and each DWORD is bounds checked separately. The method of clamping is controlled by
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a 2-bit field in the buffer resource: OOB_SELECT (Out of Bounds select).

Table 46. Buffer Out Of Bounds Selection

OOB
SELECT

Out of Bounds Check Description or use

0 (index >= NumRecords) || (offset+payload > stride) structured buffers
1 (index >= NumRecords) Raw buffers
2 (NumRecords == 0) do not check bounds (except

empty buffer)
3 Bounds check:

if (swizzle_en && const_stride != 0x0)
   OOB = (index >= NumRecords || (offset+payload > stride))
else
   OOB = (offset+payload > NumRecords)

Where "payload" is the number of bytes the instruction transfers.

Raw
In this mode, "num_records" is
reduced by "sgpr_offset"

Notes:

1. Loads that go out-of-range return zero (except for components with V#.dst_sel = SEL_1 that return 1).
2. Stores that are out-of-range do not store anything.
3. Load/store-format-* instruction and atomics are range-checked "all or nothing" - either entirely in or out.
4. Load/store-B{64,96,128} and range-check per component.

For MTBUF, if any component of the thread is out of bounds, the whole thread is considered out of bounds
and returns zero. For MUBUF, only the components that are out of bounds return zero.

9.4.1.1. Structured Buffer

The address calculation for swizzle_en==0 is: (unswizzled structured buffer)

   ADDR = Base  + baseOff + Ioff +  Stride * Vidx  + (OffEn ? Voff : 0)
          V#      SGPR      INST      V#     VGPR     INST    VGPR

NumRecords for structured buffer is in units of stride.

9.4.1.2. Raw Buffer

   ADDR = Base  + baseOff + Ioff +  (OffEn ? Voff : 0)
          V#      SGPR      INST      INST   VGPR

NumRecords for raw buffer is in units of bytes. This is an exact range check, meaning it includes the payload
and handles multi-DWORD and unaligned correctly. The stride field is ignored.
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9.4.1.3. Scratch Buffer

The address calculation for swizzle_en = 0 is…(unswizzled scratch buffer)

   ADDR = Base  + baseOffset + Ioff +  Stride * TID +  (OffEn ? Voff : 0)
          V#      SGPR          INST      V#     0..63    INST    VGPR

Swizzle of scratch buffer is also supported (and is typical). The MSBs of the TID (TID / 64) is folded into
baseOffset. No range checking (using OOB mode 2).

9.4.1.4. Scalar Memory

Scalar memory does the following, that works with RAW buffers and unswizzled structured buffers:

Addr =   Base  +   offset
           V#       SGPR or Inst

Address Out-of-Range if: offset >= ( (stride==0 ? 1 : stride) * num_records).

Notes

1. Loads that go out-of-range return zero (except for components with V#.dst_sel = SEL_1 that return 1).
Stores that are out of range do not write anything.

2. Load/store-format-* instruction and atomics are range-checked "all or nothing" - either entirely in or out.
3. Load/store-DWORD-x{2,3,4} perform range-check per component.

9.4.2. Swizzled Buffer Addressing

Swizzled addressing rearranges the data in the buffer that may improve cache locality for arrays of structures.
Swizzled addressing also requires DWORD-aligned accesses. A single fetch instruction must not fetch a unit
larger than const_element_size. The buffer’s STRIDE must be a multiple of const_element_size.

const_element_size is either 4 or 16 bytes, depending on the setting of V#.swizzle_enable

Index        = (inst_idxen ? vgpr_index : 0) + (const_add_tid_enable ? thread_id[5:0] : 0)
Offset       = (inst_offen ? vgpr_offset : 0) + inst_offset

index_msb      = index / const_index_stride
index_lsb      = index % const_index_stride
offset_msb     = offset / const_element_size
offset_lsb     = offset % const_element_size

buffer_offset  = (index_msb * const_stride + offset_msb * const_element_size) * const_index_stride +
                  index_lsb * const_element_size + offset_lsb

Final Address = const_base + sgpr_offset + buffer_offset
    The "sgpr_offset" is not a part of the "offset" term in the above equations - it's in the "base".
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Example of Buffer Swizzling

9.5. Alignment
Formatted ops such as BUFFER_LOAD_FORMAT_* must be aligned as follows:

• 1-byte formats require 1-byte alignment
• 2-byte formats require 2-byte alignment
• 4-byte and larger formats require 4-byte alignment

Atomics must be aligned to the data size, or triggers a MEMVIOL.

Memory alignment enforcement for non-formatted ops is controlled by a configuration register:
SH_MEM_CONFIG.alignment_mode.

Options are:
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0. : DWORD - hardware automatically aligns request to the smaller of: element-size or DWORD.
For DWORD or larger loads or stores of non-formatted ops (such as BUFFER_LOAD_DWORD), the two
LSBs of the byte-address are ignored, thus forcing DWORD alignment.

1. : DWORD_STRICT - must be aligned to the smaller of: element-size or DWORD.
2. : STRICT - access must be aligned to data size
3. : UNALIGNED - any alignment is allowed

Options 1 and 2 report MEMVIOL if a request is made with incorrect address alignment. In options 1 and 2,
loads that are misaligned return zero, and stores that are misaligned are discarded. Note that in this context
"element-size" refers to the size of the data transfer indicated by the instruction, not const_element_size.

9.6. Buffer Resource
The buffer resource (V#) describes the location of a buffer in memory and the format of the data in the buffer.
It is specified in four consecutive SGPRs (4-SGPR aligned) and sent to the texture cache with each buffer
instruction.

The table below details the fields that make up the buffer resource descriptor.

Table 47. Buffer Resource Descriptor

Bits Size Name Description
47:0 48 Base address Byte address.
61:48 14 Stride Bytes 0 to 16383
63:62 2 swizzle Enable Swizzle AOS according to stride, index_stride and element_size;

otherwise linear.
0: disabled
1: enabled with element_size = 4byte
2: Reserved
3: enabled with element_size = 16byte

95:64 32 Num_records In units of stride if (stride >=1), else in bytes.
98:96 3 Dst_sel_x Destination channel select:

0=0, 1=1, 4=R, 5=G, 6=B, 7=A101:99 3 Dst_sel_y
104:102 3 Dst_sel_z
107:105 3 Dst_sel_w
113:108 6 Format Memory data type.
118:117 2 Index stride 0:8, 1:16, 2:32, or 3:64. Used for swizzled buffer addressing.
119 1 Add tid enable Add thread ID to the index for to calculate the address.
123:122 2 Reserved Set to zero.
125:124 2 OOB_SELECT Out of bounds select.
127:126 2 Type Value == 0 for buffer. Overlaps upper two bits of four-bit TYPE field in

128-bit V# resource.

Unbound Resources

Setting the resource constant to all zeros has the effect of forcing any loads to return zero, and stores to be
ignored. This is keyed off the "data-format" being set to zero (INVALID), and for MUBUF the "add_tid_en =
false".

Resource - Instruction mismatch

"RDNA3" Instruction Set Architecture

9.6. Buffer Resource 92 of 600



If the resource type and instruction mismatch (e.g. a buffer constant with an image instruction, or an image
resource with a buffer instruction), the instruction is ignored (loads return nothing and stores do not alter
memory).
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Chapter 10. Vector Memory Image Instructions
Vector Memory (VMEM) Image operations transfer data between the VGPRs and memory through the texture
cache. Image operations support access to image objects such as texture maps and typed surfaces. Sample
operations read multiple elements from a surface and combine them to produce a single result per lane.

Image objects are accessed using from one to four dimensional addresses; they are composed of homogeneous
samples, each sample containing one to four elements. These image objects are read from, or written to, using
IMAGE_* or SAMPLE_* instructions, all of which use the MIMG instruction format. IMAGE_LOAD instructions
load an element from the image buffer directly into VGPRS, and SAMPLE instructions use sampler constants
(S#) and apply filtering to the data after it is read. IMAGE_ATOMIC instructions combine data from VGPRs with
data already in memory, and optionally return the value that was in memory before the operation.

VMEM image operations use an image resource constant (T#) that is a 128-bit or 256-bit value in SGPRs. This
constant is sent to the texture cache when the instruction is executed. This constant defines the address, data
format, and characteristics of the surface in memory. Some image instructions also use a sampler constant that
is a 128-bit constant in SGPRs. Typically, these constants are fetched from memory using scalar memory loads
prior to executing VM instructions, but these constants can also be generated within the shader.

Texture fetch instructions have a data mask (DMASK) field. DMASK specifies how many data components it
receives. If DMASK is less than the number of components in the texture, the texture unit only sends DMASK
components, starting with R, then G, B, and A. if DMASK specifies more than the texture format specifies, the
shader receives data based on T#.DST_SEL for the missing components. Image ops do not generate MemViol -
instead they apply clamp modes if the address goes out of range.

Memory operations of different types (e.g. loads, stores and samples) can complete out of order with respect to
each other.

10.1. Image Instructions
This section describes the image instruction set, and the microcode fields available to those instructions.

MIMG Instructions
IMAGE_SAMPLE
IMAGE_SAMPLE_G16

Load and filter data from a image object
Sample with 16-bit gradients

IMAGE_GATHER4 Load and return samples from 4 texels for software filtering. Returns a single
component, starting with the lower-left texel and in counter-clockwise order.

IMAGE_GATHER4H 4H: fetch 1 component per texel from 4x1 texels
"DMASK" selects which component to load (R,G,B,A) and must have only one bit
set to 1.

IMAGE_LOAD_{-, PCK, PCK_SGN}
IMAGE_LOAD_MIP_{-, PCK, PCK_SGN }

Load data from an image object
Load data from an image object from a specified mip level.

IMAGE_MSAA_LOAD Load up to 4 samples of 1 component from an MSAA resource with a user-
specified fragment ID.
Uses DMASK as component select - it behaves like gather4 ops and returns 4
VGPR (2 if D16=1).

IMAGE_STORE_{-, PCK }
IMAGE_STORE_MIP_{-, PCK }

Store data to an image object to a specific mipmap level
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MIMG Instructions
IMAGE_ATOMIC_{SWAP, CMPSWAP,
ADD, SUB, SMIN, UMIN, SMAX, UMAX,
AND, OR, XOR, INC, DEC }

Image atomic operations

IMAGE_GET_RESINFO Return resource info into 4 VGPRs for the MIP level specified. These are 32bit
integer values:
VDATA3-0 = { #mipLevels, depth, height, width }
For cubemaps, depth = 6 * Number_of_array_faces.
(DX expects the # of cubes, but gets # of faces instead)

IMAGE_GET_LOD Return the calculated LOD. Treated as a Sample instruction.
Returns the "raw" LOD and the "clamped" LOD into VDATA as two 32 bit floats:
First VGPR = clampLOD
Second VGPR = rawLOD

Table 48. Instruction Fields

Instruction Fields
Field Size Description
OP 8 Opcode
VADDR 8 Address of VGPR to supply first component of address.
VDATA 8 Address of VGPR to supply first component of store-data or receive first component of load-data.
SSAMP 5 SGPR to supply S# (sampler constant) in 4 consecutive SGPRs.

missing 2 LSB’s of SGPR-address since must be aligned to 4.
SRSRC 5 SGPR to supply T# (resource constant) in 8 consecutive SGPRs.

missing 2 LSB’s of SGPR-address since must be aligned to 4.
UNRM 1 Force address to be un-normalized. Must be set to 1 for Image stores & atomics.

0: for image ops with samplers, S,T,R from [0.0, 1.0] span the entire texture map;
1: for image ops with samplers, S,T,R from [0.0 to N] span the texture map, where N is width,
height or depth. Array/cube slice, lod, bias etc. are not affected. Image ops without sampler are
not affected. UINT inputs are "unnormalized".
This bit is logically OR’d with the S#.force_unnormalized bit.

R128 1 Texture Resource Size: 1 = 128bits, 0 = 256bits
A16 1 Address components are 16-bits (instead of the usual 32 bits).

When set, all address components are 16 bits (packed into 2 per DWORD), except:
Texel offsets (3 6bit UINT packed into 1 DWORD)
PCF reference (for "_C" instructions)
Address components are 16b uint for image ops without sampler; 16b float with sampler.

DIM 3 Surface Dimension:

0: 1D 4: 1d array
1: 2D 5: 2d array
2: 3D 6: 2d msaa
3: cube 7: 2d msaa array
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Instruction Fields
DMASK 4 Data VGPR enable mask: 1 .. 4 consecutive VGPRs

Loads: defines which components are returned: 0=red,1=green,2=blue,3=alpha
Stores: defines which components are written with data from VGPRs (missing components get 0).
Enabled components come from consecutive VGPRs.
E.G. DMASK=1001 : Red is in VGPRn and alpha in VGPRn+1.

For D16 loads, DMASK indicates which components to return;
For D16 stores, the DMASK the mask indicates which components to store but has restrictions:
Data is read out of consecutive VGPRs: LSB’s of VDATA, then MSB’s of VDATA then LSB’s
of VDATA+1 and last if needed MSB’s of VDATA+1. This is regardless of which DMASK bits
are set, only how many bits are set. The position of the DMASK bits controls which components
are written in memory.
If DMASK==0, the TA overrides DMASK=1 and puts zeros in VGPR followed by LWE status if exists. TFE
status is not generated since the fetch is dropped.
For IMAGE_GATHER4* instructions, DMASK indicates which component (RGBA), and the
number of VGPRs to use is determined automatically by hardware (4 VGPRs when D16=0, and 2
VGPRs when D16=1).

GLC 1 Group Level Coherent.
Atomics:
1 = return the memory value before the atomic operation is performed.
0 = do not return anything.

DLC 1 Device Level Coherent. Controls behavior of L1 cache (GL1).
SLC 1 System Level Coherent.
TFE 1 Texel Fault Enable for PRT (Partially Resident Textures). When set, fetch may return a NACK that

causes a VGPR write into DST+1 (first GPR after all fetch-dest gprs).
LWE 1 LOD Warning Enable. When set to 1, a texture fetch may return "LOD_CLAMPED = 1", and causes

a VGPR write into DST+1 (first GPR after all fetch-dest gprs). LWE only works for sampler ops;
LWE is ignored for non-sampler ops.

D16 1 VGPR-Data-16bit. On loads, convert data in memory to 16-bit format before storing it in VGPRs.
For stores, convert 16-bit data in VGPRs to the memory format before going to memory. Whether
the data is treated as float or int is decided by NFMT. Allowed only with these opcodes:

• IMAGE_SAMPLE*
• IMAGE_GATHER4
• IMAGE_LOAD
• IMAGE_LOAD_MIP
• IMAGE_STORE
• IMAGE_STORE_MIP

NSA 1 Non-Sequential Address
When NSA=0, the image addresses must be in sequential VGPRs starting at 'VADDR'.
When NSA=1, the instruction encoding allows up to 5 address components to be specified
separately by using an additional instruction DWORD.

ADDR1-4 4 x 8 Four 8-bit VGPR address fields, used by NSA. The "VADDR" field provides ADDR0.

10.1.1. Texture Fault Enable (TFE) and LOD Warning Enable (LWE)

This is related to "Partially Resident Textures".

When either of these bits are set in the instruction, any texture fetch may return one extra VGPR after all of the
data-return VGPRs. This data is returned uniquely to each thread and indicates the error / warning status of
that thread.
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The data returned is: TEXEL_FAIL | (LOD_WARNING << 1) | (LOD << 16)

• TEXEL_FAIL : 1 bit indicating that 1 or more texels for this pixel produced a NACK.
"failure" means accessing an unmapped page.

◦ TFE == 0
▪ TD writes the data for threads that didn’t NACK to VGPR DST
▪ TD writes zeros or the result of blend using zeros for samples that NACKed to VGPR DST

◦ TFE == 1
▪ VGPR DST is written similar to above
▪ TD writes to VGPR DST+1 with a status where the bits corresponding to threads that NACKed are

set to 1
• LOD_WARNING : 1 bit indicating a that a pixel attempted to access a texel at too small a LOD:

warn = ( LOD < T#.min_lod_warning)
• LOD : indicates which LOD was attempted to be accessed that caused the NACK. Returns the floor of the

requested LOD.

A pixel cannot receive both TEXEL_FAIL and LOD_WARNING: TEXEL_FAIL takes precedence.

10.1.2. D16 Instructions

Load-format and store-format instructions also come in a "d16" variant. For stores, each 32-bit VGPR holds two
16-bit data elements that are passed to the texture unit. The texture unit converts them to the texture format
before writing to memory. For loads, data returned from the texture unit is converted to 16 bits, and a pair of
data are stored in each 32- bit VGPR (LSBs first, then MSBs). The DMASK bit represents individual 16- bit
elements; so, when DMASK=0011 for an image-load, two 16-bit components are loaded into a single 32-bit
VGPR.

10.1.3. A16 Instructions

The A16 instruction bit indicates that the address components are 16 bits instead of the usual 32 bits.
Components are packed such that the first address component goes into the low 16 bits ([15:0]), and the next
into the high 16 bits ([31:16]).

10.1.4. G16 Instructions

The instructions with "G16" in the name mean the user provided derivatives are 16 bits instead of the usual 32
bits. Derivatives are packed such that the first derivative goes into the low 16 bits ([15:0]), and the next into the
high 16 bits ([31:16]).

10.1.5. Image Non-Sequential Address (NSA)

To avoid having many V_MOV instructions to pack image address VGPRs together, MIMG supports a "Non
Sequential Address" version of the instruction where the VGPR of every address component is uniquely
defined. Data components are still packed. This format creates a larger instruction word, which can be up to 3
DWORDs long. The first address goes in the VADDR field, and subsequent addresses go into ADDR1-4. This 3
DWORD form of the instruction can supply up to 5 addresses.
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NSA allows an image instruction to specify up to 5 unique address VGPRs. These are the rules for how
instructions requiring more than 5 addresses are handled with NSA. It is permissible to use non-NSA mode
where all addresses are in sequential VGPRs.

• VADDR provides the first address component
• ADDR1 provides the second address component
• ADDR2 provides the third address component
• ADDR3 provides the fourth address component
• ADDR4 provides all additional components in sequential VGPRs: VADDR4, VADDR4+1, etc.

When using 16-bit addresses, each VGPR holds a pair of addresses and these cannot be located in different
VGPRs. The lower numbered 16-bit value is in the LSBs of the VGPR.

For Ray Tracing, the VGPRs are divided up into 5 groups of VGPRs. The VGPRs within each group must be
contiguous, but the groups can be scattered. The packing is different when A16=1 because RayDir.Z and
RayInvDir.x are in the same DWORD. In A16 mode, the RayDir and RayInvDir are merged into 3 VGPRs but in a
different order: RayDir and RayInvDir per component share a VGPR.

10.2. Image Opcodes with No Sampler
For image opcodes with no sampler, all VGPR address values are taken as uint.
For cubemaps, face_id = slice * 6 + face.

MSAA surfaces support only load, store and atomics; not load-mip or store-mip.

The table below shows the contents of address VGPRs for the various image opcodes.

Opcode a16[0] type acnt VGPRn[31:0] VGPRn+1[31:0] VGPRn+2[31:0] VGPRn+3[31:0]
GET_RESINFO x Any 0 mipid
MSAA_LOAD 0 2D MSAA 2 s t fragid

2D Array MSAA 3 s t slice fragid
1 2D MSAA 2 t, s -, fragid

2D Array MSAA 3 t, s fragid, slice
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Opcode a16[0] type acnt VGPRn[31:0] VGPRn+1[31:0] VGPRn+2[31:0] VGPRn+3[31:0]
LOAD
LOAD_PCK
LOAD_PCK_SGN
STORE
STORE_PCK

0 1D 0 s
2D 1 s t
3D 2 s t r
Cube/Cube Array 2 s t face
1D Array 1 s slice
2D Array 2 s t slice
2D MSAA 2 s t fragid
2D Array MSAA 3 s t slice fragid

1 1D 0 -, s
2D 1 t, s
3D 2 t, s -, r
Cube/Cube Array 2 t, s -, face
1D Array 1 slice, s
2D Array 2 t, s -, slice
2D MSAA 2 t, s -, fragid
2D Array MSAA 3 t, s fragid, slice

ATOMIC 0 1D 0 s
2D 1 s t
3D 2 s t r
1D Array 1 s slice
2D Array 2 s t slice
2D MSAA 2 s t fragid
2D Array MSAA 3 s t slice fragid

1 1D 0 -, s
2D 1 t, s
3D 2 t, s -, r
1D Array 1 slice, s
2D Array 2 t, s -, slice
2D MSAA 2 t, s -, fragid
2D Array MSAA 3 t, s fragid, slice

LOAD_MIP
LOAD_MIP_PCK
LOAD_MIP_PCK_SGN
STORE_MIP
STORE_MIP_PCK

0 1D 1 s mipid
2D 2 s t mipid
3D 3 s t r mipid
Cube/Cube Array 3 s t face mipid
1D Array 2 s slice mipid
2D Array 3 s t slice mipid

1 1D 1 mipid, s
2D 2 t, s -, mipid
3D 3 t, s mipid, r
Cube/Cube Array 3 t, s mipid, face
1D Array 2 slice, s -, mipid
2D Array 3 t, s mipid, slice

• Image_Load : image_load, image_load_mip, image_load_{pck, pck_sgn, mip_pck, mip_pck_sgn}
• Image_Store: image_store, image_store_mip
• Image_Atomic_*: swap, cmpswap, add, sub, {u,s}{min,max}, and, or, xor, inc, dec.

"ACNT" is the Address Count: the number of VGPRs that supply the "body" of the address, derived from the
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instruction’s DIM field and the opcode.

10.3. Image Opcodes with a Sampler
Opcodes with a sampler: all VGPR address values are taken as FLOAT except for Texel-offset which are UINT.
For cubemaps, face_id = slice * 8 + face.
(Note that the "*8" differs from the non-sampler case which is "*6").
Certain sample and gather opcodes require additional values from VGPRs beyond what is shown in the table
below. These values are: offset, bias, z-compare and gradients. Please see the next section for details. MSAA
surfaces do not support sample or gather4 operations.

Opcode a16[0] acnt type VGPRn[31:0] VGPRn+1[31:0] VGPRn+2[31:0] VGPRn+3[31:0]
Sample
GetLod

0 0 1D s
1 2D s t
2 3D s t r
2 Cube(Array) s t face
1 1D Array s slice
2 2D Array s t slice

1 0 1D -, s
1 2D t, s
2 3D t, s -, r
2 Cube(Array) t, s -, face
1 1D Array slice, s
2 2D Array t, s -, slice

Sample "_L": 0 1 1D s lod
2 2D s t lod
3 3D s t r lod
3 Cube(Array) s t face lod
2 1D Array s slice lod
3 2D Array s t slice lod

1 1 1D lod, s
2 2D t, s -, lod
3 3D t, s lod, r
3 Cube(Array) t, s lod, face
2 1D Array slice, s -, lod
3 2D Array t, s lod, slice

Sample "_CL": 0 1 1D s clamp
2 2D s t clamp
3 3D s t r clamp
3 Cube(Array) s t face clamp
2 1D Array s slice clamp
3 2D Array s t slice clamp

1 1 1D clamp, s
2 2D t, s -, clamp
3 3D t, s clamp, r
3 Cube(Array) t, s clamp, face
2 1D Array slice, s -, clamp
3 2D Array t, s clamp, slice
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Opcode a16[0] acnt type VGPRn[31:0] VGPRn+1[31:0] VGPRn+2[31:0] VGPRn+3[31:0]
Gather 0 1 2D s t

2 Cube(Array) s t face
2 2D Array s t slice

1 1 2D t, s
2 Cube(Array) t, s -, face
2 2D Array t, s -, slice

Gather "_L" 0 2 2D s t lod
3 Cube(Array) s t face lod
3 2D Array s t slice lod

1 2 2D t, s -, lod
3 Cube(Array) t, s lod, face
3 2D Array t, s lod, slice

Gather "_CL" 0 2 2D s t clamp
3 Cube(Array) s t face clamp
3 2D Array s t slice clamp

1 2 2D t, s -, clamp
3 Cube(Array) t, s clamp, face
3 2D Array t, s clamp, slice

The table below lists and briefly describes the legal suffixes for image instructions:

Table 49. Sample Instruction Suffix Key

Suffix Meaning Extra Addresses Description
_L LOD - LOD is used instead of computed LOD.
_B LOD BIAS 1: lod bias Add this BIAS to the computed LOD.
_CL LOD CLAMP - Clamp the computed LOD to be no larger than this value.
_D Derivative 2,4 or 6: slopes Send dx/dv, dx/dy, etc. slopes to be used in LOD computation.
_LZ Level 0 - Force use of MIP level 0.
_C PCF 1: z-comp Percentage closer filtering.
_O Offset 1: offsets Send X, Y, Z integer offsets (packed into 1 DWORD) to offset XYZ address.
_G16 Gradient 16b - Gradients are 16-bits instead of 32-bits, packed 2 gradients per VGPR (dX in

low 16bits, dY in high 16bits).

10.4. VGPR Usage
Address: The address consists of up to 5 parts: { offset } { bias } { z-compare } { derivative } { body }

These are all packed into consecutive VGPRs, (may be non-consecutive if "NSA" is used), and can consist of up to
12 values.

• Offset: SAMPLE*O*, GATHER*O*
1 DWORD of 'offset_xyz' . The offsets are 6-bit signed integers: X=[5:0], Y=[13:8], Z=[21:16]

• Bias: SAMPLE*B*, GATHER*B*. 1 DWORD float.
• Z-compare: SAMPLE*C*, GATHER*C*. 1 DWORD.
• Derivatives (SAMPLE_D): 2,4 or 6 DWORDS - these packed 1 DWORD per derivative as shown below (F32).
• Body: One to four DWORDs, as defined by the table: Image Opcodes with a Sampler

Address components are X,Y,Z,W with X in VGPR[M], Y in VGPR[M]+1, etc.
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The number of components in "body" is the value of the ACNT field in the table, plus one.

Address components are X,Y,Z,W with X in VGPR[M], Y in VGPR[M]+1, etc.

Note: Bias and Derivatives are mutually exclusive - the shader can use one or the other, but not both.

32-bit derivatives:

Image Dim VGPR N N+1 N+2 N+3 N+4 N+5
1D dx/dh dx/dv - - - -
2D/cube dx/dh dy/dh dx/dv dy/dv -  — 
3D dx/dh dy/dh dz/dh dx/dv dy/dv dz/dv

16-bit derivatives:

Image Type VGPR_D VGPR_D+1 VGPR_D+2 VGPR_D+3
1 (1D, 1D Array) 16’hx, dx/dh 16’hx dx/dv - -
2 (2D, 2D Array, Cubemap) dy/dh, dx/dh dy/dv, dx/dv - -
3 (3D) dy/dh, dx/dh 16’hx, dz/dh dy/dv, dx/dv 16’hx, dz/dv

The "A16" instruction bit specifies that address components are 16 bits instead of the usual 32 bits.

Data :
data is stored from or returned to 1-4 consecutive VGPRs. The amount of data loaded or stored is completely
determined by the DMASK field of the instruction.

Loads
DMASK specifies which elements of the resource are returned to consecutive VGPRs. The texture system
loads data from memory and based on the data format expands it to a canonical RGBA form, filling in
values for missing components based on T#.dst_sel. Then DMASK is applied and only those components
selected are returned to the shader.

Stores
When writing an image object, it is only possible to write an entire element (all components) - not only
individual components. The components come from consecutive VGPRs and the texture system fill in the
value zero for any missing components of the image’s data format, and ignore any values that are not part
of the stored data format. For example if the DMASK=1001, the shader sends Red from VGPR_N and Alpha from
VGPR_N+1 to the texture unit. If the image object is RGB, the texel is overwritten with Red from the VGPR_N,
Green and Blue set to zero, and Alpha from the shader ignored. For D16=1, the DMASK has 1 bit set per 16-bits of
data to be written from VGPRs to memory. The position of the bits in DMASK is irrelevant, only the number
of bits set to 1.

"D16" instructions
Load and store instructions also come in a "d16" variant. For stores, each 32bit VGPR holds two 16bit data
elements that are passed to the texture unit which in turn, converts to the texture format before writing to
memory. For loads, data returned from the texture unit is converted to 16 bits and a pair of data are stored
in each 32bit VGPR (LSBs first, then MSBs). If there is only one component, the data goes into the lower half
of the VGPR unless the "HI" instruction variant is used in which case the high-half of the VGPR is loaded
with data.
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Atomics
Image atomic operations are supported only on 32- and 64-bit-per-pixel surfaces. The surface data format is
specified in the resource constant. Atomic operations treat the element as a single component of 32- or 64-
bits. For atomic operations, DMASK is set to the number of VGPRs (DWORDs) to send to the texture unit.
DMASK legal values for atomic image operations: All other values of DMASK are illegal.

• 0x1 = 32bit atomics except cmpswap
• 0x3 = 32bit atomic cmpswap
• 0x3 = 64bit atomics except cmpswap
• 0xf = 64bit atomic cmpswap
• Atomics with Return: Data is read out of the VGPR(s), starting at VDATA, to supply to the atomic

operation. If the atomic returns a value to VGPRs, that data is returned to those same VGPRs starting at
VDATA.

The DMASK must be compatible with the resource’s data format.

Denormals in Floats
Sample ops flush denormals, and loads do not modify denormals.

10.4.1. Data format in VGPRs

Data in VGPRs sent to texture (stores) or returned from texture (loads) is in one of a few standard formats, and
the texture unit converts to/from the memory format.

FORMAT VGPR data format If D16==1
SINT signed 32-bit integer 16 bit signed int
UINT unsigned 32-bit integer 16 bit unsigned int
others 32-bit float 16 bit float
Atomics depends on opcode: uint or float -
ASTC data formats 32-bit float -

10.5. Image Resource
The image resource (also referred to as T#) defines the location of the image buffer in memory, its dimensions,
tiling, and data format. These resources are stored in four or eight consecutive SGPRs and are read by MIMG
instructions. All undefined or reserved bit must be set to zero unless otherwise specified.

Table 50. Image Resource Definition

Bits Size Name Comments
128-bit Resource: 1D-tex, 2d-tex, 2d-msaa (multi-sample anti-aliasing)
39:0 40 base address 256-byte aligned (represents bits 47:8).
47 1 Big Page 0 = No page size override, 1 = coalesce page translation requests to 64kB

granularity. Use only when entire resource uses pages 64kB or greater.
51:48 4 max mip MSAA resources: holds Log2(number of samples); others holds:

MipLevels-1. This describes the resource, not the resource view.
59:52 8 format Memory Data format
75:62 14 width width-1 of mip 0 in texels
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Bits Size Name Comments
91:78 14 height height-1 of mip 0 in texels
98:96 3 dst_sel_x 0 = 0, 1 = 1, 4 = R, 5 = G, 6 = B, 7 = A.
101:99 3 dst_sel_y
104:102 3 dst_sel_z
107:105 3 dst_sel_w
111:108 4 base level largest mip level in the resource view. For MSAA, this should be set to 0
115:112 4 last level smallest mip level in resource view. For MSAA, holds log2(number of

samples).
123:121 3 BC Swizzle Specifies channel ordering for border color data independent of the T#

dst_sel_*s. Internal xyzw channels get the following border color
channels as stored in memory. 0=xyzw, 1=xwyz, 2=wzyx, 3=wxyz, 4=zyxw,
5=yxwz

127:124 4 type 0 = buf, 8 = 1d, 9 = 2d, 10 = 3d, 11 = cube, 12 = 1d-array, 13 = 2d-array, 14 =
2d-msaa, 15 = 2d-msaa-array. 1-7 are reserved.

256-bit Resource: 1d-array, 2d-array, 3d, cubemap, MSAA
140:128 13 depth Depth-1 of Mip0 for a 3D map; last array slice for a 2D-array or 1D-array

or cube-map; (pitch-1)[12:0] of mip0 for 1D, 2D, 2D-MSAA resources if
pitch > width.

141 1 Pitch[13] (pitch-1)[13] of mip0 for 1D, 2D and 2D-MSAA.
156:144 13 base array First slice in array of the resource view.
163:160 4 array pitch For 3D, bit 0 indicates SRV or UAV:

0: SRV (base_array ignored, depth w.r.t. base map)
1: UAV (base_array and depth are first and last layer in view, and w.r.t.
mip level specified)

179:168 12 min lod warn feedback trigger for LOD, u4.8 format
183 1 corner samples mod Describes how texels were generated in the resource. 0=center sampled,

1 = corner sampled.
198:187 12 min_lod smallest LOD allowed for PRTs, U4.8 format
198:187 12 min LOD smallest LOD allowed for PRTs, u4.8 format.
202 1 Iterate 256 Indicates that compressed tiles in this surface have been flushed out to

every 256B of the tile. Applies only to MSAA depth surfaces.
211 1 Meta Pipe Aligned Maintains pipe alignment in metadata addressing (DCC and tiling)
213 1 Compression Enable enable delta color compression (DCC)
214 1 Alpha is on MSB Set to 1 if the surface’s component swap is not reversed (DCC)
215 1 Color Transform Auto=0, none=1 (DCC)
255:216 40 Meta Data Address Upper bits of meta-data address (DCC) [47:8]

A resource that is all zeros is treated as 'unbound': it returns all zeros and not generate a memory transaction.
The "resource-level" field is ignored when checking for "all zeros".

10.6. Image Sampler
The sampler resource (also referred to as S#) defines what operations to perform on texture map data loaded
by sample instructions. These are primarily address clamping and filter options. Sampler resources are
defined in four consecutive SGPRs and are supplied to the texture cache with every sample instruction.

Table 51. Image Sampler Definition
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Bits Size Name Description
2:0 3 clamp x Clamp/wrap mode:

0: Wrap
1: Mirror
2: ClampLastTexel
3: MirrorOnceLastTexel
4: ClampHalfBorder
5: MirrorOnceHalfBorder
6: ClampBorder
7: MirrorOnceBorder

5:3 3 clamp y

8:6 3 clamp z

11:9 3 max aniso ratio 0 = 1:1
1 = 2:1
2 = 4:1
3 = 8:1
4 = 16:1

14:12 3 depth compare func 0: Never
1: Less
2: Equal
3: Less than or equal
4: Greater
5: Not equal
6: Greater than or equal
7: Always

15 1 force unnormalized Force address cords to be unorm: 0 = address coordinates are
normalized, in [0,1); 1 = address coordinates are unnormalized in the
range [0,dim).

18:16 3 aniso threshold threshold under which floor(aniso ratio) determines number of samples
and step size

19 1 mc coord trunc enables bilinear blend fraction truncation to 1 bit for motion
compensation

20 1 force degamma force format to srgb if data_format allows
26:21 6 aniso bias 6 bits, in u1.5 format.
27 1 trunc coord selects texel coordinate rounding or truncation.
28 1 disable cube wrap disables seamless DX10 cubemaps, allows cubemaps to clamp according

to clamp_x and clamp_y fields
30:29 2 filter_mode 0 = Blend (lerp); 1 = min, 2 = max.
31 1 skip degamma disabled degamma (sRGB→Linear) conversion.
43:32 12 min lod minimum LOD ins resource view space (0.0 = T#.base_level) u4.8.
55:44 12 max lod maximum LOD ins resource view space
77:64 14 lod bias LOD bias s6.8.
83:78 6 lod bias sec bias (s2.4) added to computed LOD
85:84 2 xy mag filter Magnification filter: 0=point, 1=bilinear, 2=aniso-point, 3=aniso-linear
87:86 2 xy min filter Minification filter: 0=point, 1=bilinear, 2=aniso-point, 3=aniso-linear
89:88 2 z filter Volume Filter: 0=none (use XY min/mag filter), 1=point, 2=linear
91:90 2 mip filter Mip level filter: 0=none (disable mipmapping,use base-leve), 1=point,

2=linear
94 1 Blend PRT For PRT fetches, bled the PRT_default valu for non-resident levels
107:96 12 border color ptr
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Bits Size Name Description
127:126 2 border color type Opaque-black, transparent-black, white, use border color ptr.

0: Transparent Black
1: Opaque Black
2: Opaque White
3: Register (User border color, pointed to by border_color_ptr)"

10.7. Data Formats
The table below details all the data formats that can be used by image and buffer resources.

Table 52. Buffer and Image Data Formats

# Format # Format # Format
0 INVALID 31 11_11_10_FLOAT 64 8_SRGB
1 8_UNORM 32 10_10_10_2_UNORM 65 8_8_SRGB
2 8_SNORM 33 10_10_10_2_SNORM 66 8_8_8_8_SRGB
3 8_USCALED 34 10_10_10_2_UINT 67 5_9_9_9_FLOAT
4 8_SSCALED 35 10_10_10_2_SINT 68 5_6_5_UNORM
5 8_UINT 36 2_10_10_10_UNORM 69 1_5_5_5_UNORM
6 8_SINT 37 2_10_10_10_SNORM 70 5_5_5_1_UNORM
7 16_UNORM 38 2_10_10_10_USCALED 71 4_4_4_4_UNORM
8 16_SNORM 39 2_10_10_10_SSCALED 72 4_4_UNORM
9 16_USCALED 40 2_10_10_10_UINT 73 1_UNORM
10 16_SSCALED 41 2_10_10_10_SINT 74 1_REVERSED_UNORM
11 16_UINT 42 8_8_8_8_UNORM 75 32_FLOAT_CLAMP
12 16_SINT 43 8_8_8_8_SNORM 76 8_24_UNORM
13 16_FLOAT 44 8_8_8_8_USCALED 77 8_24_UINT
14 8_8_UNORM 45 8_8_8_8_SSCALED 78 24_8_UNORM
15 8_8_SNORM 46 8_8_8_8_UINT 79 24_8_UINT
16 8_8_USCALED 47 8_8_8_8_SINT 80 X24_8_32_UINT
17 8_8_SSCALED 48 32_32_UINT 81 X24_8_32_FLOAT
18 8_8_UINT 49 32_32_SINT 82 GB_GR_UNORM
19 8_8_SINT 50 32_32_FLOAT 83 GB_GR_SNORM
20 32_UINT 51 16_16_16_16_UNORM 84 GB_GR_UINT
21 32_SINT 52 16_16_16_16_SNORM 85 GB_GR_SRGB
22 32_FLOAT 53 16_16_16_16_USCALED 86 BG_RG_UNORM
23 16_16_UNORM 54 16_16_16_16_SSCALED 87 BG_RG_SNORM
24 16_16_SNORM 55 16_16_16_16_UINT 88 BG_RG_UINT
25 16_16_USCALED 56 16_16_16_16_SINT 89 BG_RG_SRGB
26 16_16_SSCALED 57 16_16_16_16_FLOAT
27 16_16_UINT 58 32_32_32_UINT Compressed Formats
28 16_16_SINT 59 32_32_32_SINT 109 BC1_UNORM
29 16_16_FLOAT 60 32_32_32_FLOAT 110 BC1_SRGB
30 10_11_11_FLOAT 61 32_32_32_32_UINT 111 BC2_UNORM

62 32_32_32_32_SINT 112 BC2_SRGB
63 32_32_32_32_FLOAT 113 BC3_UNORM

114 BC3_SRGB
115 BC4_UNORM
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# Format # Format # Format
116 BC4_SNORM
117 BC5_UNORM
118 BC5_SNORM
119 BC6_UFLOAT
120 BC6_SFLOAT
121 BC7_UNORM
122 BC7_SRGB
205 YCBCR_UNORM
206 YCBCR_SRGB

10.8. Vector Memory Instruction Data Dependencies
When a VM instruction is issued, it schedules the reads of address and store-data from VGPRs to be sent to the
texture unit. Any ALU instruction that attempts to write this data before it has been sent to the texture unit is
stalled.

The shader developer’s responsibility to avoid data hazards associated with VMEM instructions include waiting
for VMEM load instruction completion before reading data fetched from the cache (VMCNT and VSCNT).

This is explained in the section: Data Dependency Resolution

10.9. Ray Tracing
Ray Tracing support includes the following instructions:

• IMAGE_BVH_INTERSECT_RAY
• IMAGE_BVH64_INTERSECT_RAY

These instructions receive ray data from the VGPRs and fetch BVH (Bounding Volume Hierarchy) from
memory.

• Box BVH nodes perform 4x Ray/Box intersection, sorts the 4 children based on intersection distance and
returns the child pointers and hit status.

• Triangle nodes perform 1 Ray/Triangle intersection test and returns the intersection point and triangle ID.

The two instructions are identical, except that the "64" version supports a 64-bit address while the normal
version supports only a 32bit address. Both instructions can use the "A16" instruction field to reduce some (but
not all) of the address components to 16 bits (from 32). These addresses are: ray_dir and ray_inv_dir.

10.9.1. Instruction definition and fields

image_bvh_intersect_ray vgpr_d[4], vgpr_a[11], sgpr_r[4]
image_bvh_intersect_ray vgpr_d[4], vgpr_a[8], sgpr_r[4] A16=1
image_bvh64_intersect_ray vgpr_d[4], vgpr_a[12], sgpr_r[4]
image_bvh64_intersect_ray vgpr_d[4], vgpr_a[9], sgpr_r[4]   A16=1
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Table 53. Ray Tracing VGPR Contents

VGPR_
A

BVH A16=0 BVH A16=1 BVH64 A16=0 BVH64 A16=1

0 node_pointer (u32) node_pointer (u32) node_pointer [31:0] (u32) node_pointer [31:0] (u32)
1 ray_extent (f32) ray_extent (f32) node_pointer [63:32] (u32) node_pointer [63:32] (u32)
2 ray_origin.x (f32) ray_origin.x (f32) ray_extent (f32) ray_extent (f32)
3 ray_origin.y (f32) ray_origin.y (f32) ray_origin.x (f32) ray_origin.x (f32)
4 ray_origin.z (f32) ray_origin.z (f32) ray_origin.y (f32) ray_origin.y (f32)
5 ray_dir.x (f32) [15:0] = ray_dir.x (f16)

[31:16] = ray_inv_dir.x (f16)
ray_origin.z (f32) ray_origin.z (f32)

6 ray_dir.y (f32) [15:0] = ray_dir.y (f16)
[31:16] = ray_inv_dir.y(f16)

ray_dir.x (f32) [15:0] = ray_dir.x (f16)
[31:16] = ray_inv_dir.x (f16)

7 ray_dir.z (f32) [15:0] = ray_dir.z (f16)
[31:16] = ray_inv_dir.z (f16)

ray_dir.y (f32) [15:0] = ray_dir.y (f16)
[31:16] = ray_inv_dir.y(f16)

8 ray_inv_dir.x (f32) unused ray_dir.z (f32) [15:0] = ray_dir.z (f16)
[31:16] = ray_inv_dir.z (f16)

9 ray_inv_dir.y (f32) unused ray_inv_dir.x (f32) unused
10 ray_inv_dir.z (f32) unused ray_inv_dir.y (f32) unused
11 unused unused ray_inv_dir.z (f32) unused

Vgpr_d[4] are the destination VGPRs of the results of intersection testing. The values returned here are
different depending on the type of BVH node that was fetched. For box nodes the results contain the 4 pointers
of the children boxes in intersection time sorted order. For triangle BVH nodes the results contain the
intersection time and triangle ID of the triangle tested.

Sgpr_r[4] is the texture descriptor for the operation. The instruction is encoded with use_128bit_resource=1.

Restrictions on image_bvh instructions

• DMASK must be set to 0xf (instruction returns all four DWORDs)
• D16 must be set to 0 (16 bit return data is not supported)
• R128 must be set to 1 (256 bit T#s are not supported)
• UNRM must be set to 1 (only unnormalized coordinates are supported)
• DIM must be set to 0 (BVH textures are 1D)
• LWE must be set to 0 (LOD warn is not supported)
• TFE must be set to 0 (no support for writing out the extra DWORD for the PRT hit status)
• SSAMP must be set to 0 (just a placeholder, since samplers are not used by the instruction)

The return order settings of the BVH ops are ignored instead they use the in-order load return queue.

10.9.2. Using BVH with NSA

When using the BVH instruction with Non-Sequential Address, the BVH components fall into 5 groups each of
which is specified by a NSA address VGPR.

• node pointer : 1 vgpr
• ray extent : 1 vgpr
• ray origin : 3 consecutive vgprs
• ray dir : 3 consecutive vgprs
• ray inv dir : 3 consecutive vgprs (paired with ray-dir for 16-bit addresses)
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NSA and A16:

• A16=0, MIMG-NSA specifies 5 groups of consecutive VGPRs: node_pointer, ray_extent, ray_origin, ray_dir
and ray_inv_dir.

• A16=1, MIMG-NSA specifies 4 groups. In the above set, ray_dir and ray_inv_dir are packed into 3 VGPRs.

When using A16=1 mode, ray-dir and ray-inv-dir share the same vgprs and ADDR4 is unused.

10.9.3. Texture Resource Definition

The T# used with these instructions is different from other image instructions.

Table 54. BVH Resource Definition

Field Bits Size Data
Base Address 39:0 40 Base address of the BVH texture 256 byte aligned
Reserved 54:40 15 Set to zero
Box growing
amount

62:55 8 Number of ULPs to be added during ray-box test, encoded as unsigned integer

Box sorting
enable

63 1 Whether the ray-box test result need to be sorted

Size 105:64 42 Number of nodes minus 1 in the BVH texture used to enforce bounds checking
Reserved 118:106 13 Set to zero
Pointer Flags 119 1 0: Do not use pointer flags or features supported by point flags

1: Utilize pointer flags to enable HW winding, backface cull, opaque/non-opaque
culling and primitive type-based culling.

triangle_return
_mode

120 1 0: Return data for triangle tests are
{0: t_num, 1: t_denom, 2: triangle_id, 3: hit_status}
1: Return data for triangle tests are
{0: t_num, 1: t_denom, 2: I_num, 3: J_num}

llc_stream or
unused

122:121 2 0: use the LLC for load/store if enabled in Mtype
1: use the LLC for load, bypass for store/atomics (store/atomics probe-invalidate)
2: Reserved
3: bypass the LLC for all ops

big_page 123 1 Describes resource page usage
0 : No page size override.
1 : Indicates when a whole resource is only using pages that are >= 64kB in size.

Type 127:124 4 Set to 0x8

Barycentrics
The ray-tracing hardware is designed to support computation of barycentric coordinates directly in hardware.
This uses the "triangle_return_mode" in the table in the previous section (T# descriptor).

Table 55. Ray Tracing Return Mode

DWORD Return Mode =0 Return Mode = 1
Field Name Type Field Name Type

0 t_num float32 t_num float32
1 t_denom float32 t_denom float32
2 triangle_id uint32 I_num float32
3 hit_status uint32 (boolean value) J_num float32

"RDNA3" Instruction Set Architecture

10.9. Ray Tracing 109 of 600



10.10. Partially Resident Textures
"Partially Resident Textures" provides support for texture maps in which not all levels of detail are resident in
memory. The shader compiler declares the texture map as being P.R.T. in the resource, but the shader
program must also be aware of this because if a texture fetch accesses a MIP level that is not present, the
texture unit returns an extra DWORD of status into VGPRs indicating the fetch failure. If any of the texels are
not present in memory, the texture cache returns NACK that causes a non-zero value to be written into
DST_VGPR+1 for each failing thread. The value may represent the LOD requested. The shader program must
allocate this extra VGPR for all PRT texture fetches and check that it is zero after the fetch. This PRT VGPR
must have previously been initialized to zero by the shader.

PRT is enabled when the texture resource MIN_LOD_WARN value is non-zero. Normal textures cannot NACK,
so only PRT’s can get a NACK, and a NACK causes a write to DST_VGPR+Num_VGPRS. E.g. if a SAMPLE loads 4
values into 4 VGPRs: 4,5,6,7 then PRT may return NACK status into VGPR_8.
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Chapter 11. Global, Scratch and Flat Address
Space
Flat, Global and Scratch are a collection of VMEM instructions that allow per-thread access to global memory,
shared memory and private memory. Unlike buffer and image instructions, these do not use an SRD (resource
constant).

Flat is the most generic of the 3 types where per-thread the address may map to global, private or shared
memory. Memory is addressed as a single flat address space, where certain memory address apertures map
these regions. The determination of the memory space to which an address maps is controlled by a set of
"memory aperture" base and size registers. Flat load/store/atomic instructions are effectively a simultaneous
issue of an LDS and GLOBAL instruction at the same time with the same address. The address per-thread is
read from the ADDR VGPR and then tested to see in which address space the data exists.

Flat Address Space ("flat") instructions allow load/store/atomic access to a generic memory address pointer that
can resolve to any of the following physical memories:

• Global memory
• Scratch ("private")
• LDS ("shared")
• Invalid
• But not to: GPRs, GDS or LDS-parameters.

GLOBAL is used when all of the address fall into global memory, not LDS or Scratch. This should be used when
possible (instead of "Flat") as Global does not tie up LDS resources. SCRATCH is similar, but is used to access
scratch (private) memory space.

Scratch (thread-private memory) is an area of memory defined by the aperture registers. When an address
falls in scratch space, additional address computation is automatically performed by the hardware. For waves
that are allocated scratch memory space, the 64-bit FLAT_SCRATCH register is initialized with the a pointer to
that wave’s private scratch memory. Waves that have no scratch memory have FLAT_SCRATCH initialized to
zero. FLAT_SCRATCH is a 64-bit byte address that is implicitly used by Flat and Scratch memory instructions,
and can be manually read via S_GETREG.

The instruction specifies which VGPR supplies the address (per work-item), and that address for each work-
item may be in any one of those address spaces.

Instruction Fields

Field Size Description
OP 8 Opcode: see next table
ADDR 8 VGPR that holds address or offset. For 64-bit addresses, ADDR has the LSB’s and ADDR+1 has the MSBs.

For offset a single VGPR has a 32 bit unsigned offset.
For FLAT_*: specifies an address.
For GLOBAL_* when SADDR is NULL: specifies an address.
For GLOBAL_* when SADDR is not NULL: specifies an offset.
For SCRATCH, specifies an offset if SVE=1
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Field Size Description
DATA 8 VGPR that holds the first DWORD of store-data. Instructions can use 0-4 DWORDs.
VDST 8 VGPR destination for data returned to the shader, either from LOADs or Atomics with GLC=1 (return

pre-op value).
SLC 1 System Level Coherent. Used in conjunction with GLC to determine cache policies.
DLC 1 Device Level Coherent. Controls behavior of L1 cache (GL1).
GLC 1 Group Level Coherent - controls behavior of L0 cache. Atomics: 1 = return the memory value before the

atomic operation is performed.
0 = do not return anything.

SEG 2 Memory Segment: 0=Flat, 1=Scratch, 2=GLOBAL, 3=Reserved
OFFSET 13 Address offset: 13-bit signed byte offset

(Must be positive for Flat; MSB is ignored and forced to zero)
SADDR 7 Scalar SGPR that provides an address of offset (unsigned). To disable use, set this field to NULL. The

meaning of this field is different for Scratch and Global.
Flat: Unused
Scratch: use an SGPR as part of the address
Global: use the SGPR to provide a base address and the VGPR provides a 32-bit byte offset.

SVE 1 Scratch VGPR Enable
When set to 1, scratch instructions include a 32-bit offset from a VGPR;
when set to 0, scratch instructions do not use a VGPR for addressing.

Table 56. Instructions

Flat GLOBAL Scratch
FLAT_LOAD_U8 GLOBAL_LOAD_U8 SCRATCH_LOAD_U8
FLAT_LOAD_D16_U8 GLOBAL_LOAD_D16_U8 SCRATCH_LOAD_D16_U8
FLAT_LOAD_D16_HI_U8 GLOBAL_LOAD_D16_HI_U8 SCRATCH_LOAD_D16_HI_U8
FLAT_LOAD_I8 GLOBAL_LOAD_I8 SCRATCH_LOAD_I8
FLAT_LOAD_D16_I8 GLOBAL_LOAD_D16_I8 SCRATCH_LOAD_D16_I8
FLAT_LOAD_D16_HI_I8 GLOBAL_LOAD_D16_HI_I8 SCRATCH_LOAD_D16_HI_I8
FLAT_LOAD_U16 GLOBAL_LOAD_U16 SCRATCH_LOAD_U16
FLAT_LOAD_I16 GLOBAL_LOAD_I16 SCRATCH_LOAD_I16
FLAT_LOAD_D16_B16 GLOBAL_LOAD_D16_B16 SCRATCH_LOAD_D16_B16
FLAT_LOAD_D16_HI_B16 GLOBAL_LOAD_D16_HI_B16 SCRATCH_LOAD_D16_HI_B16
FLAT_LOAD_B32 GLOBAL_LOAD_B32 SCRATCH_LOAD_B32
FLAT_LOAD_B64 GLOBAL_LOAD_B64 SCRATCH_LOAD_B64
FLAT_LOAD_B96 GLOBAL_LOAD_B96 SCRATCH_LOAD_B96
FLAT_LOAD_B128 GLOBAL_LOAD_B128 SCRATCH_LOAD_B128

FLAT_STORE_B8 GLOBAL_STORE_B8 SCRATCH_STORE_B8
FLAT_STORE_D16_HI_B8 GLOBAL_STORE_D16_HI_B8 SCRATCH_STORE_D16_HI_B8
FLAT_STORE_B16 GLOBAL_STORE_B16 SCRATCH_STORE_B16
FLAT_STORE_D16_HI_B16 GLOBAL_STORE_D16_HI_B16 SCRATCH_STORE_D16_HI_B16

FLAT_STORE_B32 GLOBAL_STORE_B32 SCRATCH_STORE_B32
FLAT_STORE_B64 GLOBAL_STORE_B64 SCRATCH_STORE_B64
FLAT_STORE_B96 GLOBAL_STORE_B96 SCRATCH_STORE_B96
FLAT_STORE_B128 GLOBAL_STORE_B128 SCRATCH_STORE_B128
none GLOBAL_LOAD_ADDTID_B32 none
none GLOBAL_STORE_ADDTID_B32 none

FLAT_ATOMIC_SWAP_B32 GLOBAL_ATOMIC_SWAP_B32 none
FLAT_ATOMIC_CMPSWAP_B32 GLOBAL_ATOMIC_CMPSWAP_B32 none
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Flat GLOBAL Scratch
FLAT_ATOMIC_ADD_U32 GLOBAL_ATOMIC_ADD_U32 none
FLAT_ATOMIC_ADD_F32 GLOBAL_ATOMIC_ADD_F32 none
FLAT_ATOMIC_SUB_U32 GLOBAL_ATOMIC_SUB_U32 none
FLAT_ATOMIC_MIN_I32 GLOBAL_ATOMIC_MIN_I32 none
FLAT_ATOMIC_MIN_U32 GLOBAL_ATOMIC_MIN_U32 none
FLAT_ATOMIC_MAX_I32 GLOBAL_ATOMIC_MAX_I32 none
FLAT_ATOMIC_MAX_U32 GLOBAL_ATOMIC_MAX_U32 none
FLAT_ATOMIC_AND_B32 GLOBAL_ATOMIC_AND_B32 none
FLAT_ATOMIC_OR_B32 GLOBAL_ATOMIC_OR_B32 none
FLAT_ATOMIC_XOR_B32 GLOBAL_ATOMIC_XOR_B32 none
FLAT_ATOMIC_INC_U32 GLOBAL_ATOMIC_INC_U32 none
FLAT_ATOMIC_DEC_U32 GLOBAL_ATOMIC_DEC_U32 none
FLAT_ATOMIC_CMPSWAP_F32 GLOBAL_ATOMIC_CMPSWAP_F32 none
FLAT_ATOMIC_MIN_F32 GLOBAL_ATOMIC_MIN_F32 none
FLAT_ATOMIC_MAX_F32 GLOBAL_ATOMIC_MAX_F32 none
FLAT_ATOMIC_SWAP_B64 GLOBAL_ATOMIC_SWAP_B64 none
FLAT_ATOMIC_CMPSWAP_B64 GLOBAL_ATOMIC_CMPSWAP_B64 none
FLAT_ATOMIC_ADD_U64 GLOBAL_ATOMIC_ADD_U64 none
FLAT_ATOMIC_SUB_U64 GLOBAL_ATOMIC_SUB_U64 none
FLAT_ATOMIC_MIN_I64 GLOBAL_ATOMIC_MIN_I64 none
FLAT_ATOMIC_MIN_U64 GLOBAL_ATOMIC_MIN_U64 none
FLAT_ATOMIC_MAX_I64 GLOBAL_ATOMIC_MAX_I64 none
FLAT_ATOMIC_MAX_U64 GLOBAL_ATOMIC_MAX_U64 none
FLAT_ATOMIC_AND_B64 GLOBAL_ATOMIC_AND_B64 none
FLAT_ATOMIC_OR_B64 GLOBAL_ATOMIC_OR_B64 none
FLAT_ATOMIC_XOR_B64 GLOBAL_ATOMIC_XOR_B64 none
FLAT_ATOMIC_INC_U64 GLOBAL_ATOMIC_INC_U64 none
FLAT_ATOMIC_DEC_U64 GLOBAL_ATOMIC_DEC_U64 none
none GLOBAL_ATOMIC_CSUB_U32

(GLC must be set to 1)
none

11.1. Instructions

11.1.1. FLAT

The Flat instruction set is nearly identical to the BUFFER instruction set, minus the FORMAT loads & stores.

Flat instructions do not use a resource constant (V#) or sampler (S#), but they do use a specific SGPR-pair
(FLAT_SCRATCH) to hold scratch-space information in case any threads' address resolves to scratch space. See
"Scratch" section below.

Since Flat instruction are executed as both an LDS and a Global instruction, Flat instructions increment both
VMcnt (or VScnt) and LGKMcnt and are not considered done until both have been decremented. There is no
way a priori to determine whether a Flat instruction uses only LDS or Global memory space.

When the address from a Flat instruction falls into scratch (private) space, a different addressing mechanism is

"RDNA3" Instruction Set Architecture

11.1. Instructions 113 of 600



used. The address from the VGPR points to the memory space for a specific DWORD of scratch data owned by
this thread. The hardware maps this address to the actual memory address that holds data for all of the threads
in the wave. Flat atomics which map into scratch: 4-byte atomics are supported, and 8-byte atomics return
MEMVIOL.

The wave supplies the offset (for space allocated to this wave) with every Flat request. This is stored in a
dedicated per-wave register: FLAT_SCRATCH, that holds a 64-bit byte address.

The aperture check occurs when VGPRs are read, with invalid addresses being routed to the texture unit. The
"aperture check" is performed before "inst_offset" is added into the address, so it is undefined what occurs if
the addition of inst_offset pushes the address into a different memory aperture.

(Hole) Addr[48] Addr[47] Addr[46] Aperture
0 x x Normal (global memory)
1 0 0 Potential Private (scratch)
1 0 1 Potential Shared (LDS)
1 1 x Invalid

Ordering
Flat instructions may complete out of order with each other. If one Flat instruction finds all of its data in
Texture cache, and the next finds all of its data in LDS, the second instruction might complete first. If the
two fetches return data to the same VGPR, the result is unknown (order is not deterministic). Flat
instructions decrement VMcnt in order for the threads that went to global memory and those are in order
with other scratch, global, texture and buffer instructions. Separately each Flat instruction increments and
decrements LGKMcnt. This is out-of-order with the VMcnt path but is in-order with other DS (LDS)
instructions. Since the data for a Flat load can come from either LDS or the texture cache, and because
these units have different latencies, there is a potential race condition with respect to the VMcnt/VScnt and
LGKMcnt counters. Because of this, the only sensible S_WAITCNT value to use after Flat instructions is
zero.

11.1.2. Global

Global operations transfer data between VGPR and global memory. Global instructions are similar to Flat, but
the programmer is responsible to make sure that no threads access LDS or private space. Because of this, no
LDS bandwidth is used by global instructions.

Since these instructions do not access LDS, only VMcnt (or VScnt) is used, not LGKMcnt. If a global instruction
does attempt to access LDS, the instruction returns MEMVIOL.

Global includes two instructions which do not use any VGPRs for addressing, just SGPRs and INST_OFFSET:

• GLOBAL_LOAD_ADDTID_B32
• GLOBAL_STORE_ADDTID_B32

11.1.3. Scratch

Scratch instructions are similar to global but they access a private (per-thread) memory space that is swizzled.
Because of this, no LDS bandwidth is used by scratch instructions. Scratch instructions also support multi-
DWORD access and mis-aligned access (although mis-aligned is slower).
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Since these instructions do not access LDS, only VMcnt (or VScnt) is used, not LGKMcnt. It is not possible for a
scratch instruction to access LDS, and so no error checking is done (and no aperture check is performed).

11.2. Addressing
Global, Flat and Scratch each have their own addressing modes. Flat addressing is a subset of the global and
scratch modes. 64-bit addresses are stored with the LSB’s in the VGPR at ADDR, and the MSBs in the VGPR at
ADDR+1.

There are 4 distinct shader instructions:

• GLOBAL
• SCRATCH
• LDS
• FLAT - based on per-thread address (VGPR), can load/store: global memory, LDS or scratch memory.

Global Addressing
GV mem_addr = VGPRU64 + INST_OFFSETI13

GVS mem_addr = SGPRU64 + VGPRU32 + INST_OFFSETI13

GT mem_addr = SGPRU64 + INST_OFFSETI13 + ThreadID*4

LDS Addressing (DS ops)
LDS LDS_ADDR = VGPR_addrU32 + INST_OFFSETU16

LDS address is relative to the LDS space allocated to this wave.

Scratch Addressing
SV mem_addr = SCRATCH_BASEU64 + SWIZZLE(VGPR_offsetU32 + INST_OFFSETI13, ThreadID)
SS mem_addr = SCRATCH_BASEU64 + SWIZZLE(SGPR_offsetU32 + INST_OFFSETI13, ThreadID)
SVS mem_addr = SCRATCH_BASEU64 + SWIZZLE(SGPR_offsetU32 + VGPR_offsetU32 + INST_OFFSETI13, ThreadID)
ST mem_addr = SCRATCH_BASEU64 + SWIZZLE(INST_OFFSETI13, ThreadID)

SGPR_offset and VGPR_offset are 32 bits unsigned byte offsets.

The combined offsets inside SWIZZLE() must result in a non-negative number.
The value from an SGPR and VGPR are unsigned 32-bit byte offsets.

Flat Addressing
Aperture test on the address-VGPR value determines: Global/LDS/Scratch per thread (ignores
INST_OFFSET). 
Use one of the 3 address equations per lane depending on which memory it maps to:

GLOBAL (GV) mem_addr = VGPRU64 + INST_OFFSETI13

SCRATCH (SV) mem_addr = SCRATCH_BASE(sgpr:U64) + SWIZZLE(VGPR_offset + INST_OFFSETI13, ThreadID)
LDS LDS_ADDR = VGPR(addr) + INST_OFFSET - sharedApertureBase 

If the address falls into LDS space, it is checked against the range: [0, LDS_allocated_size-1 ]

There is no range checking on this address.

Scratch Addressing Equation

"SWIZZLE(offset,TID)" is hard coded based on wave size (32 or 64)
Swizzle for Scratch is hard-coded to: elem_size=4bytes, const_index_stride=32 (wave32) or 64
(wave64).
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Addr = SCRATCH_BASE + (offset / 4) * 4 * const_index_stride + (offset % 4) + TID*4
where "offset" = either "INST_OFFSET + SGPR_offset" or "INST_OFFSET + VGPR_offset".

Restrictions:

• Inst_offset :
◦ Flat and Scratch-ST mode: must not be negative
◦ Global and Scratch-SS and -SV modes: can be negative
◦ In Scratch SS mode, the inst_offset must be aligned to the payload size: 4 byte aligned for 1-DWORD,

16-byte aligned for 4-DWORD.
▪ Also (SADDR + INST_OFFSET) must be at least DWORD-aligned

SADDR SVE MODE
==NULL 0 ST
!=NULL 0 SS
==NULL 1 SV
!=NULL 1 SVS

Scratch Instruction Modes Indicated by SVE
/ SADDR

SV Addr = FLAT_SCRATCH + swizzle(Voff + Ioff, TID) 1 / NULL
SS Addr = FLAT_SCRATCH + swizzle(Soff + Ioff, TID) 0 / !NULL
ST Addr = FLAT_SCRATCH + swizzle(0 + Ioff, TID) 0 / NULL
SVS Addr = FLAT_SCRATCH + swizzle(Soff + Voff + Ioff, TID) 1 / !NULL
BUFFER_
+ LOAD

Addr = T#.base + Soff + swizzle( (Vidx + TID) * stride + Ioff + Voff)

Global Instruction Modes
GV Addr = Vaddr64 + Ioff x / NULL
GVS Addr = Saddr64 + Voff32 + Ioff x / !=NULL
GT Addr = Saddr64 + Ioff + TID*4 x/x instruction
LDS Instruction Modes
LDS Addr = Vaddr + Ioff x/x instruction
Flat Instruction Modes
Scratch Addr = FLAT_SCRATCH swizzle (Voff + Ioff -privApertureBase, TID) // "SV" x / NULL
LDS Addr = Vaddr + Ioff - sharedApertureBase // "LDS" x / NULL
Global Addr = Vaddr + Ioff // "GV" x / NULL

• Scratch: Voff and Soff are 32 bits, unsigned bytes.
• Global: Addresses are 64 bits, offset is 32bits.
• FLAT_SCRATCH is an SGPR-pair 64-bit address.
• "Ioff" is the offset from the instruction field.
• "x" = don’t care (either value works)

11.3. Memory Error Checking
Both Texture and LDS can report that an error occurred due to a bad address. This can occur due to:

• Invalid address (outside any aperture)
• Write to read-only global memory address
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• Misaligned data (scratch accesses may be misaligned)
• Out-of-range address:

◦ LDS access with an address outside the range: [ 0, LDS_SIZE-1 ]

The policy for threads with bad addresses is: stores outside this range do not write a value, and reads return
zero. The aperture check for invalid address occurs before adding any address offsets - it is based only on the
base address; the other checks are performed after adding the offsets.

Addressing errors from either LDS or TA are returned on their respective "instruction done" busses as
MEMVIOL. This sets the wave’s MEMVIOL TrapStatus bit, and also causes an exception (trap).

11.4. Data
FLAT instructions can use from zero to four consecutive DWORDs of data in VGPRs and/or memory. The DATA
field determines which VGPR(s) supply source data (if any) and the VDST VGPRs hold return data (if any).
There is no data-format conversion performed.

"D16" instructions use only 16-bit of the VGPR instead of the full 32bits. "D16_HI" instructions read or write
only the high 16-bits, while "D16" use the low 16-bits.
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Chapter 12. Data Share Operations
Local data share (LDS) is a low-latency, RAM scratchpad for temporary data storage and for sharing data
between threads within a work-group. Accessing data through LDS may be significantly lower latency and
higher bandwidth than going through memory.

For compute workloads, it allows a simple method to pass data between threads in different waves within the
same work-group. For graphics, it is also used to hold vertex parameters for pixel shaders.

LDS space is allocated per work-group or wave (when work-groups not used) and recorded in dedicated LDS-
base/size (allocation) registers that are not writable by the shader. These restrict all LDS accesses to the space
owned by the work-group or wave.

12.1. Overview
The figure below shows how the LDS fits into the memory hierarchy of the GPU.

Figure 3. High-Level Memory Configuration

There are 128kB of memory per work-group processor split up into 64 banks of DWORD-wide RAMs. These 64
banks are further sub-divided into two sets of 32-banks each where 32 of the banks are affiliated with a pair of
SIMD32’s, and the other 32 banks are affiliated with the other pair of SIMD32’s within the WGP. Each bank is a
512x32 two-port RAM (1R/1W per clock cycle). DWORDs are placed in the banks serially, but all banks can
execute a store or load simultaneously. One work-group can request up to 64kB memory.

The high bandwidth of the LDS memory is achieved not only through its proximity to the ALUs, but also
through simultaneous access to its memory banks. Thus, it is possible to concurrently execute 32 store or load
instructions, each nominally 32-bits; extended instructions, load_2addr/store_2addr, can be 64-bits each. If,
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however, more than one access attempt is made to the same bank at the same time, a bank conflict occurs. In
this case, for indexed and atomic operations, the hardware is designed to prevent the attempted concurrent
accesses to the same bank by turning them into serial accesses. This can decrease the effective bandwidth of
the LDS. For increased throughput (optimal efficiency), therefore, it is important to avoid bank conflicts. A
knowledge of request scheduling and address mapping can be key to help achieving this.

12.1.1. Dataflow in Memory Hierarchy

The figure below is a conceptual diagram of the dataflow within the memory structure.

Data can be loaded into LDS either by transferring it from VGPRs to LDS using "DS" instructions, or by loading
in from memory. When loading from memory, the data may be loaded into VGPRs first or for some types of
loads it may be loaded directly into LDS from memory. To store data from LDS to global memory, data is read
from LDS and placed into the work-item’s VGPRs, then written out to global memory. To help make effective
use of the LDS, a shader program must perform many operations on what is transferred between global
memory and LDS.

LDS atomics are performed in the LDS hardware. Although ALUs are not directly used for these operations,
latency is incurred by the LDS executing this function.

12.1.2. LDS Modes and Allocation: CU vs. WGP Mode

Work-groups of waves are dispatched in one of two modes: CU or WGP.

See this section for details: WGP and CU Mode

12.1.3. LDS Access Methods

There are 3 forms of Local Data Share access:
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Direct Load
Loads a single DWORD from LDS and broadcasts the data to a VGPR across all lanes.

Indexed load/store and Atomic ops
Load/store address comes from a VGPR and data to/from VGPR.
LDS-ops require up to 3 inputs: 2data+1addr and immediate return VGPR.

Parameter Interpolation Load
Reads pixel parameters from LDS per quad and loads them into one VGPR.
Reads all 3 parameters per quad (P1, P1-P0 and P2-P0) and loads them into 3 lanes within the quad (the 4th
lane receives zero).

The following sections describe these methods.

12.2. Pixel Parameter Interpolation
For pixel waves, vertex attribute data is preloaded into LDS and barycentrics (I, J) are preloaded into VGPRs
before the wave starts. Parameter interpolation can be performed by loading attribute data from LDS into
VGPRs using LDS_PARAM_LOAD and then using V_INTERP instructions to interpolate the value per pixel.

LDS-Parameter loads are used to read vertex parameter data and store them in VGPRs to be used for parameter
interpolation. These instructions operate like memory instructions except they use EXPcnt to track outstanding
reads and decrement EXPCnt when they arrive in VGPRs.

Pixel shaders can be launched before their parameter data has been written into LDS. Once the data is
available in LDS, the wave’s STATUS register "LDS_READY" bit is set to 1. Pixel shader waves stall if an
LDS_DIRECT_LOAD or LDS_PARAM_LOAD is to be issued before LDS_READY is set.

The most common form of interpolation involves weighting vertex parameters by the barycentric coordinates
"I" and "J". A common calculation is:

    Result = P0 + I * P10 + J * P20
        where "P10" is (P1 - P0), and "P20" is (P2 - P0)

Parameter interpolation involves two types of instructions:

• LDS_PARAM_LOAD : to read packed parameter data from LDS into a VGPR (data packed per quad)
• V_INTERP_* : VALU FMA instructions that unpack parameter data across lanes in a quad.

12.2.1. LDS Parameter Loads

Parameter Loads are only available in LDS, not in GDS, and only in CU mode (not WGP mode).

LDS_PARAM_LOAD reads three parameters (P0, P10, P20) of one 32-bit attribute or of two 16-bit attributes
from LDS into VGPRs. The are 3 parameters (P0, P10 and P20) are the same for the 4 pixels within a quad.
These values are spread out across VGPR lanes 0, 1 and 2 of each quad. Interpolation is then performed using
FMA with DPP so each lane uses its I or J value with the quad’s shared P0, P10 and P20 values.
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Table 57. LDSDIR Instruction Fields

Field Size Description
OP 2 Opcode:

    0: LDS_DIRECT_LOAD
    1: LDS_PARAM_LOAD
    2,3: Reserved

WAITVDST 4 Wait for the number of previously issued still outstanding VALU instructions to be less than
or equal to this number. Used to avoid Write-After-Read hazards on VGPRs.

VDST 8 Destination VGPR
ATTR_CHAN 2 Attribute channel: 0=X, 1=Y, 2=Z, 3=W. Unused for LDS_DIRECT_LOAD.
ATTR 6 Attribute number: 0 - 32. Unused for LDS_DIRECT_LOAD.
( M0 ) 32 LDS_DIRECT_LOAD:

    { 13’b0, DataType[2:0], LDS_address[15:0] } //addr in bytes
LDS_PARAM_LOAD:
    { 1’b0, new_prim_mask[15:1], lds_param_offset[15:0] }

M0 is implicitly read for this instruction and must be initialized before these instructions.

new_prim_mask
a mask that has a bit per quad indicating that this quad begins a new primitive; zero indicates same
primitive as previous quad. There is an implied "one" for the first quad in the wave (every wave begins a
new primitive) and so bit[0] is omitted.

lds_param_offset
The parameter offset indicates the starting address of the parameters in LDS. Space before that can be used
as temporary wave storage space. Lds_param_offset bits [6:0] must be set to zero.

Example LDS_PARAM_LOAD (new_prim_mask[3:0] = 0110)

LDS_ADDR = lds_base + param_offset + attr#*numPrimsInVector*12DWORDs + prim#*12 + attr_offset
(attr_offset = 0..11 : 0 = P0.x, 1 = P0.Y, … 11 = P2.W)
From NewPrimMask h/w derives NumPrimInVec and Prim# (0..15)

If the dest-VGPR is out of range, the load is still performed but EXEC is forced to zero.

LDS_PARAM_LOAD and LDS_DIRECT_LOAD use EXEC per quad (if any pixel is enabled in the quad, data is
written to all 4 pixels/threads in the quad).
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12.2.1.1. 16-bit Parameter Data

16-bit parameters are packed in LDS as pairs of attributes in DWORDs: ATTR0.X and ATTR1.X share a DWORD.
There is an alternate packing mode where the parameters are not packed (one 16-bit param in low half of
DWORD). These attributes can be read with the same LDS_PARAM_LOAD instruction, and returns the packed
DWORD with 2 attributes (when they are packed). Interpolation can then be done using specific mixed-
precision FMA opcodes, along with DPP (to select P0, P10 or P20) and OPSEL (to select upper or lower 16-bits).

Barycentrics are 32-bits, not 16 bit.

12.2.1.2. Parameter Load Data Hazard Avoidance

These data dependency rules apply to both parameter and direct loads.

LDS_DIRECT_LOAD and LDS_PARAM_LOAD read data from LDS and write it into VGPRs, and they use EXPcnt
to track when the instruction has completed and written the VGPRs.

It is up to the shader program to ensure that data hazards are avoided. These instructions are issued along a
different path from VALU instructions so it is possible that previous VALU instructions may still be reading
from the VGPR that these LDS instructions are going to write and this could lead to a hazard.

EXPcnt is used to track read-after-write hazards where LDS_PARAM_LOAD writes a value to a VGPR and
another instruction reads it. The shader program uses "s_waitcnt EXPcnt" to wait for results from a
LDS_DIRECT_LOAD or LDS_PARAM_LOAD to be available in VGPRs before consuming it in a subsequent
instruction. The VINTERP instructions have a "wait_EXPcnt" field to assist in avoid this hazard.

These are skipped when EXEC==0 and EXPCnt==0 (like memory ops).

Mixed exports & LDS-direct/param instructions from the same wave might not complete in order (both use
EXPcnt), requiring "s_waitcnt 0" if they are overlapped.

    LDS_PARAM_LOAD V2
    S_WAITCNT EXPcnt 0

A potential Write-After-Read hazard exists if a VALU instruction reads a VGPR and then LDS_PARAM_LOAD
writes that VGPR: It is possible the LDS_PARAM_LOAD overwrites the VALU’s source VGPR before it was read.
The user must prevent this by using the "wait_Vdst" field of the LDS_PARAM_LOAD instruction. This field
indicates the maximum number of uncompleted VALU instructions that may be outstanding when this
LDS_PARAM_LOAD is issued. Use this to ensure any dependent VALU instructions have completed.

Another potential data hazard involves LDS_PARAM_LOAD overwriting a VGPR that has not yet been read as a
source by a previous VMEM (LDS, Texture, Buffer, Flat) instruction. To avoid this hazard, the user must ensure
that the VMEM instruction has read its source VGPRs. This can be achieved by issuing any VALU or export
instruction before the LDS_PARAM_LOAD.
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12.3. VALU Parameter Interpolation
Parameter interpolation is performed using an FMA operation that includes a built-in DPP operation to unpack
the per-quad P0/P10/P20 values into per-lane values. Because this instruction reads data from neighboring
lanes, the implicit DPP acts as if "fetch invalid = 1", so that the instruction can read data from neighboring lanes
that have EXEC==0, rather than getting the value 0 from those. Standard interpolation is calculating:

  Per-Pixel-Parameter = P0 + I * P10 + J * P20   // I, J are per-pixel; P0/P10/P20 are per-primitive

This parameter interpolation is realized using a pair of instructions:

  // V1 = I, V2 = J, V3 = result of LDS_PARAM_LOAD
  V_INTERP_P10_F32  V4, V3[1], V1, V3[0] // tmp = P0 + I*P10
                                         // uses DPP8=1,1,1,1,5,5,5,5; Src2(P0) uses DPP8=0,0,0,0,4,4,4,4
  V_INTERP_P20_F32  V5, V3[2], V2, V4    // dst = J*P20 + tmp  uses DPP8=2,2,2,2,6,6,6,6

Table 58. Parameter Interpolation Instruction Fields

Field Size Description
OP 7 Instruction Opcode:

V_INTERP_P10_F32 // tmp = P0 + I*P10. hardcoded DPP8 on 2 sources
V_INTERP_P2_F32 // D = tmp + J*P20. hardcoded DPP8 on 1 source
V_INTERP_P10_F16_F32 // tmp = P0 + I*P10. hardcoded DPP8 on 2 sources
V_INTERP_P2_F16_F32 // D = tmp + J*P20. hardcoded DPP8 on 1 source
V_INTERP_RTZ_P10_F16_F32 // same as above, but round-toward-zero
V_INTERP_RTZ_P2_F16_F32 // same as above, but round-toward-zero

SRC0 9 First argument VGPR: Parameter data (P0 or P20) from LDS stored in a VGPR.
SRC1 9 Second argument VGPR: I or J barycentric
SRC2 9 Third argument VGPR: "P10" ops holds P10 data; "P2" ops holds partial result from "P10" op.
VDST 8 Destination VGPR
NEG 3 Negate the input (invert sign bit).

bit 0 is for src0, bit 1 is for src1 and bit 2 is for src2.
For 16-bit interpolation this applies to both low and high halves.

WaitEXP 3 Wait for EXPcnt to be less than or equal to this value before issuing this instruction.
Used to wait for a specific previous LDS_PARAM_LOAD to have completed.

OPSEL 4 Operation select for 16-bit math: 1=select high half, 0=select low half
[0]=src0, [1]=src1, [2]=src2, [3]=dest
For dest=0, dest_vgpr[31:0] = {prev_dst_vgpr[31:16], result[15:0] }
For dest=1, dest_vgpr[31:0] = {result[15:0], prev_dst_vgpr[15:0] }
OPSEL may only be used for 16-bit operands, and must be zero for any other operands/results.

CLMP 1 Clamp result to [0, 1.0]

The VINTERP instructions include a builtin "s_waitcnt EXPcnt" to easily allow data hazard resolution for data
produced by LDS_PARAM_LOAD.
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Instructions Restrictions and Limitations:

• V_INTERP instructions do not detect or report exceptions
• V_INTERP instructions do not support data forwarding into inputs that would normally come from LDS

data (sources A and C for V_INTERP_P10_* and source A for V_INTERP_P2_*).

VGPRs are preloaded with some or all of:

• I_persp_sample, J_persp_sample, I_persp_center, J_persp_center,
• I_persp_centroid, J_persp_centroid,
• I/W, J/W, 1.0/W,
• I_linear_sample, J_linear_sample,
• I_linear_center, J_linear_center,
• I_linear_centroid, J_linear_centroid

These instructions consume data that was supplied by LDS_PARAM_LOAD. These instructions contain a built-
in "s_waitcnt EXPcnt <= N" capability to allow for efficient software pipelining.

lds_param_load V0,  attr0
lds_param_load V10, attr1
lds_param_load V20, attr2
lds_param_load V30, attr3
v_interp_p0    V1,  V0[1],  Vi, V0[0]    s_waitcnt EXPcnt<=3 //Wait V0
v_interp_p0    V11, V10[1], Vi, V10[0]   s_waitcnt EXPcnt<=2
v_interp_p0    V21, V20[1], Vi, V20[0]   s_waitcnt EXPcnt<=1
v_interp_p0    V31, V30[1], Vi, V30[0]   s_waitcnt EXPcnt<=0 //Wait V30
v_interp_p2    V2,  V0[2],  Vj, V1
v_interp_p2    V12, V10[2], Vj, V11
v_interp_p2    V22, V20[2], Vj, V21
v_interp_p2    V32, V30[2], Vj, V31

12.3.1. 16-bit Parameter Interpolation

16-bit interpolation operates on pairs of attribute values packed into a 16-bit VGPR. These use the same I and J
values during interpolation. OPSEL is used to select the upper or lower portion of the data.

There are variants of the 16-bit interpolation instructions that override the round mode to "round toward zero".

V_INTERP_P10_F16_F32 dst.f32 = vgpr_hi/lo.f16 * vgpr.f32 + vgpr_hi/lo.f16 // tmp = P10 * I + P0

• allows OPSEL; Src0 uses DPP8=1,1,1,1,5,5,5,5; Src2 uses DPP8=0,0,0,0,4,4,4,4

V_INTERP_P2_F16_F32 dst.f16 = vgpr_hi/lo.f16 * vgpr.f32 + vgpr.f32 // dst = P2 * J + tmp

• allows OPSEL; Src0 uses DPP8=2,2,2,2,6,6,6,6

12.4. LDS Direct Load
Direct loads are only available in LDS, not in GDS. Direct access is allowed only in CU mode, not WGP mode.

The LDS_DIRECT_LOAD instruction reads a single DWORD from LDS and returns it to a VGPR, broadcasting it
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to all active lanes in the wave. M0 provides the address and data type. LDS_DIRECT_LOAD uses EXEC per
quad, not per pixel: if any pixel in a quad is enabled then the data is written to all 4 pixels in the quad.
LDS_DIRECT_LOAD uses EXPcnt to track completion.

LDS_DIRECT_LOAD uses the same instruction format and fields as LDS_PARAM_LOAD. See Pixel Parameter
Interpolation.

LDS_addr = M0[15:0] (byte address and must be DWORD aligned)
DataType = M0[18:16]
    0 unsigned byte
    1 unsigned short
    2 DWORD
    3 unused
    4 signed byte
    5 signed short
    6,7 Reserved

Example:  LDS_DIRECT_LOAD  V4     // load the value from LDS-address in M0[15:0] to V4

Signed byte and short data is sign-extend to 32 bits before writing the result to a VGPR; unsigned byte and short
data is zero-extended to 32 bits before writing to a VGPR.

12.5. Data Share Indexed and Atomic Access
Both LDS and GDS can perform indexed and atomic data share operations. For brevity, "LDS" is used in the text
below and, except where noted, also applies to GDS.

Indexed and atomic operations supply a unique address per work-item from the VGPRs to the LDS, and supply
or return unique data per work-item back to VGPRs. Due to the internal banked structure of LDS, operations
can complete in as little as one cycle (for wave32, or 2 cycles for wave64), or take as many 64 cycles, depending
upon the number of bank conflicts (addresses that map to the same memory bank).

Indexed operations are simple LDS load and store operations that read data from, and return data to, VGPRs.

Atomic operations are arithmetic operations that combine data from VGPRs and data in LDS, and write the
result back to LDS. Atomic operations have the option of returning the LDS "pre-op" value to VGPRs.

LDS Indexed and atomic instructions use LGKMcnt to track when they have completed. LGKMcnt is
incremented as each instruction is issued, and decremented when they have completed execution. LDS
instructions stay in-order with other LDS instructions from the same wave.

The table below lists and briefly describes the LDS instruction fields.

Table 59. LDS Instruction Fields
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Field Size Description
OP 8 LDS opcode.
GDS 1 0 = LDS, 1 = GDS.
OFFSET0 8 Immediate address offset. Interpretation varies with opcode:

Instructions with one address:: combine the offset fields into a 16-bit unsigned byte offset: {offset1,
offset0}.

Instructions that have 2 addresses (e.g. {LOAD, STORE, XCHG}_2ADDR):: use the offsets separately as 2 8-
bit unsigned offsets. Each offset is multiplied by 4 for 8, 16 and 32-bit data; multiplied by 8 for 64-bit data.

OFFSET1 8

VDST 8 VGPR to which result is written: either from LDS-load or atomic return value.
ADDR 8 VGPR that supplies the byte address offset.
DATA0 8 VGPR that supplies first data source.
DATA1 8 VGPR that supplies second data source.
M0 16 Unsigned byte Offset[15:0] used for: ds_load_addtid_b32, ds_write_addtid_b32 and for GDS-base/size

The M0 register is not used for most LDS-indexed operations: only the "ADDTID" instructions read M0 and for
these it represents a byte address.

Table 60. LDS Indexed Load/Store

Load / Store Description
DS_LOAD_{B32,B64,B96,B128,U8,I8,U16,I16} Load one value per thread into VGPRs; if signed, sign extend to

DWORD; zero e xtend if unsigned.
DS_LOAD_2ADDR_{B32,B64} Load two values at unique addresses.
DS_LOAD_2ADDR_STRIDE64_{B32,B64} Load 2 values at unique addresses; offset *= 64.
DS_STORE_{B32,B64,B96,B128,B8,B16} Store one value from VGPR to LDS.
DS_STORE_2ADDR_{B32,B64} Store two values.
DS_STORE_2ADDR_STRIDE64_{B32,B64} Store two values, offset *= 64.
DS_STOREXCHG_RTN_{B32,B64} Exchange GPR with LDS-memory.
DS_STOREXCHG_2ADDR_RTN_{B32,B64} Exchange two separate GPRs with LDS-memory.
DS_STOREXCHG_2ADDR_STRIDE64_RTN_{B32,B64} Exchange GPR with LDS-memory; offset *= 64.
"D16 ops" - Load ops write only 16bits of VGPR, low or high; Store ops use 16bits of VGPR:
DS_STORE_{B8, B16}_D16_HI Store 8 or 16 bits using high 16 bits of VGPR.
DS_LOAD_{U8, I8, U16}_D16 Load unsigned or signed 8 or 16 bits into low-half of VGPR
DS_LOAD_{U8, I8, U16}_D16_HI Load unsigned or signed 8 or 16 bits into high-half of VGPR
DS_PERMUTE_B32 Forward permute. Does not write any LDS memory. See LDS Lane-

permute Ops for details.
DS_BPERMUTE_B32 Backward permute. Does not write any LDS memory. See LDS Lane-

permute Ops for details.

Single Address Instructions

LDS_Addr = LDS_BASE + VGPR[ADDR] + {InstOffset1,InstOffset0}

Double Address Instructions

LDS_Addr0 = LDS_BASE + VGPR[ADDR] + InstOffset0*ADJ +
LDS_Addr1 = LDS_BASE + VGPR[ADDR] + InstOffset1*ADJ +
   Where ADJ = 4 for 8, 16 and 32-bit data types; and ADJ = 8 for 64-bit.
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The double address instructions are: LOAD_2ADDR*, STORE_2ADDR*, and STOREXCHG_2ADDR_*. The
address comes from VGPR, and both VGPR[ADDR] and InstOffset are byte addresses. At the time of wave
creation, LDS_BASE is assigned to the physical LDS region owned by this wave or work-group.

DS_{LOAD,STORE}_ADDTID Addressing

LDS_Addr = LDS_BASE + {InstOffset1, InstOffset0} + TID(0..63)*4 + M0
    Note: no part of the address comes from a VGPR.  M0 must be DWORD-aligned.

The "ADDTID" (add thread-id) is a separate form where the base address for the instruction is common to all
threads, but then each thread has a fixed offset added in based on its thread-ID within the wave. This can allow
a convenient way to quickly transfer data between VGPRs and LDS without having to use a VGPR to supply an
address.

LDS & GDS Opcodes
Instruction Fields: op, gds, offset0, offset1, vdst, addr, data0, data1
32-bit no return 32-bit with return 64-bit no return 64-bit with return
ds_load_b{64,96,128} ds_store_b{64,96,128}
ds_store_{b32,b16,b8} ds_store_b64
ds_load_addtid_b32 (LDS
only)

ds_permute_b32 (LDS only)

ds_store_addtid_b32 (LDS
only)

ds_bpermute_b32 (LDS only)

ds_store_2addr_b32 ds_store_2addr_b64
ds_store_2addr_stride64_b3
2

ds_store_2addr_stride64_
b64

ds_load_{b32, u8,i8,u16,i16} ds_load_b64
ds_store_b8_d16_hi ds_load_2addr_b32 ds_load_2addr_b64
ds_store_b16_d16_hi ds_load_2addr_stride64_b32 ds_load_2addr_stride64_b64
ds_load_u8_d16 ds_consume
ds_load_u8_d16_hi ds_append ds_condxchg32_rtn_b64
ds_load_i8_d16
ds_load_i8_d16_hi ds_swizzle_b32 (LDS only)
ds_load_u16_d16
ds_load_u16_d16_hi

GDS-only Opcodes
ds_ordered_count
gws_init
gws_sema_v
gws_sema_bf
gws_sema_p
gws_barrier
gws_sema_release_all
ds_add_gs_reg_rtn
ds_sub_gs_reg_rtn
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12.5.1. LDS Atomic Ops

Atomic ops combine data from a VGPR with data in LDS, write the result back to LDS memory and optionally
return the "pre-op" value from LDS memory back to a VGPR. When multiple lanes in a wave access the same
LDS location there it is not specified in which order the lanes perform their operations, only that each lane
performs the complete read-modify-write operation before another lane operates on the data.

LDS_Addr0 = LDS_BASE + VGPR[ADDR] + {InstOffset1,InstOffset0}

VGPR[ADDR] is a byte address. VGPRs 0,1 and dst are double-GPRs for doubles data. VGPR data sources can
only be VGPRs or constant values, not SGPRs. Floating point atomic ops use the MODE register to control
denormal flushing behavior.

LDS & GDS Atomic Opcodes
Instruction Fields: op, gds, offset0, offset1, vdst, addr, data0, data1
32-bit no return 32-bit with return 64-bit no return 64-bit with return
ds_add_u32 ds_add_rtn_u32 ds_add_u64 ds_add_rtn_u64
ds_sub_u32 ds_sub_rtn_u32 ds_sub_u64 ds_rsub_rtn_u64
ds_rsub_u32 ds_rsub_rtn_u32 ds_rsub_u64 ds_rsub_rtn_u64
ds_inc_u32 ds_inc_rtn_u32 ds_inc_u64 ds_inc_rtn_u64
ds_dec_u32 ds_dec_rtn_u32 ds_dec_u64 ds_dec_rtn_u64
ds_min_{u32,i32,f32} ds_min_rtn_{u32,i32,f32} ds_min_{u64,i64,f64} ds_min_rtn_{u64,i64,f64}
ds_max_{u32,i32,f32} ds_max_rtn_{u32,i32,f32} ds_max_{u64,i64,f64} ds_max_rtn_{u64,i64,f64}
ds_and_b32 ds_and_rtn_b32 ds_and_b64 ds_and_rtn_b64
ds_or_b32 ds_or_rtn_b32 ds_or_b64 ds_or_rtn_b64
ds_xor_b32 ds_xor_rtn_b32 ds_xor_b64 ds_xor_rtn_b64
ds_mskor_b32 ds_mskor_rtn_b32 ds_mskor_b64 ds_mskor_rtn_b64
ds_cmpstore_b32 ds_cmpstore_rtn_b32 ds_cmpstore_b64 ds_cmpstore_rtn_b64
ds_cmpstore_f32 ds_cmpstore_rtn_f32 ds_cmpstore_f64 ds_cmpstore_rtn_f64
ds_add_f32 ds_add_rtn_f32

ds_storexchg_rtn_b32 ds_storexchg_rtn_b64
ds_storexchg_2addr_rtn_b32 ds_storexchg_2addr_rtn_b64
ds_storexchg_2addr_stride64_rt
n_b32

ds_storexchg_2addr_stride64_rt
n_b64

12.5.2. LDS Lane-permute Ops

DS_PERMUTE instructions allow data to be swizzled arbitrarily across 32 lanes. Two versions of the instruction
are provided: forward (scatter) and backward (gather). These exist in LDS only, not GDS.

Note that in wave64 mode the permute operates only across 32 lanes at a time on each half of a wave64. In
other words, it executes as if were two independent wave32’s. Each half-wave can use indices in the range 0-31
to reference lanes in that same half-wave.

These instructions use the LDS hardware but do not use any memory storage, and may be used by waves that
have not allocated any LDS space. The instructions supply a data value from VGPRs and an index value per
lane.
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• ds_permute_b32 : Dst[index[0..31]] = src[0..31]      Where [0..31] is the lane number
• ds_bpermute_b32 : Dst[0..31] = src[index[0..31]]

The EXEC mask is honored for both reading the source and writing the destination. Index values out of range
wrap around (only index bits [6:2] are used, the other bits of the index are ignored). Reading from disabled
lanes returns zero.

In the instruction word: VDST is the dest VGPR, ADDR is the index VGPR, and DATA0 is the source data VGPR.
Note that index values are in bytes (so multiply by 4), and have the 'offset0' field added to them before use.

12.5.3. DS Stack Operations for Ray Tracing

DS_BVH_STACK_RTN_B32 is an LDS instruction to manage a per-thread shallow stack in LDS used in ray
tracing BVH traversal. BVH structures consist of box nodes and triangle nodes. A box node has up to four child
node pointers that may all be returned to the shader (to VGPRs) for a given ray (thread). A traversal shader
follows one pointer per ray per iteration, and extra pointers can be pushed to a per-thread stack in LDS. Note:
the returned pointers are sorted.

This "short stack" has a limited size beyond that the stack wraps around and overwrites older items. When the
stack is exhausted, the shader should switch to a stackless mode where it looks up the parent of the current
node from a table in memory. The shader program tracks the last visited address to avoid re-traversing
subtrees.

DS_BVH_STACK_RTN_B32 vgpr(dst), vgpr(stack_addr), vgpr(lvaddr), vgpr[4](data)

Field Size Description
OP 8 Instruction == DS_STORE_STACK (LDS only)
GDS 1 1 = GDS, 0 = LDS (must be: 0 = LDS)
OFFSET0 8 unused
OFFSET1 8 bits[5:4] carry StackSize (8, 16, 32, 64)
VDST 8 Destination VGPR for resulting address (e.g. X or top of stack)

Returns the next "LV addr"
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Field Size Description
ADDR 8 STACK_VGPR: Both a source and destination VGPR:

supplies the LDS stack address and is written back with updated address.
stack_addr[31:18] = stack_base[15:2] : stack base address (relative to allocated LDS space).
stack_addr[17:16] = stack_size[1:0] : 0=8DWORDs, 1=16, 2=32, 3=64 DWORDs per thread
stack_addr[15:0] = stack_index[15:0]. (bits [1:0] must be zero).

DATA0 8 LVADDR: Last Visited Address. Is compared with data values (next field) to determine the next
node to visit.

DATA1 8 4 VGPRs (X,Y,Z,W).
M0 16 Unused.

12.6. Global Data Share
Global data Share is similar to LDS, but is a single memory accessible by all waves on the GPU. Global Data
Share uses the same instruction format as local data share (indexed operations only - no interpolation or direct
loads). Instructions increment the LGKMcnt for all loads, stores and atomics, and decrement LGKMcnt when
the instruction completes. GDS instructions support only one active lane per instruction. The first active lane
(based on EXEC) is used and others are ignored.

M0 is used for:

• [15:0] holds SIZE, in bytes
• [31:16] holds BASE address in bytes

12.6.1. GS NGG Streamout Instructions

The DS_ADD_GS_REG_RTN and DS_SUB_GS_REG_RTN instructions are used only by the GS stage, and are
used for streamout. These instructions perform atomic add or sub operations to data in dedicated registers, not
in GDS memory, and return the pre-op value. The source register is 32 bits and is an unsigned int. These 2
instructions increment the wave’s LGKMcnt, and decrement LGKMcnt when the instruction completes.

Table 61. GDS Streamout Register Targets

offset[5:2] Register
32-bit source, 32-bit dest & return value

offset[5:2] Register
32-bit source, 64-bit dest & return value

0 GDS_STRMOUT_DWORDS_WRITTEN_0 8 GDS_STRMOUT_PRIMS_NEEDED_0
1 GDS_STRMOUT_DWORDS_WRITTEN_1 9 GDS_STRMOUT_PRIMS_WRITTEN_0
2 GDS_STRMOUT_DWORDS_WRITTEN_2 10 GDS_STRMOUT_PRIMS_NEEDED_1
3 GDS_STRMOUT_DWORDS_WRITTEN_3 11 GDS_STRMOUT_PRIMS_WRITTEN_1
4 GDS_GS_0 12 GDS_STRMOUT_PRIMS_NEEDED_2
5 GDS_GS_1 13 GDS_STRMOUT_PRIMS_WRITTEN_2
6 GDS_GS_2 14 GDS_STRMOUT_PRIMS_NEEDED_3
7 GDS_GS_3 15 GDS_STRMOUT_PRIMS_WRITTEN_3

Table 62. DS_ADD_GS_REG_RTN* and DS_SUB_GS_REG_RTN:

Field Size Description
OP 8 ds_add_gs_reg_rtn, ds_sub_gs_reg_rtn
OFFSET0 8 gs_reg_index[3:0]=offset0[5:2] indexes the GS register array
VDST 8 VGPR to write pre-op value to
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Field Size Description
DATA0 8 operand, from the first valid data; if no valid data (i.e., EXEC==0), the operand

is 0.

• The input comes from the first valid data of DATA0.
• If offset[5:2] is 8-15: The operation is mapped to 64b operation to take 2 dst registers as a combined one.

The source data is still 32b. The post-op result is 64b and store back to the 2 dst registers. The return value
takes 2 VGPRs.

• If offset[5:2] is 0-7: The operation is mapped to normal 32b operation.
• For ds_add_gs_reg_rtn, the atomic add operation is

◦ VDST[0] = GS_REG[offset0[5:2]][31:0]
◦ If (offset0[5:2] >= 8) VDST[1] = GS_REG[offset0[5:2]][63:32]
◦ GS_REG[offset0[4:2]] += DATA0

• For ds_sub_gs_reg, the atomic sub operation is
◦ VDST[0] = GS_REG[offset0[5:2]][31:0]
◦ If (offset0[5:2] >= 8) VDST[1] = GS_REG[offset0[5:2]][63:32]
◦ GS_REG[offset0[4:2]] -= DATA0

12.7. Alignment and Errors
GDS and LDS operations (both direct & indexed) report Memory Violation (memviol) for misaligned atomics.
LDS handles misaligned indexed reads & writes, but only when SH_MEM_CONFIG. alignment_mode ==
UNALIGNED. Atomics must be aligned.

LDS Alignment modes (config-reg controlled, in SH_MEM_CONFIG):

• ALIGNMENT_MODE_DWORD: Automatic alignment to multiple of element size
• ALIGNMENT_MODE_UNALIGNED: No alignment requirements.

# LDS Access
Type

Source Inst
Types

Controls Behavior

1 Direct (Read
Broadcast)

ALU ops LDS_CONFIG.ADDR_OUT_
OF_RANGE_REPORTING

Out of range direct operations report memviol if
ADDR_OUT_OF_RANGE_REPORTING is true.

2 Indexed
Atomic

DS ops
FLAT ops

LDS_CONFIG.ADDR_OUT_
OF_RANGE_REPORTING

Out of range atomic operations report memviol if
ADDR_OUT_OF_RANGE_REPORTING is true.

3 Indexed Non-
Atomic

DS ops
FLAT ops

LDS_CONFIG.ADDR_OUT_
OF_RANGE_REPORTING

the LSBs are ignored to force alignment. No memviol
is generated.
Out of range indexed operations report memviol if
ADDR_OUT_OF_RANGE_REPORTING is true.
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Chapter 13. Float Memory Atomics
Floating point atomics can be issued as LDS, Buffer, and Flat/Global/Scratch instructions.

13.1. Rounding
LDS and Memory atomics have the rounding mode for float-atomic-add fixed at "round to nearest even". The
MODE.round bits are ignored.

13.2. Denormals
When these operate on floating point data, there is the possibility of the data containing denormal numbers, or
the operation producing a denormal. The floating point atomic instructions have the option of passing
denormal values through, or flushing them to zero.

LDS instructions allow denormals to be passed through or flushed to zero based on the MODE.denormal wave-
state register. As with VALU ops, "denorm_single" affects F32 ops and "denorm_double" affects F64. LDS
instructions use both FP_DENORM bits (allow_input_denormal, allow_output_denormal) to control flushing of
inputs and outputs separately.

• Float 32 bit adder uses both input and output denorm flush controls from MODE
• Float CMP, MIN and MAX use only the "input denormal" flushing control

◦ Each input to the comparisons flushes the mantissa of both operands to zero before the compare if the
exponent is zero and the flush denorm control is active. For Min and Max the actual result returned is
the selected non-flushed input.

◦ CompareStore ("compare swap") flushes the result when input denormal flushing occurs.

Cache Atomic Float Denormal
(Buffer, Flat, Global, Scratch)

Min/Max_F32 Mode
CmpStore_F32, _F64 Mode
Add_F32 Flush

LDS Float Atomics
Min/Max_F32 Mode
CmpStore_F32, _F64 Mode
Add_F32 Mode
Min/Max_F64 Mode

• "Flush" = flush all input denorm
• "No Flush" = don’t flush input denorm
• "Mode" = denormal flush controlled by bit from shader’s "MODE . fp_denorm" register

Note that MIN and MAX when flushing denormals only do it for the comparison, but the result is an
unmodified copy of one of the sources. CompareStore ("compare swap") flushes the result when input
denormal flushing occurs.

Memory Atomics:
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The floating point atomic instructions (ds_{min,max,cmpst}_f32) have the option of passing denormal values
through, or flushing them to zero. This is controlled with the MODE.fp_denorm bits that also control VALU
denormal behavior. There is no separate input and output denormal control: only bit 0 of sp_denorm or bit 0 of
dp_denorm is considered. The rest of the denormal rules are identical to LDS.
Float atomic add is hardwired to flush input denormals - it does not use the MODE.fp_denorm bits.

13.3. NaN Handling
Not A Number ("NaN") is a IEEE-754 value representing a result that cannot be computed.

There two types of NaN: quiet and signaling

• Quiet NaN Exponent=0xFF, Mantissa MSB=1
• Signaling NaN Exponent=0xFF, Mantissa MSB=0 and at least one other mantissa bit ==1

The LDS does not produce any exception or "signal" due to a signaling NaN.

DS_ADD_F32 can create a quiet NaN, or propagate NaN from its inputs: if either input is a NaN, the output is
that same NaN, and if both inputs are NaN, the NaN from the first input is selected as the output. Signaling NaN
is converted to Quiet NaN.

Floating point atomics (CMPSWAP, MIN, MAX) flush input denormals only when
MODE (allow_input_denorm)=0, otherwise values are passed through without modification. When flushing,
denorms are flushed before the operation (i.e. before the comparison).

FP Max Selection Rules:

    if      (src0 == SNaN) result = QNaN (src0)          // bits of SRC0 are preserved but is a QNaN
    else if (src1 == SNaN) result = QNaN (src1)
    else                   result = larger of (src0, src1)
    "Larger" order from smallest to largest: QNaN, -inf, -float, -denorm, -0, +0, +denorm, +float, +inf

FP Min Selection Rules:

    if      (src0 == SNaN) result = QNaN (src0)
    else if (src1 == SNaN) result = QNaN (src1)
    else                   result = smaller of (src0, src1)
    "Smaller" order from smallest to largest: -inf, -float, -denorm, -0, +0, +denorm, +float, +inf, QNaN

FP Compare Swap: only swap if the compare condition (==) is true, treating +0 and -0 as equal

    doSwap = (src0 != NaN) && (src1 != NaN) && (src0 == src1) // allow +0 == -0

Float Add rules:

1. -INF + INF = QNAN (mantissa is all zeros except MSB)
2. +/-INF + NAN = QNAN (NAN input is copied to output but made quiet NAN)
3. -INF + INF, or INF - INF = -QNAN
4. -0 + 0 = +0
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5. INF + (float, +0, -0) = INF, with infinity sign preserved
6. NaN + NaN = SRC0’s NaN, converted to QNaN

13.4. Global Wave Sync & Atomic Ordered Count
Global Wave Sync (GWS) provides a capability to synchronize between different waves across the entire GPU.
GWS instructions use LGKMcnt to determine when the operation has completed.

13.4.1. GWS and Ordered Count Programming Rule

"GWS" instructions (ordered count and GWS*) must be issued as a single instruction clause of the form:

S_WAITCNT LGKMcnt==0 // this is only necessary if there might be any outstanding GDS instructions
GWS_instruction
S_WAITCNT LGKMcnt==0
<any instruction except: S_ENDPGM (pad with NOP if the next instruction is s_endpgm)

Before issuing a GWS or Ordered Count instruction, the user must make sure that there are no outstanding GDS
instructions. Failure to do this may cause a "NACK" to arrive out of order.

Programming Rule: the source and destination VGPRs in a GWS or ordered count instruction must not
be the same. When an ordered count operation is NACK’d, the destination VGPR
may be written with data. If this VGPR is the same as the source VGPR, that
prevents the instruction from being replayed later if it was interrupted due to a
context switch.

13.4.2. EXEC Handling

GDS / GWS is now only a single lane wide. If the EXEC mask has more than one bit set to 1, hardware behaves
as if only EXEC had only one "1" in it: the least significant one. GDS / GWS opcodes are not skipped when
EXEC==0.

For these opcodes, if EXEC==0, the hardware acts as if EXEC==0…001 for the instruction:

ORDERED_COUNT / GWS_INIT / SEMA_BR/GWS_BARRIER

For other GDS / GWS opcodes, the instruction is sent with EXE==0, nothing is sent to or returned from
GDS/GWS. In hardware, data is sent but it is ignored and data is returned and ignored in order to keep LGKMcnt
working.

13.4.3. Ordered Count

Ordered count generates a pointer in wave-creation order to an append buffer of unlimited size.

Ordered Alloc generates a pointer to a ring buffer of finite size which is returned to the wave in "VDST". The
ordered alloc counter can be issued up to 4 times from a shader. Ordered count and alloc use the same
instruction - the difference is in how the GDS counters are initialized with their config registers.
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The GDS unit supports an instruction that operates on dedicated append/consume counters:

• DS_ORDERED_COUNT Takes one value from the first valid lane and sends to GDS.

For shaders that use this function, this instruction must be issued once and only once per wave. The GDS
receives these in arbitrary order from different waves across the chip, but processes them in the order the
waves were created. The GDS contains a large fifo to hold these pending requests.

Instruction Fields

Field Normal GDS GDS Ordered Count Global Wave Sync (GWS)
OP any GDS op DS_ORDERED_COUNT* GWS_INIT, GWS_SEMA_V,

GWS_SEMA_BR, GWS_SEMA_P
GWS_SEMA_RELEASE_ALL,
GWS_BARRIER

GDS 1 1 1
VDST VGPR to write result

to
VGPR to write result to unused

ADDR VGPR which supplies
byte address offset

Increment, from the first valid data.
If no valid data, increment=0.

Used for: barrier, init and
sema_br;
unused for others.

DATA0 VGPR which supplies
first data source

unused unused

DATA1 VGPR which supplies
second data source

unused unused

Offset0[7:0] Same usage as LDS Ordered Count Index.
Must be multiple of 4 (2 LSB’s must be zero)

{ 0,0,resource_index[5:0] }

Offset1[0] Same usage as LDS wave_release unused
Offset1[1] Same usage as LDS wave_done unused
Offset1[3:2] Same usage as LDS unused unused
Offset1[5:4] Same usage as LDS ordered-index-opcode :

0 = Add (ds_add_rtn_b32)
1 = Exchange (ds_wrxchg_rtn_b32)
2 = Reserved
3 = Wrap (ds_wrap_rtn_b32)

unused

Offset1[7:6] Same usage as LDS unused unused
M0[15:0] gds_size[15:0] in bytes { waveCrawlerInc[2:0], logicalWaveID[12:0] }

In graphics pipe, logicalWaveID[2:0] is really
packerID

unused

M0[31:16] gds_base[15:0] in
bytes

orderedCntBase[15:0]
Ordered count base is in DWORDs.
(2 LSB’s are ignored, forced to zero - DWORD
aligned)

{ 10'0, gds_base[5:0] }
gdsBase = resourceBase

ORDERED COUNT Targets
The OFFSET0[5:2] field of ordered-count instructions reference one of 16 registers in GDS. These are listed
in the GDS section: GS NGG Streamout Instructions. See: GS NGG Streamout Instructions Only the ADD
instruction may be used on targets that are 64 bits (offset[5:2] = 8 - 15).
Exchange can only be used with offset[5:2] = 4 - 7.

APPEND and CONSUME
Append and Consume count bits in EXEC and add or subtract the count from the GDS stored value. GDS
now only operates on a single lane, but for Append & Consume the full EXEC mask is still considered.
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13.4.4. Global Wave Sync

"Global Wave Sync" allows the waves running in different thread-groups, including across different CU’s and
SE’s to synchronize through barriers and semaphores.

The Global Wave Sync (GWS) unit contains 64 sync resources that are allocated by the Command Processor to
applications (VM_ID’s). These sync resources can be configured to act as counting semaphores or barriers.

• GWS registers must be configured before use via GRBM reg writes: gds_gws_resource_cntl,
gds_gws_resource

• GDS_GWS_RESOURCE: Flag, Counter (number of waves at resource), type, head_{queue, valid, flag}
• GDS_GWS_VMID: Per-VMID register identifying the range of GWS resources owned by each VMID (base &

size)

The GWS contains 64 sync resources, each of which contains the following state:

• 1-bit state flag: 0 or 1 - used to separate even & odd passes, distinguish entering waves from leaving.
• a 12-bit counter - unsigned int
• 1 byte Type: Semaphore or Barrier
• Head-of-queue + valid + flag (13 bits)
• Tail of Queue + flag (12 bits)
• FIFO - holds full wave-id and a 1-bit flag

When used by the shader, M0 supplies the "resource_base[5:0]" which is used to virtualize the resources.

The resource offset comes from the GDS/GWS instruction’s "offset0[5:0]" field and is added to M0 and also to a
base-address per VMID to get the final resource ID. Resource ID’s are clamped to the range owned by this
VMID. If clamping occurs, the GWS returns a NACK which causes the wave to rewind the PC and halt.

• GWS_resource_id = (GDS_GWS_VMID.BASE(vmid) + M0[21:16] + offset0[5:0]) % 64

Table 63. GWS Instructions

Opcode Description
GWS_INIT
(uint vsrc0, u8 offset0
)

Initialize GWS resource

Initialize the global wave sync resource specified by the virtualized resource id OFFSET0[5:0] with a
total wave count. This is most often intended to initialize a barrier resource for use by a later
ds_gws_barrier to synchronize all waves associated with this resource, but is not type specific and
can also be used to initialize a semaphore with an initial wave release count. The total wave count
is provided by the lane of vsrc associated with the first active thread based on the current EXEC
thread mask, interpreted as a 32-bit integer value.
The resource id is also offset by the value of M0[21:16], allowing virtualization of global wave sync
resource ids between draw contexts or based on other shader initialization state.
This is primarily to be used via the GRBM.
Operation:
//Initialize GWS_RESOURCE for later gws commands:
rid = (M0[21:16] + OFFSET0[5:0]) % 64
GWS_RESOURCE[rid].counter = vsrc.lane[find_first(EXEC)].u
GWS_RESOURCE[rid].flag = 0
return //release calling wave immediately
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Opcode Description
GWS_SEMA_V
(u8 offset0)

Semaphore: Increment resource counter

For the global wave sync resource specified by the virtualized resource id OFFSET0[5:0], releases
one wave, immediately if already queued at this semaphore or once one arrives. Sets the resource
to semaphore type.
Operation:
//Release waves queued by ds_gws_sema_p instructions:
rid = (M0[21:16] + OFFSET0[5:0]) % 64
GWS_RESOURCE[rid].counter++
GWS_RESOURCE[rid].type = SEMAPHORE
return //release calling wave immediately

GWS_SEMA_BR
(uint vsrc0, u8 offset0
)

Semaphore Bulk Release

For the global wave sync resource specified by the virtualized resource id OFFSET0[5:0], releases
the number of waves specified as a 32-bit integer in the first active lane of vsrc, immediately if
already queued at this semaphore or as they arrive. Sets the resource to semaphore type.
Operation: //Release waves queued by ds_gws_sema_p instructions:
rid = (M0[21:16] + OFFSET0[5:0]) % 64
release_count = vsrc.lane[find_first(EXEC)].u
GWS_RESOURCE[rid].counter += release_count
GWS_RESOURCE[rid].type = SEMAPHORE
return //release calling wave immediately

GWS_SEMA_P
(u8 offset0 )

Semaphore acquire (wait)

Queues this wave until the global wave sync resource specified by the virtualized resource id
OFFSET0[5:0] indicates that it should be released, which may be immediately if another wave has
already issued a ds_gws_sema_v or ds_gws_sema_br instruction to the resource. Sets the resource
to semaphore type.
Operation:
//Queue this wave until released:
rid = (M0[21:16] + OFFSET0[5:0]) % 64
GWS_RESOURCE[rid].type = SEMAPHORE
while (GWS_RESOURCE[rid].counter <= 0)
WAIT_IN_QUEUE
GWS_RESOURCE[rid].counter--
return //release calling wave

GWS_SEMA_
RELEASE_ALL
(u8 offset0)

Semaphore release all waves waiting at a semaphore

Operation:
//Release waves queued by ds_gws_sema_p instructions:
rid = (M0[21:16] + OFFSET0[5:0]) % 64
release_count = the number of waves currently enqueued at the semaphore
GWS_RESOURCE[rid].counter += release_count
GWS_RESOURCE[rid].type = SEMAPHORE
return //release calling wave immediately
This is typically used via the GRBM.
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Opcode Description
GWS_BARRIER
(uint vsrc0, u8 offset0
)

Barrier wait

Creates a global barrier for all waves associated with the global wave sync resource specified by a
virtualized resource id OFFSET0[5:0], which causes all waves issuing a ds_gws_barrier on the same
resource id to wait until a previously specified count of waves have also issued. Sets the resource to
barrier type. This provides functionality similar to an s_barrier instruction for local waves, but
allows synchronization of waves running on different compute units.

The wave count for completion of the barrier is initially provided by a ds_gws_init instruction.
Each subsequent ds_gws_barrier instruction may then provide the total wave count value for a
following ds_gws_barrier instruction. The total wave count minus one is provided by the lane of
vsrc associated with the first active thread based on the current EXEC thread mask, interpreted as a
32-bit integer value.

Operation:
//On entry: GWS_RESOURCE[rid].counter previously initialized
rid = (M0[21:16] + OFFSET0[5:0]) % 64
count_next = vsrc.lane[find_first(EXEC)].u
GWS_RESOURCE[rid].type = BARRIER
GWS_RESOURCE[rid].counter--
flag = GWS_RESOURCE[rid].flag
if (GWS_RESOURCE[rid].counter <= 0) //last wave in group
   GWS_RESOURCE[rid].flag ^= 1 //release enqueued waves
   GWS_RESOURCE[rid].counter = count_next //init for next barrier
return //release calling wave

// Enqueue waves which enter until the last enters and releases them
while (1)
  if (GWS_RESOURCE[rid].type == BARRIER && GWS_RESOURCE[rid].flag != flag)
return //release calling wave
The description of "flag" above is a bit simplistic. Basically, every wave which enters is tagged with the
current GWS_RESOURCE.flag value. When the barrier condition is met, all waves with that flag value are
released, and GWS_RESOURCE.flag is inverted so any incoming waves are tagged with the opposite value
of flag.
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Chapter 14. Export: Position, Color/MRT
"Export" is the act of copying data from a VGPR to the one of the export buffers (position, color or Z). Exports
use the EXEC mask and only output the enabled pixels or vertices. A shader may export to each target only
once. The last export from a pixel shader, or the last position export of a vertex shader must indicate "done" -
there are no more pixel shader exports or vertex position exports. This allows the values to be consumed by the
Render back-end and Primitive Assembler respectively.

Exports can transfer 32-bit or 16-bit data per element. 16-bit exports occurs in pairs: 32-bits transferred from
one VGPR that holds two 16-bit values. The export instruction does not know or care about the difference
between the two - it just moves 32-bits of data per lane. 16-bit exports are a contract between the shader
program that is responsible for converting and packing 16-bit data, and the receiving hardware in
configuration registers that declare the exported data type. 16-bit data is packed into a VGPR, with the first
component in the lower 16 bits.

Instruction Fields

Field Size Description
Done 1 Indicates this is the last export from the shader.Used only for Pixel, Position and Primitive

data. Must be set for primitive export.
Target 6 Export Target:

0-7 MRT 0-7
8 Z
12-16 Position 0-4 (Pos4 is for stereo rendering)
20 NGG Primitive data (connectivity data)
21 Dual source blend Left
22 Dual source blend Right

EN 4 16-bit components: export half-DWORD enable. Valid values are: 0x0,1,3
    [0] enables VSRC0 : R,G from one VGPR (R in low bits, G high)
    [1] enables VSRC1 : B,A from one VGPR (B in low bits, A high)
32-bit components: [0-3] = enables for VSRC0-3.

VSRC0
VSRC1
VSRC2
VSRC3

8
8
8
8

VGPR to read data from.
Pos: vsrc0=X, 1=Y, 2=Z, 3=W
MRT: vsrc0=R, 1=G, 2=B, 3=A

ROW_EN 1 0 = normal mode; 1 = use M0 to provide the row number for mesh shader’s POS and PRIM
exports.

(M0) 8 Row number for mesh shader POS and PRIM exports

32-bit components EN[0]
EN[1]
EN[2]
EN[3]

VSRC0
VSRC1
VSRC2
VSRC3

Red/X/ …
Green/Y/…
Blue/Z/…
Alpha/W/…

16-bit components EN[0]
EN[1]
EN[2], EN[3]

VSRC0
VSRC1
ignored

{green, red} / { y, x}
{alpha, blue} / {w,z}
unused
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14.1. Pixel Shader Exports
Pixel Exports

Export instructions copy color data to the MRTs. Data has up to four components (R, G, B, A). 
Optionally, export instructions also output depth (Z) data. 
Every pixel shader must have at least one export instruction. 
The last export instruction executed must have the DONE bit set to one.
The EXEC mask is applied to all exports. Only pixels with the corresponding EXEC bit set to 1 export data to
the output buffer.
Each export target must be exported to only once.

The shader program is responsible for conversion of data from 32b to 16b for 16-bit exports.
The shader program is responsible for alpha-test.

All data that can affect the sample mask must be sent on the first export from the shader. This means if depth
is being exported, it must be exported first. If alpha to mask is enabled, MRT0 must be exported first, unless
depth is also enabled, in which case, MRT0’s alpha value must be written to the depth export’s alpha value. If
alpha to mask and coverage to mask are both enabled, then the depth export’s alpha value is set to the
minimum of the alpha to mask value (alpha of MRT0) and the coverage to mask value (alpha of what would
have been in the depth export). If the shader can kill a pixel, it must be determined before the first export.

Pixel Shader Dual-Source Blend
In this mode, alternating lanes (threads) hold MRT0 and MRT1, not all threads going to one MRT. There are
two instructions to complete a dual-source blend export. It is required that exports to 21 and 22 be back-to-
back, with no other export types in between them.

Export target EXEC mask MRT
Exported

Lane 0 Lane 1 Lane 2

21 exec_mask =
(exec_mask & 0x5555_5555) |
((exec_mask <<1) & 0xAAAA_AAAA)

0 Pix0,
MRT0

Pix0
MRT1

Pix2 MRT0

22 exec_mask =
(exec_mask & 0xAAAA_AAAA) |
((exec_mask >>1) & 0x5555_5555)

1 Pix1,
MRT0

Pix1,
MRT1

Pix3 MRT0

14.2. Primitive Shader Exports (From GS shader stage)
The GS shader uses export instructions to output vertex position data, and memory stores for vertex parameter
data. This data is passed on to subsequent pixel shaders.

Every vertex shader must output at least one position vector (x, y, z; w is optional) to the POS0 target. The last
position export must have the DONE bit set to 1. For optimized performance, it is recommended to output all
position data as early as possible in the vertex shader.

14.3. Dependency Checking
Export instructions are executed by the hardware in two phases. First, the instruction is selected to be
executed, and EXPCNT is incremented by 1. At this time, the wave has made a request to export data, but the
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data has not been exported yet. Later, when the export actually occurs the EXEC mask and VGPR data is read
and the data is exported, and finally EXPcnt is decremented.

Use S_WAITCNT on EXPcnt to prevent the shader program from overwriting EXEC or the VGPRs holding the
data to be exported before the export operation has completed.

Multiple export instructions can be outstanding at one time. Exports of the same type (for example: position)
are completed in order, but exports of different types can be completed out of order. If the STATUS register’s
SKIP_EXPORT bit is set to one, the hardware treats all EXPORT instructions as if they were NOPs.
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Chapter 15. Microcode Formats
This section specifies the microcode formats. The definitions can be used to simplify compilation by providing
standard templates and enumeration names for the various instruction formats.

Endian Order - The RDNA3 architecture addresses memory and registers using little-endian byte-ordering and
bit-ordering. Multi-byte values are stored with their least-significant (low-order) byte at the lowest byte
address, and they are illustrated with their least-significant byte at the right side. Byte values are stored with
their least-significant (low-order) bit (LSB) at the lowest bit address, and they are illustrated with their LSB at
the right side.

SALU and VALU instructions may optionally include a 32-bit literal constant, and some VALU instructions may
include a 32-bit DPP control DWORD at the end of the instructions. No instruction may use both DPP and a
literal constant.

The table below summarizes the microcode formats and their widths, not including extra literal or DPP
instruction words. The sections that follow provide details.

Table 64. Summary of Microcode Formats

Microcode Formats Reference Width (bits)
Scalar ALU and Control Formats
SOP2 SOP2 32
SOP1 SOP1
SOPK SOPK
SOPP SOPP
SOPC SOPC
Scalar Memory Format
SMEM SMEM 64
Vector ALU Format
VOP1 VOP1 32
VOP2 VOP2 32
VOPC VOPC 32
VOP3 VOP3 64
VOP3SD VOP3SD 64
VOP3P VOP3P 64
VOPD VOPD 64
DPP16 DPP16 32
DPP8 DPP8 32
Vector Parameter Interpolation Format
VINTERP VINTERP 64
LDS Parameter Load and Direct Load
LDSDIR LDSDIR 32
LDS/GDS Format
DS DS 64
Vector Memory Buffer Formats
MTBUF MTBUF 64
MUBUF MUBUF 64
Vector Memory Image Format
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Microcode Formats Reference Width (bits)
MIMG MIMG 64 or 96
Export Format
EXP EXP 64
Flat Formats
FLAT FLAT 64
GLOBAL GLOBAL 64
SCRATCH SCRATCH 64

 any instruction field marked as "Reserved" must be set to zero.

Instruction Suffixes

Most instructions include a suffix that indicates the data type the instruction handles. This suffix may also
include a number that indicates the size of the data.

For example: "F32" indicates "32-bit floating point data", or "B16" is "16-bit binary data".

• B = binary
• F = floating point
• BF = "brain-float" floating point
• U = unsigned integer
• S = signed integer

When more than one data-type specifier occurs in an instruction, the first one is the result type and size, and
the later one(s) is/are input data type and size.
E.g. V_CVT_F32_I32 reads an integer and writes a float.
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15.1. Scalar ALU and Control Formats

15.1.1. SOP2

Description This is a scalar instruction with two inputs and one output. Can be followed by a 32-bit
literal constant.

Table 65. SOP2 Fields

Field Name Bits Format or Description
SSRC0 [7:0]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 - 252
253
254
255

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
Reserved.
SCC.
Reserved.
Literal constant.

SSRC1 [15:8] Second scalar source operand.
Same codes as SSRC0, above.

SDST [22:16] Scalar destination.
Same codes as SSRC0, above except only codes 0-127 are valid.

OP [29:23] See Opcode table below.
ENCODING [31:30] 'b10

Table 66. SOP2 Opcodes
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Opcode # Name Opcode # Name
0 S_ADD_U32 27 S_XOR_B64
1 S_SUB_U32 28 S_NAND_B32
2 S_ADD_I32 29 S_NAND_B64
3 S_SUB_I32 30 S_NOR_B32
4 S_ADDC_U32 31 S_NOR_B64
5 S_SUBB_U32 32 S_XNOR_B32
6 S_ABSDIFF_I32 33 S_XNOR_B64
8 S_LSHL_B32 34 S_AND_NOT1_B32
9 S_LSHL_B64 35 S_AND_NOT1_B64
10 S_LSHR_B32 36 S_OR_NOT1_B32
11 S_LSHR_B64 37 S_OR_NOT1_B64
12 S_ASHR_I32 38 S_BFE_U32
13 S_ASHR_I64 39 S_BFE_I32
14 S_LSHL1_ADD_U32 40 S_BFE_U64
15 S_LSHL2_ADD_U32 41 S_BFE_I64
16 S_LSHL3_ADD_U32 42 S_BFM_B32
17 S_LSHL4_ADD_U32 43 S_BFM_B64
18 S_MIN_I32 44 S_MUL_I32
19 S_MIN_U32 45 S_MUL_HI_U32
20 S_MAX_I32 46 S_MUL_HI_I32
21 S_MAX_U32 48 S_CSELECT_B32
22 S_AND_B32 49 S_CSELECT_B64
23 S_AND_B64 50 S_PACK_LL_B32_B16
24 S_OR_B32 51 S_PACK_LH_B32_B16
25 S_OR_B64 52 S_PACK_HH_B32_B16
26 S_XOR_B32 53 S_PACK_HL_B32_B16

15.1.2. SOPK

Description This is a scalar instruction with one 16-bit signed immediate (SIMM16) input and a single
destination. Instructions that take 2 inputs use the destination as the first input and the
SIMM16 as the second input.
E.g. "S_CMPK_GT_I32 S0, 1" means "SCC = (s0 > 1)"

Table 67. SOPK Fields

Field Name Bits Format or Description
SIMM16 [15:0] Signed immediate 16-bit value.
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Field Name Bits Format or Description
SDST [22:16]

0-105
106
107
108-123
124
125
126
127

Scalar destination, and can provide second source operand.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
NULL
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].

OP [27:23] See Opcode table below.
ENCODING [31:28] 'b1011

Table 68. SOPK Opcodes

Opcode # Name Opcode # Name
0 S_MOVK_I32 13 S_CMPK_LT_U32
1 S_VERSION 14 S_CMPK_LE_U32
2 S_CMOVK_I32 15 S_ADDK_I32
3 S_CMPK_EQ_I32 16 S_MULK_I32
4 S_CMPK_LG_I32 17 S_GETREG_B32
5 S_CMPK_GT_I32 18 S_SETREG_B32
6 S_CMPK_GE_I32 19 S_SETREG_IMM32_B32
7 S_CMPK_LT_I32 20 S_CALL_B64
8 S_CMPK_LE_I32 24 S_WAITCNT_VSCNT
9 S_CMPK_EQ_U32 25 S_WAITCNT_VMCNT
10 S_CMPK_LG_U32 26 S_WAITCNT_EXPCNT
11 S_CMPK_GT_U32 27 S_WAITCNT_LGKMCNT
12 S_CMPK_GE_U32

15.1.3. SOP1

Description This is a scalar instruction with two inputs and one output. Can be followed by a 32-bit
literal constant.

Table 69. SOP1 Fields
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Field Name Bits Format or Description
SSRC0 [7:0]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 - 252
253
254
255

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
Reserved.
SCC.
Reserved.
Literal constant.

OP [15:8] See Opcode table below.
SDST [22:16] Scalar destination.

Same codes as SSRC0, above except only codes 0-127 are valid.
ENCODING [31:23] 'b10_1111101

Table 70. SOP1 Opcodes

Opcode # Name Opcode # Name
0 S_MOV_B32 35 S_OR_SAVEEXEC_B64
1 S_MOV_B64 36 S_XOR_SAVEEXEC_B32
2 S_CMOV_B32 37 S_XOR_SAVEEXEC_B64
3 S_CMOV_B64 38 S_NAND_SAVEEXEC_B32
4 S_BREV_B32 39 S_NAND_SAVEEXEC_B64
5 S_BREV_B64 40 S_NOR_SAVEEXEC_B32
8 S_CTZ_I32_B32 41 S_NOR_SAVEEXEC_B64
9 S_CTZ_I32_B64 42 S_XNOR_SAVEEXEC_B32
10 S_CLZ_I32_U32 43 S_XNOR_SAVEEXEC_B64
11 S_CLZ_I32_U64 44 S_AND_NOT0_SAVEEXEC_B32
12 S_CLS_I32 45 S_AND_NOT0_SAVEEXEC_B64
13 S_CLS_I32_I64 46 S_OR_NOT0_SAVEEXEC_B32
14 S_SEXT_I32_I8 47 S_OR_NOT0_SAVEEXEC_B64
15 S_SEXT_I32_I16 48 S_AND_NOT1_SAVEEXEC_B32
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Opcode # Name Opcode # Name
16 S_BITSET0_B32 49 S_AND_NOT1_SAVEEXEC_B64
17 S_BITSET0_B64 50 S_OR_NOT1_SAVEEXEC_B32
18 S_BITSET1_B32 51 S_OR_NOT1_SAVEEXEC_B64
19 S_BITSET1_B64 52 S_AND_NOT0_WREXEC_B32
20 S_BITREPLICATE_B64_B32 53 S_AND_NOT0_WREXEC_B64
21 S_ABS_I32 54 S_AND_NOT1_WREXEC_B32
22 S_BCNT0_I32_B32 55 S_AND_NOT1_WREXEC_B64
23 S_BCNT0_I32_B64 64 S_MOVRELS_B32
24 S_BCNT1_I32_B32 65 S_MOVRELS_B64
25 S_BCNT1_I32_B64 66 S_MOVRELD_B32
26 S_QUADMASK_B32 67 S_MOVRELD_B64
27 S_QUADMASK_B64 68 S_MOVRELSD_2_B32
28 S_WQM_B32 71 S_GETPC_B64
29 S_WQM_B64 72 S_SETPC_B64
30 S_NOT_B32 73 S_SWAPPC_B64
31 S_NOT_B64 74 S_RFE_B64
32 S_AND_SAVEEXEC_B32 76 S_SENDMSG_RTN_B32
33 S_AND_SAVEEXEC_B64 77 S_SENDMSG_RTN_B64
34 S_OR_SAVEEXEC_B32

15.1.4. SOPC

Description This is a scalar instruction with two inputs that are compared and produces SCC as a
result. Can be followed by a 32-bit literal constant.

Table 71. SOPC Fields
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Field Name Bits Format or Description
SSRC0 [7:0]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 - 252
253
254
255

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
Reserved.
SCC.
Reserved.
Literal constant.

SSRC1 [15:8] Second scalar source operand.
Same codes as SSRC0, above.

OP [22:16] See Opcode table below.
ENCODING [31:23] 'b10_1111110

Table 72. SOPC Opcodes

Opcode # Name Opcode # Name
0 S_CMP_EQ_I32 9 S_CMP_GE_U32
1 S_CMP_LG_I32 10 S_CMP_LT_U32
2 S_CMP_GT_I32 11 S_CMP_LE_U32
3 S_CMP_GE_I32 12 S_BITCMP0_B32
4 S_CMP_LT_I32 13 S_BITCMP1_B32
5 S_CMP_LE_I32 14 S_BITCMP0_B64
6 S_CMP_EQ_U32 15 S_BITCMP1_B64
7 S_CMP_LG_U32 16 S_CMP_EQ_U64
8 S_CMP_GT_U32 17 S_CMP_LG_U64
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15.1.5. SOPP

Description This is a scalar instruction with one 16-bit signed immediate (SIMM16) input.

Table 73. SOPP Fields

Field Name Bits Format or Description
SIMM16 [15:0] Signed immediate 16-bit value.
OP [22:16] See Opcode table below.
ENCODING [31:23] 'b10_1111111

Table 74. SOPP Opcodes

Opcode # Name Opcode # Name
0 S_NOP 36 S_CBRANCH_VCCNZ
1 S_SETKILL 37 S_CBRANCH_EXECZ
2 S_SETHALT 38 S_CBRANCH_EXECNZ
3 S_SLEEP 39 S_CBRANCH_CDBGSYS
4 S_SET_INST_PREFETCH_DISTANCE 40 S_CBRANCH_CDBGUSER
5 S_CLAUSE 41 S_CBRANCH_CDBGSYS_OR_USER
7 S_DELAY_ALU 42 S_CBRANCH_CDBGSYS_AND_USER
8 Reserved 48 S_ENDPGM
9 S_WAITCNT 49 S_ENDPGM_SAVED
10 S_WAIT_IDLE 50 S_ENDPGM_ORDERED_PS_DONE
11 S_WAIT_EVENT 52 S_WAKEUP
16 S_TRAP 53 S_SETPRIO
17 S_ROUND_MODE 54 S_SENDMSG
18 S_DENORM_MODE 55 S_SENDMSGHALT
31 S_CODE_END 56 S_INCPERFLEVEL
32 S_BRANCH 57 S_DECPERFLEVEL
33 S_CBRANCH_SCC0 60 S_ICACHE_INV
34 S_CBRANCH_SCC1 61 S_BARRIER
35 S_CBRANCH_VCCZ
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15.2. Scalar Memory Format

15.2.1. SMEM

Description Scalar Memory data load

Table 75. SMEM Fields

Field Name Bits Format or Description
SBASE [5:0] SGPR-pair that provides base address or SGPR-quad that provides V#. (LSB of SGPR

address is omitted).
SDATA [12:6] SGPR that provides write data or accepts return data.
DLC [14] Device level coherent.
GLC [16] Globally memory Coherent. Force bypass of L1 cache, or for atomics, cause pre-op

value to be returned.
OP [25:18] See Opcode table below.
ENCODING [31:26] 'b111101
OFFSET [52:32] An immediate signed byte offset. Ignored for cache invalidations.
SOFFSET [63:57] SGPR that supplies an unsigned byte offset. Disabled if set to NULL.

Table 76. SMEM Opcodes

Opcode # Name Opcode # Name
0 S_LOAD_B32 9 S_BUFFER_LOAD_B64
1 S_LOAD_B64 10 S_BUFFER_LOAD_B128
2 S_LOAD_B128 11 S_BUFFER_LOAD_B256
3 S_LOAD_B256 12 S_BUFFER_LOAD_B512
4 S_LOAD_B512 32 S_GL1_INV
8 S_BUFFER_LOAD_B32 33 S_DCACHE_INV
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15.3. Vector ALU Formats

15.3.1. VOP2

Description Vector ALU format with two input operands. Can be followed by a 32-bit literal constant
or DPP instruction DWORD when the instruction allows it.

Table 77. VOP2 Fields

Field Name Bits Format or Description
SRC0 [8:0]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
DPP8
DPP8FI
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
DPP16
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

VSRC1 [16:9] VGPR that provides the second operand.
VDST [24:17] Destination VGPR.
OP [30:25] See Opcode table below.
ENCODING [31] 'b0

Table 78. VOP2 Opcodes
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Opcode # Name Opcode # Name
1 V_CNDMASK_B32 29 V_XOR_B32
2 V_DOT2ACC_F32_F16 30 V_XNOR_B32
3 V_ADD_F32 32 V_ADD_CO_CI_U32
4 V_SUB_F32 33 V_SUB_CO_CI_U32
5 V_SUBREV_F32 34 V_SUBREV_CO_CI_U32
6 V_FMAC_DX9_ZERO_F32 37 V_ADD_NC_U32
7 V_MUL_DX9_ZERO_F32 38 V_SUB_NC_U32
8 V_MUL_F32 39 V_SUBREV_NC_U32
9 V_MUL_I32_I24 43 V_FMAC_F32
10 V_MUL_HI_I32_I24 44 V_FMAMK_F32
11 V_MUL_U32_U24 45 V_FMAAK_F32
12 V_MUL_HI_U32_U24 47 V_CVT_PK_RTZ_F16_F32
15 V_MIN_F32 50 V_ADD_F16
16 V_MAX_F32 51 V_SUB_F16
17 V_MIN_I32 52 V_SUBREV_F16
18 V_MAX_I32 53 V_MUL_F16
19 V_MIN_U32 54 V_FMAC_F16
20 V_MAX_U32 55 V_FMAMK_F16
24 V_LSHLREV_B32 56 V_FMAAK_F16
25 V_LSHRREV_B32 57 V_MAX_F16
26 V_ASHRREV_I32 58 V_MIN_F16
27 V_AND_B32 59 V_LDEXP_F16
28 V_OR_B32 60 V_PK_FMAC_F16

15.3.2. VOP1

Description Vector ALU format with one input operand. Can be followed by a 32-bit literal constant or
DPP instruction DWORD when the instruction allows it.

Table 79. VOP1 Fields
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Field Name Bits Format or Description
SRC0 [8:0]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
DPP8
DPP8FI
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
DPP16
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

OP [16:9] See Opcode table below.
VDST [24:17] Destination VGPR.
ENCODING [31:25] 'b0_111111

Table 80. VOP1 Opcodes

Opcode # Name Opcode # Name
0 V_NOP 54 V_COS_F32
1 V_MOV_B32 55 V_NOT_B32
2 V_READFIRSTLANE_B32 56 V_BFREV_B32
3 V_CVT_I32_F64 57 V_CLZ_I32_U32
4 V_CVT_F64_I32 58 V_CTZ_I32_B32
5 V_CVT_F32_I32 59 V_CLS_I32
6 V_CVT_F32_U32 60 V_FREXP_EXP_I32_F64
7 V_CVT_U32_F32 61 V_FREXP_MANT_F64
8 V_CVT_I32_F32 62 V_FRACT_F64
10 V_CVT_F16_F32 63 V_FREXP_EXP_I32_F32
11 V_CVT_F32_F16 64 V_FREXP_MANT_F32
12 V_CVT_NEAREST_I32_F32 66 V_MOVRELD_B32
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Opcode # Name Opcode # Name
13 V_CVT_FLOOR_I32_F32 67 V_MOVRELS_B32
14 V_CVT_OFF_F32_I4 68 V_MOVRELSD_B32
15 V_CVT_F32_F64 72 V_MOVRELSD_2_B32
16 V_CVT_F64_F32 80 V_CVT_F16_U16
17 V_CVT_F32_UBYTE0 81 V_CVT_F16_I16
18 V_CVT_F32_UBYTE1 82 V_CVT_U16_F16
19 V_CVT_F32_UBYTE2 83 V_CVT_I16_F16
20 V_CVT_F32_UBYTE3 84 V_RCP_F16
21 V_CVT_U32_F64 85 V_SQRT_F16
22 V_CVT_F64_U32 86 V_RSQ_F16
23 V_TRUNC_F64 87 V_LOG_F16
24 V_CEIL_F64 88 V_EXP_F16
25 V_RNDNE_F64 89 V_FREXP_MANT_F16
26 V_FLOOR_F64 90 V_FREXP_EXP_I16_F16
27 V_PIPEFLUSH 91 V_FLOOR_F16
28 V_MOV_B16 92 V_CEIL_F16
32 V_FRACT_F32 93 V_TRUNC_F16
33 V_TRUNC_F32 94 V_RNDNE_F16
34 V_CEIL_F32 95 V_FRACT_F16
35 V_RNDNE_F32 96 V_SIN_F16
36 V_FLOOR_F32 97 V_COS_F16
37 V_EXP_F32 98 V_SAT_PK_U8_I16
39 V_LOG_F32 99 V_CVT_NORM_I16_F16
42 V_RCP_F32 100 V_CVT_NORM_U16_F16
43 V_RCP_IFLAG_F32 101 V_SWAP_B32
46 V_RSQ_F32 102 V_SWAP_B16
47 V_RCP_F64 103 V_PERMLANE64_B32
49 V_RSQ_F64 104 V_SWAPREL_B32
51 V_SQRT_F32 105 V_NOT_B16
52 V_SQRT_F64 106 V_CVT_I32_I16
53 V_SIN_F32 107 V_CVT_U32_U16

15.3.3. VOPC

Description Vector instruction taking two inputs and producing a comparison result. Can be followed
by a 32-bit literal constant or DPP control DWORD. Vector Comparison operations are
divided into three groups:

• those that can use any one of 16 comparison operations,
• those that can use any one of 8, and
• those that have a single comparison operation.

The final opcode number is determined by adding the base for the opcode family plus the offset from the
compare op. Compare instructions write a result to VCC (for VOPC) or an SGPR (for VOP3). Additionally,
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compare instructions have variants that writes to the EXEC mask instead of VCC or SGPR. The destination of
the compare result is VCC or EXEC when encoded using the VOPC format, and can be an arbitrary SGPR
(indicated in the VDST field) when only encoded in the VOP3 format.

Comparison Operations

Table 81. Comparison Operations

Compare Operation Opcode
Offset

Description

Sixteen Compare Operations (COMPF)
F 0 D.u = 0
LT 1 D.u = (S0 < S1)
EQ 2 D.u = (S0 == S1)
LE 3 D.u = (S0 <= S1)
GT 4 D.u = (S0 > S1)
LG 5 D.u = (S0 <> S1)
GE 6 D.u = (S0 >= S1)
O 7 D.u = (!isNaN(S0) && !isNaN(S1))
U 8 D.u = (!isNaN(S0) || !isNaN(S1))
NGE 9 D.u = !(S0 >= S1)
NLG 10 D.u = !(S0 <> S1)
NGT 11 D.u = !(S0 > S1)
NLE 12 D.u = !(S0 <= S1)
NEQ 13 D.u = !(S0 == S1)
NLT 14 D.u = !(S0 < S1)
TRU 15 D.u = 1
Eight Compare Operations (COMPI)
F 0 D.u = 0
LT 1 D.u = (S0 < S1)
EQ 2 D.u = (S0 == S1)
LE 3 D.u = (S0 <= S1)
GT 4 D.u = (S0 > S1)
LG 5 D.u = (S0 <> S1)
GE 6 D.u = (S0 >= S1)
TRU 7 D.u = 1

Table 82. VOPC Fields
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Field Name Bits Format or Description
SRC0 [8:0]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
DPP8
DPP8FI
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
DPP16
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

VSRC1 [16:9] VGPR that provides the second operand.
OP [24:17] See Opcode table below.
ENCODING [31:25] 'b0_111110

Table 83. VOPC Opcodes

Opcode # Name Opcode # Name
0 V_CMP_F_F16 128 V_CMPX_F_F16
1 V_CMP_LT_F16 129 V_CMPX_LT_F16
2 V_CMP_EQ_F16 130 V_CMPX_EQ_F16
3 V_CMP_LE_F16 131 V_CMPX_LE_F16
4 V_CMP_GT_F16 132 V_CMPX_GT_F16
5 V_CMP_LG_F16 133 V_CMPX_LG_F16
6 V_CMP_GE_F16 134 V_CMPX_GE_F16
7 V_CMP_O_F16 135 V_CMPX_O_F16
8 V_CMP_U_F16 136 V_CMPX_U_F16
9 V_CMP_NGE_F16 137 V_CMPX_NGE_F16
10 V_CMP_NLG_F16 138 V_CMPX_NLG_F16
11 V_CMP_NGT_F16 139 V_CMPX_NGT_F16
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12 V_CMP_NLE_F16 140 V_CMPX_NLE_F16
13 V_CMP_NEQ_F16 141 V_CMPX_NEQ_F16
14 V_CMP_NLT_F16 142 V_CMPX_NLT_F16
15 V_CMP_T_F16 143 V_CMPX_T_F16
16 V_CMP_F_F32 144 V_CMPX_F_F32
17 V_CMP_LT_F32 145 V_CMPX_LT_F32
18 V_CMP_EQ_F32 146 V_CMPX_EQ_F32
19 V_CMP_LE_F32 147 V_CMPX_LE_F32
20 V_CMP_GT_F32 148 V_CMPX_GT_F32
21 V_CMP_LG_F32 149 V_CMPX_LG_F32
22 V_CMP_GE_F32 150 V_CMPX_GE_F32
23 V_CMP_O_F32 151 V_CMPX_O_F32
24 V_CMP_U_F32 152 V_CMPX_U_F32
25 V_CMP_NGE_F32 153 V_CMPX_NGE_F32
26 V_CMP_NLG_F32 154 V_CMPX_NLG_F32
27 V_CMP_NGT_F32 155 V_CMPX_NGT_F32
28 V_CMP_NLE_F32 156 V_CMPX_NLE_F32
29 V_CMP_NEQ_F32 157 V_CMPX_NEQ_F32
30 V_CMP_NLT_F32 158 V_CMPX_NLT_F32
31 V_CMP_T_F32 159 V_CMPX_T_F32
32 V_CMP_F_F64 160 V_CMPX_F_F64
33 V_CMP_LT_F64 161 V_CMPX_LT_F64
34 V_CMP_EQ_F64 162 V_CMPX_EQ_F64
35 V_CMP_LE_F64 163 V_CMPX_LE_F64
36 V_CMP_GT_F64 164 V_CMPX_GT_F64
37 V_CMP_LG_F64 165 V_CMPX_LG_F64
38 V_CMP_GE_F64 166 V_CMPX_GE_F64
39 V_CMP_O_F64 167 V_CMPX_O_F64
40 V_CMP_U_F64 168 V_CMPX_U_F64
41 V_CMP_NGE_F64 169 V_CMPX_NGE_F64
42 V_CMP_NLG_F64 170 V_CMPX_NLG_F64
43 V_CMP_NGT_F64 171 V_CMPX_NGT_F64
44 V_CMP_NLE_F64 172 V_CMPX_NLE_F64
45 V_CMP_NEQ_F64 173 V_CMPX_NEQ_F64
46 V_CMP_NLT_F64 174 V_CMPX_NLT_F64
47 V_CMP_T_F64 175 V_CMPX_T_F64
49 V_CMP_LT_I16 177 V_CMPX_LT_I16
50 V_CMP_EQ_I16 178 V_CMPX_EQ_I16
51 V_CMP_LE_I16 179 V_CMPX_LE_I16
52 V_CMP_GT_I16 180 V_CMPX_GT_I16
53 V_CMP_NE_I16 181 V_CMPX_NE_I16
54 V_CMP_GE_I16 182 V_CMPX_GE_I16
57 V_CMP_LT_U16 185 V_CMPX_LT_U16
58 V_CMP_EQ_U16 186 V_CMPX_EQ_U16
59 V_CMP_LE_U16 187 V_CMPX_LE_U16
60 V_CMP_GT_U16 188 V_CMPX_GT_U16
61 V_CMP_NE_U16 189 V_CMPX_NE_U16
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62 V_CMP_GE_U16 190 V_CMPX_GE_U16
64 V_CMP_F_I32 192 V_CMPX_F_I32
65 V_CMP_LT_I32 193 V_CMPX_LT_I32
66 V_CMP_EQ_I32 194 V_CMPX_EQ_I32
67 V_CMP_LE_I32 195 V_CMPX_LE_I32
68 V_CMP_GT_I32 196 V_CMPX_GT_I32
69 V_CMP_NE_I32 197 V_CMPX_NE_I32
70 V_CMP_GE_I32 198 V_CMPX_GE_I32
71 V_CMP_T_I32 199 V_CMPX_T_I32
72 V_CMP_F_U32 200 V_CMPX_F_U32
73 V_CMP_LT_U32 201 V_CMPX_LT_U32
74 V_CMP_EQ_U32 202 V_CMPX_EQ_U32
75 V_CMP_LE_U32 203 V_CMPX_LE_U32
76 V_CMP_GT_U32 204 V_CMPX_GT_U32
77 V_CMP_NE_U32 205 V_CMPX_NE_U32
78 V_CMP_GE_U32 206 V_CMPX_GE_U32
79 V_CMP_T_U32 207 V_CMPX_T_U32
80 V_CMP_F_I64 208 V_CMPX_F_I64
81 V_CMP_LT_I64 209 V_CMPX_LT_I64
82 V_CMP_EQ_I64 210 V_CMPX_EQ_I64
83 V_CMP_LE_I64 211 V_CMPX_LE_I64
84 V_CMP_GT_I64 212 V_CMPX_GT_I64
85 V_CMP_NE_I64 213 V_CMPX_NE_I64
86 V_CMP_GE_I64 214 V_CMPX_GE_I64
87 V_CMP_T_I64 215 V_CMPX_T_I64
88 V_CMP_F_U64 216 V_CMPX_F_U64
89 V_CMP_LT_U64 217 V_CMPX_LT_U64
90 V_CMP_EQ_U64 218 V_CMPX_EQ_U64
91 V_CMP_LE_U64 219 V_CMPX_LE_U64
92 V_CMP_GT_U64 220 V_CMPX_GT_U64
93 V_CMP_NE_U64 221 V_CMPX_NE_U64
94 V_CMP_GE_U64 222 V_CMPX_GE_U64
95 V_CMP_T_U64 223 V_CMPX_T_U64
125 V_CMP_CLASS_F16 253 V_CMPX_CLASS_F16
126 V_CMP_CLASS_F32 254 V_CMPX_CLASS_F32
127 V_CMP_CLASS_F64 255 V_CMPX_CLASS_F64

15.3.4. VOP3

Description Vector ALU format with three input operands. Can be followed by a 32-bit literal constant
or DPP instruction DWORD when the instruction allows it.

Table 84. VOP3 Fields
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VDST [7:0] Destination VGPR
ABS [10:8] Absolute value of input. [8] = src0, [9] = src1, [10] = src2
OPSEL [14:11] Operand select for 16-bit data. 0 = select low half, 1 = select high half. [11] = src0,

[12] = src1, [13] = src2, [14] = dest.
CLMP [15] Clamp output
OP [25:16] Opcode. See next table.
ENCODING [31:26] 'b110101
SRC0 [40:32]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
DPP8
DPP8FI
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
DPP16
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

SRC1 [49:41] Second input operand. Same options as SRC0.
SRC2 [58:50] Third input operand. Same options as SRC0.
OMOD [60:59] Output Modifier: 0=none, 1=*2, 2=*4, 3=*0.5
NEG [63:61] Negate input. [61] = src0, [62] = src1, [63] = src2

Table 85. VOP3 Opcodes

Opcode # Name Opcode # Name
384 V_NOP 803 V_CVT_PK_U16_U32
385 V_MOV_B32 804 V_CVT_PK_I16_I32
386 V_READFIRSTLANE_B32 805 V_SUB_NC_I32
387 V_CVT_I32_F64 806 V_ADD_NC_I32
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388 V_CVT_F64_I32 807 V_ADD_F64
389 V_CVT_F32_I32 808 V_MUL_F64
390 V_CVT_F32_U32 809 V_MIN_F64
391 V_CVT_U32_F32 810 V_MAX_F64
392 V_CVT_I32_F32 811 V_LDEXP_F64
394 V_CVT_F16_F32 812 V_MUL_LO_U32
395 V_CVT_F32_F16 813 V_MUL_HI_U32
396 V_CVT_NEAREST_I32_F32 814 V_MUL_HI_I32
397 V_CVT_FLOOR_I32_F32 815 V_TRIG_PREOP_F64
398 V_CVT_OFF_F32_I4 824 V_LSHLREV_B16
399 V_CVT_F32_F64 825 V_LSHRREV_B16
400 V_CVT_F64_F32 826 V_ASHRREV_I16
401 V_CVT_F32_UBYTE0 828 V_LSHLREV_B64
402 V_CVT_F32_UBYTE1 829 V_LSHRREV_B64
403 V_CVT_F32_UBYTE2 830 V_ASHRREV_I64
404 V_CVT_F32_UBYTE3 864 V_READLANE_B32
405 V_CVT_U32_F64 865 V_WRITELANE_B32
406 V_CVT_F64_U32 866 V_AND_B16
407 V_TRUNC_F64 867 V_OR_B16
408 V_CEIL_F64 868 V_XOR_B16
409 V_RNDNE_F64 0 V_CMP_F_F16
410 V_FLOOR_F64 1 V_CMP_LT_F16
411 V_PIPEFLUSH 2 V_CMP_EQ_F16
412 V_MOV_B16 3 V_CMP_LE_F16
416 V_FRACT_F32 4 V_CMP_GT_F16
417 V_TRUNC_F32 5 V_CMP_LG_F16
418 V_CEIL_F32 6 V_CMP_GE_F16
419 V_RNDNE_F32 7 V_CMP_O_F16
420 V_FLOOR_F32 8 V_CMP_U_F16
421 V_EXP_F32 9 V_CMP_NGE_F16
423 V_LOG_F32 10 V_CMP_NLG_F16
426 V_RCP_F32 11 V_CMP_NGT_F16
427 V_RCP_IFLAG_F32 12 V_CMP_NLE_F16
430 V_RSQ_F32 13 V_CMP_NEQ_F16
431 V_RCP_F64 14 V_CMP_NLT_F16
433 V_RSQ_F64 15 V_CMP_T_F16
435 V_SQRT_F32 16 V_CMP_F_F32
436 V_SQRT_F64 17 V_CMP_LT_F32
437 V_SIN_F32 18 V_CMP_EQ_F32
438 V_COS_F32 19 V_CMP_LE_F32
439 V_NOT_B32 20 V_CMP_GT_F32
440 V_BFREV_B32 21 V_CMP_LG_F32
441 V_CLZ_I32_U32 22 V_CMP_GE_F32
442 V_CTZ_I32_B32 23 V_CMP_O_F32
443 V_CLS_I32 24 V_CMP_U_F32
444 V_FREXP_EXP_I32_F64 25 V_CMP_NGE_F32
445 V_FREXP_MANT_F64 26 V_CMP_NLG_F32
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446 V_FRACT_F64 27 V_CMP_NGT_F32
447 V_FREXP_EXP_I32_F32 28 V_CMP_NLE_F32
448 V_FREXP_MANT_F32 29 V_CMP_NEQ_F32
450 V_MOVRELD_B32 30 V_CMP_NLT_F32
451 V_MOVRELS_B32 31 V_CMP_T_F32
452 V_MOVRELSD_B32 32 V_CMP_F_F64
456 V_MOVRELSD_2_B32 33 V_CMP_LT_F64
464 V_CVT_F16_U16 34 V_CMP_EQ_F64
465 V_CVT_F16_I16 35 V_CMP_LE_F64
466 V_CVT_U16_F16 36 V_CMP_GT_F64
467 V_CVT_I16_F16 37 V_CMP_LG_F64
468 V_RCP_F16 38 V_CMP_GE_F64
469 V_SQRT_F16 39 V_CMP_O_F64
470 V_RSQ_F16 40 V_CMP_U_F64
471 V_LOG_F16 41 V_CMP_NGE_F64
472 V_EXP_F16 42 V_CMP_NLG_F64
473 V_FREXP_MANT_F16 43 V_CMP_NGT_F64
474 V_FREXP_EXP_I16_F16 44 V_CMP_NLE_F64
475 V_FLOOR_F16 45 V_CMP_NEQ_F64
476 V_CEIL_F16 46 V_CMP_NLT_F64
477 V_TRUNC_F16 47 V_CMP_T_F64
478 V_RNDNE_F16 49 V_CMP_LT_I16
479 V_FRACT_F16 50 V_CMP_EQ_I16
480 V_SIN_F16 51 V_CMP_LE_I16
481 V_COS_F16 52 V_CMP_GT_I16
482 V_SAT_PK_U8_I16 53 V_CMP_NE_I16
483 V_CVT_NORM_I16_F16 54 V_CMP_GE_I16
484 V_CVT_NORM_U16_F16 57 V_CMP_LT_U16
489 V_NOT_B16 58 V_CMP_EQ_U16
490 V_CVT_I32_I16 59 V_CMP_LE_U16
491 V_CVT_U32_U16 60 V_CMP_GT_U16
257 V_CNDMASK_B32 61 V_CMP_NE_U16
259 V_ADD_F32 62 V_CMP_GE_U16
260 V_SUB_F32 64 V_CMP_F_I32
261 V_SUBREV_F32 65 V_CMP_LT_I32
262 V_FMAC_DX9_ZERO_F32 66 V_CMP_EQ_I32
263 V_MUL_DX9_ZERO_F32 67 V_CMP_LE_I32
264 V_MUL_F32 68 V_CMP_GT_I32
265 V_MUL_I32_I24 69 V_CMP_NE_I32
266 V_MUL_HI_I32_I24 70 V_CMP_GE_I32
267 V_MUL_U32_U24 71 V_CMP_T_I32
268 V_MUL_HI_U32_U24 72 V_CMP_F_U32
271 V_MIN_F32 73 V_CMP_LT_U32
272 V_MAX_F32 74 V_CMP_EQ_U32
273 V_MIN_I32 75 V_CMP_LE_U32
274 V_MAX_I32 76 V_CMP_GT_U32
275 V_MIN_U32 77 V_CMP_NE_U32
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276 V_MAX_U32 78 V_CMP_GE_U32
280 V_LSHLREV_B32 79 V_CMP_T_U32
281 V_LSHRREV_B32 80 V_CMP_F_I64
282 V_ASHRREV_I32 81 V_CMP_LT_I64
283 V_AND_B32 82 V_CMP_EQ_I64
284 V_OR_B32 83 V_CMP_LE_I64
285 V_XOR_B32 84 V_CMP_GT_I64
286 V_XNOR_B32 85 V_CMP_NE_I64
293 V_ADD_NC_U32 86 V_CMP_GE_I64
294 V_SUB_NC_U32 87 V_CMP_T_I64
295 V_SUBREV_NC_U32 88 V_CMP_F_U64
299 V_FMAC_F32 89 V_CMP_LT_U64
303 V_CVT_PK_RTZ_F16_F32 90 V_CMP_EQ_U64
306 V_ADD_F16 91 V_CMP_LE_U64
307 V_SUB_F16 92 V_CMP_GT_U64
308 V_SUBREV_F16 93 V_CMP_NE_U64
309 V_MUL_F16 94 V_CMP_GE_U64
310 V_FMAC_F16 95 V_CMP_T_U64
313 V_MAX_F16 125 V_CMP_CLASS_F16
314 V_MIN_F16 126 V_CMP_CLASS_F32
315 V_LDEXP_F16 127 V_CMP_CLASS_F64
521 V_FMA_DX9_ZERO_F32 128 V_CMPX_F_F16
522 V_MAD_I32_I24 129 V_CMPX_LT_F16
523 V_MAD_U32_U24 130 V_CMPX_EQ_F16
524 V_CUBEID_F32 131 V_CMPX_LE_F16
525 V_CUBESC_F32 132 V_CMPX_GT_F16
526 V_CUBETC_F32 133 V_CMPX_LG_F16
527 V_CUBEMA_F32 134 V_CMPX_GE_F16
528 V_BFE_U32 135 V_CMPX_O_F16
529 V_BFE_I32 136 V_CMPX_U_F16
530 V_BFI_B32 137 V_CMPX_NGE_F16
531 V_FMA_F32 138 V_CMPX_NLG_F16
532 V_FMA_F64 139 V_CMPX_NGT_F16
533 V_LERP_U8 140 V_CMPX_NLE_F16
534 V_ALIGNBIT_B32 141 V_CMPX_NEQ_F16
535 V_ALIGNBYTE_B32 142 V_CMPX_NLT_F16
536 V_MULLIT_F32 143 V_CMPX_T_F16
537 V_MIN3_F32 144 V_CMPX_F_F32
538 V_MIN3_I32 145 V_CMPX_LT_F32
539 V_MIN3_U32 146 V_CMPX_EQ_F32
540 V_MAX3_F32 147 V_CMPX_LE_F32
541 V_MAX3_I32 148 V_CMPX_GT_F32
542 V_MAX3_U32 149 V_CMPX_LG_F32
543 V_MED3_F32 150 V_CMPX_GE_F32
544 V_MED3_I32 151 V_CMPX_O_F32
545 V_MED3_U32 152 V_CMPX_U_F32
546 V_SAD_U8 153 V_CMPX_NGE_F32
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547 V_SAD_HI_U8 154 V_CMPX_NLG_F32
548 V_SAD_U16 155 V_CMPX_NGT_F32
549 V_SAD_U32 156 V_CMPX_NLE_F32
550 V_CVT_PK_U8_F32 157 V_CMPX_NEQ_F32
551 V_DIV_FIXUP_F32 158 V_CMPX_NLT_F32
552 V_DIV_FIXUP_F64 159 V_CMPX_T_F32
567 V_DIV_FMAS_F32 160 V_CMPX_F_F64
568 V_DIV_FMAS_F64 161 V_CMPX_LT_F64
569 V_MSAD_U8 162 V_CMPX_EQ_F64
570 V_QSAD_PK_U16_U8 163 V_CMPX_LE_F64
571 V_MQSAD_PK_U16_U8 164 V_CMPX_GT_F64
573 V_MQSAD_U32_U8 165 V_CMPX_LG_F64
576 V_XOR3_B32 166 V_CMPX_GE_F64
577 V_MAD_U16 167 V_CMPX_O_F64
580 V_PERM_B32 168 V_CMPX_U_F64
581 V_XAD_U32 169 V_CMPX_NGE_F64
582 V_LSHL_ADD_U32 170 V_CMPX_NLG_F64
583 V_ADD_LSHL_U32 171 V_CMPX_NGT_F64
584 V_FMA_F16 172 V_CMPX_NLE_F64
585 V_MIN3_F16 173 V_CMPX_NEQ_F64
586 V_MIN3_I16 174 V_CMPX_NLT_F64
587 V_MIN3_U16 175 V_CMPX_T_F64
588 V_MAX3_F16 177 V_CMPX_LT_I16
589 V_MAX3_I16 178 V_CMPX_EQ_I16
590 V_MAX3_U16 179 V_CMPX_LE_I16
591 V_MED3_F16 180 V_CMPX_GT_I16
592 V_MED3_I16 181 V_CMPX_NE_I16
593 V_MED3_U16 182 V_CMPX_GE_I16
595 V_MAD_I16 185 V_CMPX_LT_U16
596 V_DIV_FIXUP_F16 186 V_CMPX_EQ_U16
597 V_ADD3_U32 187 V_CMPX_LE_U16
598 V_LSHL_OR_B32 188 V_CMPX_GT_U16
599 V_AND_OR_B32 189 V_CMPX_NE_U16
600 V_OR3_B32 190 V_CMPX_GE_U16
601 V_MAD_U32_U16 192 V_CMPX_F_I32
602 V_MAD_I32_I16 193 V_CMPX_LT_I32
603 V_PERMLANE16_B32 194 V_CMPX_EQ_I32
604 V_PERMLANEX16_B32 195 V_CMPX_LE_I32
605 V_CNDMASK_B16 196 V_CMPX_GT_I32
606 V_MAXMIN_F32 197 V_CMPX_NE_I32
607 V_MINMAX_F32 198 V_CMPX_GE_I32
608 V_MAXMIN_F16 199 V_CMPX_T_I32
609 V_MINMAX_F16 200 V_CMPX_F_U32
610 V_MAXMIN_U32 201 V_CMPX_LT_U32
611 V_MINMAX_U32 202 V_CMPX_EQ_U32
612 V_MAXMIN_I32 203 V_CMPX_LE_U32
613 V_MINMAX_I32 204 V_CMPX_GT_U32
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614 V_DOT2_F16_F16 205 V_CMPX_NE_U32
615 V_DOT2_BF16_BF16 206 V_CMPX_GE_U32
771 V_ADD_NC_U16 207 V_CMPX_T_U32
772 V_SUB_NC_U16 208 V_CMPX_F_I64
773 V_MUL_LO_U16 209 V_CMPX_LT_I64
774 V_CVT_PK_I16_F32 210 V_CMPX_EQ_I64
775 V_CVT_PK_U16_F32 211 V_CMPX_LE_I64
777 V_MAX_U16 212 V_CMPX_GT_I64
778 V_MAX_I16 213 V_CMPX_NE_I64
779 V_MIN_U16 214 V_CMPX_GE_I64
780 V_MIN_I16 215 V_CMPX_T_I64
781 V_ADD_NC_I16 216 V_CMPX_F_U64
782 V_SUB_NC_I16 217 V_CMPX_LT_U64
785 V_PACK_B32_F16 218 V_CMPX_EQ_U64
786 V_CVT_PK_NORM_I16_F16 219 V_CMPX_LE_U64
787 V_CVT_PK_NORM_U16_F16 220 V_CMPX_GT_U64
796 V_LDEXP_F32 221 V_CMPX_NE_U64
797 V_BFM_B32 222 V_CMPX_GE_U64
798 V_BCNT_U32_B32 223 V_CMPX_T_U64
799 V_MBCNT_LO_U32_B32 253 V_CMPX_CLASS_F16
800 V_MBCNT_HI_U32_B32 254 V_CMPX_CLASS_F32
801 V_CVT_PK_NORM_I16_F32 255 V_CMPX_CLASS_F64
802 V_CVT_PK_NORM_U16_F32

15.3.5. VOP3SD

Description Vector ALU format with three operands and a scalar result. This encoding is used only for
a few opcodes. Can be followed by a 32-bit literal constant or DPP instruction DWORD
when the instruction allows it.

This encoding allows specifying a unique scalar destination, and is used only for the opcodes listed below. All
other opcodes use VOP3.

Table 86. VOP3SD Fields

Field Name Bits Format or Description
VDST [7:0] Destination VGPR
SDST [14:8] Scalar destination
CLMP [15] Clamp result
OP [25:16] Opcode. see next table.
ENCODING [31:26] 'b110101
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SRC0 [40:32]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
DPP8
DPP8FI
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
DPP16
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

SRC1 [49:41] Second input operand. Same options as SRC0.
SRC2 [58:50] Third input operand. Same options as SRC0.
OMOD [60:59] Output Modifier: 0=none, 1=*2, 2=*4, 3=*0.5
NEG [63:61] Negate input. [61] = src0, [62] = src1, [63] = src2

Table 87. VOP3SD Opcodes

Opcode # Name Opcode # Name
288 V_ADD_CO_CI_U32 766 V_MAD_U64_U32
289 V_SUB_CO_CI_U32 767 V_MAD_I64_I32
290 V_SUBREV_CO_CI_U32 768 V_ADD_CO_U32
764 V_DIV_SCALE_F32 769 V_SUB_CO_U32
765 V_DIV_SCALE_F64 770 V_SUBREV_CO_U32

15.3.6. VOP3P
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Description Vector ALU format taking one, two or three pairs of 16 bit inputs and producing two 16-bit
outputs (packed into 1 DWORD). WMMA instructions have larger input and output VGPR
sets. Can be followed by a 32-bit literal constant or DPP instruction DWORD when the
instruction allows it.

Table 88. VOP3P Fields

Field Name Bits Format or Description
VDST [7:0] Destination VGPR
NEG_HI [10:8] Negate sources 0,1,2 of the high 16-bits.
OPSEL [13:11] Select low or high for low sources 0=[11], 1=[12], 2=[13].
OPSEL_HI2 [14] Select low or high for high sources 0=[14], 1=[60], 2=[59].
CLMP [15] 1 = clamp result.
OP [22:16] Opcode. see next table.
ENCODING [31:26] 'b11001100
SRC0 [40:32]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
DPP8
DPP8FI
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
DPP16
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

SRC1 [49:41] Second input operand. Same options as SRC0.
SRC2 [58:50] Third input operand. Same options as SRC0.
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Field Name Bits Format or Description
OPSEL_HI [60:59] See OPSEL_HI2.
NEG [63:61] Negate input for low 16-bits of sources. [61] = src0, [62] = src1, [63] = src2

Table 89. VOP3P Opcodes

Opcode # Name Opcode # Name
0 V_PK_MAD_I16 17 V_PK_MIN_F16
1 V_PK_MUL_LO_U16 18 V_PK_MAX_F16
2 V_PK_ADD_I16 19 V_DOT2_F32_F16
3 V_PK_SUB_I16 22 V_DOT4_I32_IU8
4 V_PK_LSHLREV_B16 23 V_DOT4_U32_U8
5 V_PK_LSHRREV_B16 24 V_DOT8_I32_IU4
6 V_PK_ASHRREV_I16 25 V_DOT8_U32_U4
7 V_PK_MAX_I16 26 V_DOT2_F32_BF16
8 V_PK_MIN_I16 32 V_FMA_MIX_F32
9 V_PK_MAD_U16 33 V_FMA_MIXLO_F16
10 V_PK_ADD_U16 34 V_FMA_MIXHI_F16
11 V_PK_SUB_U16 64 V_WMMA_F32_16X16X16_F16
12 V_PK_MAX_U16 65 V_WMMA_F32_16X16X16_BF16
13 V_PK_MIN_U16 66 V_WMMA_F16_16X16X16_F16
14 V_PK_FMA_F16 67 V_WMMA_BF16_16X16X16_BF16
15 V_PK_ADD_F16 68 V_WMMA_I32_16X16X16_IU8
16 V_PK_MUL_F16 69 V_WMMA_I32_16X16X16_IU4

15.3.7. VOPD

Description Vector ALU format describing two instructions to be executed in parallel. Can be followed
by a 32-bit literal constant, but not a DPP control DWORD.

This instruction format describe two opcodes: X and Y.

Table 90. VOPD Fields
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Field Name Bits Format or Description
SRCX0 [8:0]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

Source 0 for opcode X. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
DPP8
DPP8FI
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
DPP16
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

VSRCX1 [16:9] Source VGPR 1 for opcode X.
OPY [21:17] Opcode Y. see next table.
OPX [25:22] Opcode X. see next table.
ENCODING [31:26] 'b110010
SRCY0 [40:32] Source 0 for opcode Y. See SRCX0 for enumerations
VSRCY1 [48:41] Source VGPR 1 for opcode Y.
VDSTY [55:49] Instruction Y destination VGPR, excluding LSB. LSB is the opposite of VDSTX[0].
VDSTX [63:56] Instruction X destination VGPR

Table 91. VOPD X-Opcodes

0 V_DUAL_FMAC_F32 7 V_DUAL_MUL_DX9_ZERO_F32
1 V_DUAL_FMAAK_F32 8 V_DUAL_MOV_B32
2 V_DUAL_FMAMK_F32 9 V_DUAL_CNDMASK_B32
3 V_DUAL_MUL_F32 10 V_DUAL_MAX_F32
4 V_DUAL_ADD_F32 11 V_DUAL_MIN_F32
5 V_DUAL_SUB_F32 12 V_DUAL_DOT2ACC_F32_F16
6 V_DUAL_SUBREV_F32 13 V_DUAL_DOT2ACC_F32_BF16
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Table 92. VOPD Y-Opcodes

0 V_DUAL_FMAC_F32 9 V_DUAL_CNDMASK_B32
1 V_DUAL_FMAAK_F32 10 V_DUAL_MAX_F32
2 V_DUAL_FMAMK_F32 11 V_DUAL_MIN_F32
3 V_DUAL_MUL_F32 12 V_DUAL_DOT2ACC_F32_F16
4 V_DUAL_ADD_F32 13 V_DUAL_DOT2ACC_F32_BF16
5 V_DUAL_SUB_F32 16 V_DUAL_ADD_NC_U32
6 V_DUAL_SUBREV_F32 17 V_DUAL_LSHLREV_B32
7 V_DUAL_MUL_DX9_ZERO_F32 18 V_DUAL_AND_B32
8 V_DUAL_MOV_B32

15.3.8. DPP16

Description Data Parallel Primitives over 16 lanes. This is an additional DWORD that can follow VOP1,
VOP2, VOPC, VOP3 or VOP3P instructions (in place of a literal constant) to control
selection of data from other lanes.

Table 93. DPP16 Fields

Field Name Bits Format or Description
SRC0 [39:32] Real SRC0 operand (VGPR).
DPP_CTRL [48:40] See next table: "DPP_CTRL Enumeration"
FI [50] Fetch invalid data: 0 = read zero for any inactive lanes; 1 = read VGPRs even for

invalid lanes.
BC [51] Bounds Control: 0 = do not write when source is out of range, 1 = write.
SRC0_NEG [52] 1 = negate source 0.
SRC0_ABS [53] 1 = Absolute value of source 0.
SRC1_NEG [54] 1 = negate source 1.
SRC1_ABS [55] 1 = Absolute value of source 1.
BANK_MASK [59:56] Bank Mask Applies to the VGPR destination write only, does not impact the thread

mask when fetching source VGPR data.
27==0: lanes[12:15, 28:31, 44:47, 60:63] are disabled
26==0: lanes[8:11, 24:27, 40:43, 56:59] are disabled
25==0: lanes[4:7, 20:23, 36:39, 52:55] are disabled
24==0: lanes[0:3, 16:19, 32:35, 48:51] are disabled
Notice: the term "bank" here is not the same as was used for the VGPR bank.

ROW_MASK [63:60] Row Mask Applies to the VGPR destination write only, does not impact the thread
mask when fetching source VGPR data.
31==0: lanes[63:48] are disabled (wave 64 only)
30==0: lanes[47:32] are disabled (wave 64 only)
29==0: lanes[31:16] are disabled
28==0: lanes[15:0] are disabled

Table 94. DPP_CTRL Enumeration
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DPP_Cntl
Enumeration

Hex
Value

Function Description

DPP_QUAD_PE
RM*

000-
0FF

pix[n].srca = pix[(n&0x3c)+ dpp_cntl[n%4*2+1 :
n%4*2]].srca

Permute of four threads.

DPP_UNUSED 100 Undefined Reserved.
DPP_ROW_SL* 101-

10F
if ((n&0xf) < (16-cntl[3:0])) pix[n].srca = pix[n+
cntl[3:0]].srca else use bound_cntl

Row shift left by 1-15 threads.

DPP_ROW_SR* 111-
11F

if ((n&0xf) >= cntl[3:0]) pix[n].srca = pix[n -
cntl[3:0]].srca else use bound_cntl

Row shift right by 1-15 threads.

DPP_ROW_RR* 121-
12F

if ((n&0xf) >= cnt[3:0]) pix[n].srca = pix[n -
cntl[3:0]].srca else pix[n].srca = pix[n + 16 -
cntl[3:0]].srca

Row rotate right by 1-15 threads.

DPP_ROW_MIR
ROR*

140 pix[n].srca = pix[15-(n&f)].srca Mirror threads within row.

DPP_ROW_HA
LF_MIRROR*

141 pix[n].srca = pix[7-(n&7)].srca Mirror threads within row (8 threads).

DPP_ROW_SHA
RE*

150-
15F

lanesel = DPP_CTRL & 0xf;
lane[n].src0 = lane[(n & 0x30) + lanesel].src0.

Select one lane within each row and share
the result with all lanes in the row.

DPP_ROW_XM
ASK*

160-
16F

lane[n].src0 = lane[(n & 0x30) + ((n & 0xf) ^
mask)].src0.

Fetch lane ID is the current lane ID XOR’d
with a mask specified by DPP_CTRL[3:0].

15.3.9. DPP8

Description Data Parallel Primitives over 8 lanes. This is a second DWORD that can follow VOP1,
VOP2, VOPC, VOP3 or VOP3P instructions (in place of a literal constant) to control
selection of data from other lanes.

Table 95. DPP8 Fields

Field Name Bits Format or Description
SRC0 [39:32] Real SRC0 operand (VGPR).
LANE_SEL0 [42:40] Which lane to read for 1st output lane per 8-lane group
LANE_SEL1 [45:43] Which lane to read for 2nd output lane per 8-lane group
LANE_SEL2 [48:46] Which lane to read for 3rd output lane per 8-lane group
LANE_SEL3 [51:49] Which lane to read for 4th output lane per 8-lane group
LANE_SEL4 [54:52] Which lane to read for 5th output lane per 8-lane group
LANE_SEL5 [57:55] Which lane to read for 6th output lane per 8-lane group
LANE_SEL6 [60:58] Which lane to read for 7th output lane per 8-lane group
LANE_SEL7 [63:61] Which lane to read for 8th output lane per 8-lane group
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15.4. Vector Parameter Interpolation Format

15.4.1. VINTERP

Description Vector Parameter Interpolation.
These opcodes perform parameter interpolation using vertex data in pixel shaders.

Table 96. VINTERP Fields

Field Name Bits Format or Description
VDST [7:0] Destination VGPR
WAITEXP [10:8] Wait for EXPcnt to be less-than or equal-to this value before issuing instruction.
OPSEL [14:11] Select low or high for low sources 0=[11], 1=[12], 2=[13], dst=[14].
CLMP [15] 1 = clamp result.
OP [22:16] Opcode. see next table.
ENCODING [31:26] 'b11001101
SRC0 [40:32] Source 0. First operand for the instruction: VGPR 0-255.
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Field Name Bits Format or Description
SRC0 [40:32]

0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

Source 0. First operand for the instruction.
SGPR0 - SGPR105: Scalar general-purpose registers.
VCC_LO: VCC[31:0].
VCC_HI: VCC[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
NULL
M0. Misc register 0.
EXEC_LO: EXEC[31:0].
EXEC_HI: EXEC[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
DPP8
DPP8FI
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
DPP16
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

SRC1 [49:41] Second input operand. Same options as SRC0.
SRC2 [58:50] Third input operand. Same options as SRC0.
NEG [63:61] Negate input for low 16-bits of sources. [61] = src0, [62] = src1, [63] = src2

Table 97. VINTERP Opcodes

Opcode # Name Opcode # Name
0 V_INTERP_P10_F32 3 V_INTERP_P2_F16_F32
1 V_INTERP_P2_F32 4 V_INTERP_P10_RTZ_F16_F32
2 V_INTERP_P10_F16_F32 5 V_INTERP_P2_RTZ_F16_F32

15.5. Parameter and Direct Load from LDS

15.5.1. LDSDIR
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Description LDS Direct and Parameter Load.
These opcodes read either pixel parameter data or individual DWORDs from LDS into
VGPRs.

Table 98. LDSDIR Fields

Field Name Bits Format or Description
VDST [7:0] Destination VGPR
ATTR_CHAN [9:8] Attribute channel: 0=X, 1=Y, 2=Z, 3=W
ATTR [15:10] Attribute number: 0 - 32.
WAIT_VA [19:16] Wait for previous VALU instructions to complete to resolve data dependency. Value

is the max number of VALU ops still outstanding when issuing this instruction.
OP [21:20] Opcode:

0: LDS_DIRECT_LOAD
1: LDS_PARAM_LOAD
2, 3: Reserved.

ENCODING [31:24] 'b11001110
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15.6. LDS and GDS Format

15.6.1. DS

Description Local and Global Data Sharing instructions

Table 99. DS Fields

Field Name Bits Format or Description
OFFSET0 [7:0] First address offset
OFFSET1 [15:8] Second address offset. For some opcodes this is concatenated with OFFSET0.
GDS [17] 1=GDS, 0=LDS operation.
OP [25:18] See Opcode table below.
ENCODING [31:26] 'b110110
ADDR [39:32] VGPR that supplies the address.
DATA0 [47:40] First data VGPR.
DATA1 [55:48] Second data VGPR.
VDST [63:56] Destination VGPR when results returned to VGPRs.

Table 100. DS Opcodes

Opcode # Name Opcode # Name
0 DS_ADD_U32 65 DS_SUB_U64
1 DS_SUB_U32 66 DS_RSUB_U64
2 DS_RSUB_U32 67 DS_INC_U64
3 DS_INC_U32 68 DS_DEC_U64
4 DS_DEC_U32 69 DS_MIN_I64
5 DS_MIN_I32 70 DS_MAX_I64
6 DS_MAX_I32 71 DS_MIN_U64
7 DS_MIN_U32 72 DS_MAX_U64
8 DS_MAX_U32 73 DS_AND_B64
9 DS_AND_B32 74 DS_OR_B64
10 DS_OR_B32 75 DS_XOR_B64
11 DS_XOR_B32 76 DS_MSKOR_B64
12 DS_MSKOR_B32 77 DS_STORE_B64
13 DS_STORE_B32 78 DS_STORE_2ADDR_B64
14 DS_STORE_2ADDR_B32 79 DS_STORE_2ADDR_STRIDE64_B64
15 DS_STORE_2ADDR_STRIDE64_B32 80 DS_CMPSTORE_B64
16 DS_CMPSTORE_B32 81 DS_CMPSTORE_F64
17 DS_CMPSTORE_F32 82 DS_MIN_F64
18 DS_MIN_F32 83 DS_MAX_F64
19 DS_MAX_F32 96 DS_ADD_RTN_U64
20 DS_NOP 97 DS_SUB_RTN_U64
21 DS_ADD_F32 98 DS_RSUB_RTN_U64
24 Reserved 99 DS_INC_RTN_U64
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Opcode # Name Opcode # Name
25 Reserved 100 DS_DEC_RTN_U64
26 Reserved 101 DS_MIN_RTN_I64
27 Reserved 102 DS_MAX_RTN_I64
28 Reserved 103 DS_MIN_RTN_U64
29 Reserved 104 DS_MAX_RTN_U64
30 DS_STORE_B8 105 DS_AND_RTN_B64
31 DS_STORE_B16 106 DS_OR_RTN_B64
32 DS_ADD_RTN_U32 107 DS_XOR_RTN_B64
33 DS_SUB_RTN_U32 108 DS_MSKOR_RTN_B64
34 DS_RSUB_RTN_U32 109 DS_STOREXCHG_RTN_B64
35 DS_INC_RTN_U32 110 DS_STOREXCHG_2ADDR_RTN_B64
36 DS_DEC_RTN_U32 111 DS_STOREXCHG_2ADDR_STRIDE64_RTN_B64
37 DS_MIN_RTN_I32 112 DS_CMPSTORE_RTN_B64
38 DS_MAX_RTN_I32 113 DS_CMPSTORE_RTN_F64
39 DS_MIN_RTN_U32 114 DS_MIN_RTN_F64
40 DS_MAX_RTN_U32 115 DS_MAX_RTN_F64
41 DS_AND_RTN_B32 118 DS_LOAD_B64
42 DS_OR_RTN_B32 119 DS_LOAD_2ADDR_B64
43 DS_XOR_RTN_B32 120 DS_LOAD_2ADDR_STRIDE64_B64
44 DS_MSKOR_RTN_B32 121 DS_ADD_RTN_F32
45 DS_STOREXCHG_RTN_B32 122 DS_ADD_GS_REG_RTN
46 DS_STOREXCHG_2ADDR_RTN_B32 123 DS_SUB_GS_REG_RTN
47 DS_STOREXCHG_2ADDR_STRIDE64_RTN_B32 126 DS_CONDXCHG32_RTN_B64
48 DS_CMPSTORE_RTN_B32 160 DS_STORE_B8_D16_HI
49 DS_CMPSTORE_RTN_F32 161 DS_STORE_B16_D16_HI
50 DS_MIN_RTN_F32 162 DS_LOAD_U8_D16
51 DS_MAX_RTN_F32 163 DS_LOAD_U8_D16_HI
52 DS_WRAP_RTN_B32 164 DS_LOAD_I8_D16
53 DS_SWIZZLE_B32 165 DS_LOAD_I8_D16_HI
54 DS_LOAD_B32 166 DS_LOAD_U16_D16
55 DS_LOAD_2ADDR_B32 167 DS_LOAD_U16_D16_HI
56 DS_LOAD_2ADDR_STRIDE64_B32 173 DS_BVH_STACK_RTN_B32
57 DS_LOAD_I8 176 DS_STORE_ADDTID_B32
58 DS_LOAD_U8 177 DS_LOAD_ADDTID_B32
59 DS_LOAD_I16 178 DS_PERMUTE_B32
60 DS_LOAD_U16 179 DS_BPERMUTE_B32
61 DS_CONSUME 222 DS_STORE_B96
62 DS_APPEND 223 DS_STORE_B128
63 DS_ORDERED_COUNT 254 DS_LOAD_B96
64 DS_ADD_U64 255 DS_LOAD_B128
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15.7. Vector Memory Buffer Formats
There are two memory buffer instruction formats:

MTBUF
typed buffer access (data type is defined by the instruction)

MUBUF
untyped buffer access (data type is defined by the buffer / resource-constant)

15.7.1. MTBUF

Description Memory Typed-Buffer Instructions

Table 101. MTBUF Fields

Field Name Bits Format or Description
OFFSET [11:0] Address offset, unsigned byte.
SLC [12] System Level Coherent. Used in conjunction with DLC to determine L2 cache

policies.
DLC [13] 0 = normal, 1 = Device Coherent
GLC [14] 0 = normal, 1 = globally coherent (bypass L0 cache) or for atomics, return pre-op

value to VGPR.
OP [18:15] Opcode. See table below.
FORMAT [25:19] Data Format of data in memory buffer. See Buffer Image format Table
ENCODING [31:26] 'b111010
VADDR [39:32] Address of VGPR to supply first component of address (offset or index). When both

index and offset are used, index is in the first VGPR and offset in the second.
VDATA [47:40] Address of VGPR to supply first component of write data or receive first component

of read-data.
SRSRC [52:48] SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2

LSB’s of SGPR-address since it is aligned to 4 SGPRs.
TFE [53] Partially resident texture, texture fault enable.
OFFEN [54] 1 = enable offset VGPR, 0 = use zero for address offset
IDXEN [55] 1 = enable index VGPR, 0 = use zero for address index
SOFFSET [63:56] Address offset, unsigned byte.

Table 102. MTBUF Opcodes

Opcode # Name Opcode # Name
0 TBUFFER_LOAD_FORMAT_X 8 TBUFFER_LOAD_D16_FORMAT_X
1 TBUFFER_LOAD_FORMAT_XY 9 TBUFFER_LOAD_D16_FORMAT_XY
2 TBUFFER_LOAD_FORMAT_XYZ 10 TBUFFER_LOAD_D16_FORMAT_XYZ
3 TBUFFER_LOAD_FORMAT_XYZW 11 TBUFFER_LOAD_D16_FORMAT_XYZW
4 TBUFFER_STORE_FORMAT_X 12 TBUFFER_STORE_D16_FORMAT_X
5 TBUFFER_STORE_FORMAT_XY 13 TBUFFER_STORE_D16_FORMAT_XY
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Opcode # Name Opcode # Name
6 TBUFFER_STORE_FORMAT_XYZ 14 TBUFFER_STORE_D16_FORMAT_XYZ
7 TBUFFER_STORE_FORMAT_XYZW 15 TBUFFER_STORE_D16_FORMAT_XYZW

15.7.2. MUBUF

Description Memory Untyped-Buffer Instructions

Table 103. MUBUF Fields

Field Name Bits Format or Description
OFFSET [11:0] Address offset, unsigned byte.
SLC [12] System Level Coherent. Used in conjunction with DLC to determine L2 cache

policies.
DLC [13] 0 = normal, 1 = Device Coherent
GLC [14] 0 = normal, 1 = globally coherent (bypass L0 cache) or for atomics, return pre-op

value to VGPR.
OP [25:18] Opcode. See table below.
ENCODING [31:26] 'b111000
VADDR [39:32] Address of VGPR to supply first component of address (offset or index). When both

index and offset are used, index is in the first VGPR and offset in the second.
VDATA [47:40] Address of VGPR to supply first component of write data or receive first component

of read-data.
SRSRC [52:48] SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2

LSB’s of SGPR-address since it is aligned to 4 SGPRs.
TFE [53] Partially resident texture, texture fault enable.
OFFEN [54] 1 = enable offset VGPR, 0 = use zero for address offset
IDXEN [55] 1 = enable index VGPR, 0 = use zero for address index
SOFFSET [63:56] Address offset, unsigned byte.

Table 104. MUBUF Opcodes

Opcode # Name Opcode # Name
0 BUFFER_LOAD_FORMAT_X 37 BUFFER_STORE_D16_HI_B16
1 BUFFER_LOAD_FORMAT_XY 38 BUFFER_LOAD_D16_HI_FORMAT_X
2 BUFFER_LOAD_FORMAT_XYZ 39 BUFFER_STORE_D16_HI_FORMAT_X
3 BUFFER_LOAD_FORMAT_XYZW 43 BUFFER_GL0_INV
4 BUFFER_STORE_FORMAT_X 44 BUFFER_GL1_INV
5 BUFFER_STORE_FORMAT_XY 51 BUFFER_ATOMIC_SWAP_B32
6 BUFFER_STORE_FORMAT_XYZ 52 BUFFER_ATOMIC_CMPSWAP_B32
7 BUFFER_STORE_FORMAT_XYZW 53 BUFFER_ATOMIC_ADD_U32
8 BUFFER_LOAD_D16_FORMAT_X 54 BUFFER_ATOMIC_SUB_U32
9 BUFFER_LOAD_D16_FORMAT_XY 55 BUFFER_ATOMIC_CSUB_U32
10 BUFFER_LOAD_D16_FORMAT_XYZ 56 BUFFER_ATOMIC_MIN_I32
11 BUFFER_LOAD_D16_FORMAT_XYZW 57 BUFFER_ATOMIC_MIN_U32
12 BUFFER_STORE_D16_FORMAT_X 58 BUFFER_ATOMIC_MAX_I32
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Opcode # Name Opcode # Name
13 BUFFER_STORE_D16_FORMAT_XY 59 BUFFER_ATOMIC_MAX_U32
14 BUFFER_STORE_D16_FORMAT_XYZ 60 BUFFER_ATOMIC_AND_B32
15 BUFFER_STORE_D16_FORMAT_XYZW 61 BUFFER_ATOMIC_OR_B32
16 BUFFER_LOAD_U8 62 BUFFER_ATOMIC_XOR_B32
17 BUFFER_LOAD_I8 63 BUFFER_ATOMIC_INC_U32
18 BUFFER_LOAD_U16 64 BUFFER_ATOMIC_DEC_U32
19 BUFFER_LOAD_I16 65 BUFFER_ATOMIC_SWAP_B64
20 BUFFER_LOAD_B32 66 BUFFER_ATOMIC_CMPSWAP_B64
21 BUFFER_LOAD_B64 67 BUFFER_ATOMIC_ADD_U64
22 BUFFER_LOAD_B96 68 BUFFER_ATOMIC_SUB_U64
23 BUFFER_LOAD_B128 69 BUFFER_ATOMIC_MIN_I64
24 BUFFER_STORE_B8 70 BUFFER_ATOMIC_MIN_U64
25 BUFFER_STORE_B16 71 BUFFER_ATOMIC_MAX_I64
26 BUFFER_STORE_B32 72 BUFFER_ATOMIC_MAX_U64
27 BUFFER_STORE_B64 73 BUFFER_ATOMIC_AND_B64
28 BUFFER_STORE_B96 74 BUFFER_ATOMIC_OR_B64
29 BUFFER_STORE_B128 75 BUFFER_ATOMIC_XOR_B64
30 BUFFER_LOAD_D16_U8 76 BUFFER_ATOMIC_INC_U64
31 BUFFER_LOAD_D16_I8 77 BUFFER_ATOMIC_DEC_U64
32 BUFFER_LOAD_D16_B16 80 BUFFER_ATOMIC_CMPSWAP_F32
33 BUFFER_LOAD_D16_HI_U8 81 BUFFER_ATOMIC_MIN_F32
34 BUFFER_LOAD_D16_HI_I8 82 BUFFER_ATOMIC_MAX_F32
35 BUFFER_LOAD_D16_HI_B16 86 BUFFER_ATOMIC_ADD_F32
36 BUFFER_STORE_D16_HI_B8
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15.8. Vector Memory Image Format

15.8.1. MIMG

Description Memory Image Instructions

Memory Image instructions (MIMG format) can be between 2 and 3 DWORDs. There are two variations of the
instruction:

• Normal, where the address VGPRs are specified in the "ADDR" field, and are a contiguous set of VGPRs.
This is a 2-DWORD instruction.

• Non-Sequential-Address (NSA), where each address VGPR is specified individually and the address VGPRs
can be scattered. This version uses 1 extra DWORD to specify the individual address VGPRs.

Table 105. MIMG Fields

Field Name Bits Format or Description
NSA [0] Non-sequential address. Specifies that an additional instruction DWORD exists

holding up to 4 unique VGPR addresses.
DIM [4:2] Dimensionality of the resource constant. Set to bits [3:1] of the resource type field.
UNRM [7] Force address to be un-normalized. User must set to 1 for Image stores & atomics.
DMASK [11:8] Data VGPR enable mask: 1 .. 4 consecutive VGPRs

Reads: defines which components are returned: 
0=red,1=green,2=blue,3=alpha
Writes: defines which components are written with data from VGPRs (missing
components get 0).
Enabled components come from consecutive VGPRs.
E.G. dmask=1001 : Red is in VGPRn and alpha in VGPRn+1.
For D16 writes, DMASK is only used as a word count: each bit represents 16 bits of
data to be written starting at the LSB’s of VDATA, then MSBs, then VDATA+1 etc. Bit
position is ignored.

SLC [12] System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.

DLC [13] 0 = normal, 1 = Device Coherent
GLC [14] 0 = normal, 1 = globally coherent (bypass L0 cache) or for atomics, return pre-op

value to VGPR.
R128 [15] Resource constant size: 1 = 128bit, 0 = 256bit
A16 [16] Address components are 16-bits (instead of the usual 32 bits). 

When set, all address components are 16 bits (packed into 2 per DWORD), except:
Texel offsets (3 6bit UINT packed into 1 DWORD)
PCF reference (for "_C" instructions)
Address components are 16b uint for image ops without sampler; 16b float with
sampler.

D16 [17] Data components are 16-bits (instead of the usual 32 bits).
OP [25:18] Opcode. See table below.
ENCODING [31:26] 'b111100

"RDNA3" Instruction Set Architecture

15.8. Vector Memory Image Format 180 of 600



Field Name Bits Format or Description
VADDR [39:32] Address of VGPR to supply first component of address.
VDATA [47:40] Address of VGPR to supply first component of write data or receive first component

of read-data.
SRSRC [52:48] SGPR to supply T# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2

LSB’s of SGPR-address since it is aligned to 4 SGPRs.
TFE [53] Partially resident texture, texture fault enable.
LWE [54] LOD Warning Enable. When set to 1, a texture fetch may return "LOD_CLAMPED =

1".
SSAMP [62:58] SGPR to supply S# (sampler constant) in 4 or 8 consecutive SGPRs. It is missing 2

LSB’s of SGPR-address since it is aligned to 4 SGPRs.
ADDR1 [71:64] Second Address register or group. Present only when NSA=1.
ADDR2 [79:72] Third Address register or group. Present only when NSA=1.

Table 106. MIMG Opcodes

Opcode # Name Opcode # Name
0 IMAGE_LOAD 42 IMAGE_SAMPLE_C_O
1 IMAGE_LOAD_MIP 43 IMAGE_SAMPLE_C_D_O
2 IMAGE_LOAD_PCK 44 IMAGE_SAMPLE_C_L_O
3 IMAGE_LOAD_PCK_SGN 45 IMAGE_SAMPLE_C_B_O
4 IMAGE_LOAD_MIP_PCK 46 IMAGE_SAMPLE_C_LZ_O
5 IMAGE_LOAD_MIP_PCK_SGN 47 IMAGE_GATHER4
6 IMAGE_STORE 48 IMAGE_GATHER4_L
7 IMAGE_STORE_MIP 49 IMAGE_GATHER4_B
8 IMAGE_STORE_PCK 50 IMAGE_GATHER4_LZ
9 IMAGE_STORE_MIP_PCK 51 IMAGE_GATHER4_C
10 IMAGE_ATOMIC_SWAP 52 IMAGE_GATHER4_C_LZ
11 IMAGE_ATOMIC_CMPSWAP 53 IMAGE_GATHER4_O
12 IMAGE_ATOMIC_ADD 54 IMAGE_GATHER4_LZ_O
13 IMAGE_ATOMIC_SUB 55 IMAGE_GATHER4_C_LZ_O
14 IMAGE_ATOMIC_SMIN 56 IMAGE_GET_LOD
15 IMAGE_ATOMIC_UMIN 57 IMAGE_SAMPLE_D_G16
16 IMAGE_ATOMIC_SMAX 58 IMAGE_SAMPLE_C_D_G16
17 IMAGE_ATOMIC_UMAX 59 IMAGE_SAMPLE_D_O_G16
18 IMAGE_ATOMIC_AND 60 IMAGE_SAMPLE_C_D_O_G16
19 IMAGE_ATOMIC_OR 64 IMAGE_SAMPLE_CL
20 IMAGE_ATOMIC_XOR 65 IMAGE_SAMPLE_D_CL
21 IMAGE_ATOMIC_INC 66 IMAGE_SAMPLE_B_CL
22 IMAGE_ATOMIC_DEC 67 IMAGE_SAMPLE_C_CL
23 IMAGE_GET_RESINFO 68 IMAGE_SAMPLE_C_D_CL
24 IMAGE_MSAA_LOAD 69 IMAGE_SAMPLE_C_B_CL
25 IMAGE_BVH_INTERSECT_RAY 70 IMAGE_SAMPLE_CL_O
26 IMAGE_BVH64_INTERSECT_RAY 71 IMAGE_SAMPLE_D_CL_O
27 IMAGE_SAMPLE 72 IMAGE_SAMPLE_B_CL_O
28 IMAGE_SAMPLE_D 73 IMAGE_SAMPLE_C_CL_O
29 IMAGE_SAMPLE_L 74 IMAGE_SAMPLE_C_D_CL_O
30 IMAGE_SAMPLE_B 75 IMAGE_SAMPLE_C_B_CL_O
31 IMAGE_SAMPLE_LZ 84 IMAGE_SAMPLE_C_D_CL_G16
32 IMAGE_SAMPLE_C 85 IMAGE_SAMPLE_D_CL_O_G16
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Opcode # Name Opcode # Name
33 IMAGE_SAMPLE_C_D 86 IMAGE_SAMPLE_C_D_CL_O_G16
34 IMAGE_SAMPLE_C_L 95 IMAGE_SAMPLE_D_CL_G16
35 IMAGE_SAMPLE_C_B 96 IMAGE_GATHER4_CL
36 IMAGE_SAMPLE_C_LZ 97 IMAGE_GATHER4_B_CL
37 IMAGE_SAMPLE_O 98 IMAGE_GATHER4_C_CL
38 IMAGE_SAMPLE_D_O 99 IMAGE_GATHER4_C_L
39 IMAGE_SAMPLE_L_O 100 IMAGE_GATHER4_C_B
40 IMAGE_SAMPLE_B_O 101 IMAGE_GATHER4_C_B_CL
41 IMAGE_SAMPLE_LZ_O 144 IMAGE_GATHER4H
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15.9. Flat Formats
Flat memory instructions come in three versions:

FLAT
memory address (per work-item) may be in global memory, scratch (private) memory or shared memory
(LDS)

GLOBAL
same as FLAT, but assumes all memory addresses are global memory.

SCRATCH
same as FLAT, but assumes all memory addresses are scratch (private) memory.

The microcode format is identical for each, and only the value of the SEG (segment) field differs.

15.9.1. FLAT

Description FLAT Memory Access

Table 107. FLAT Fields

Field Name Bits Format or Description
OFFSET [12:0] Address offset

Scratch, Global: 13-bit signed byte offset
FLAT: 12-bit unsigned offset (MSB is ignored)

DLC [13] 0 = normal, 1 = Device Coherent
GLC [14] 0 = normal, 1 = globally coherent (bypass L0 cache) or for atomics, return pre-op

value to VGPR.
SLC [15] System Level Coherent. Used in conjunction with DLC to determine L2 cache

policies.
SEG [17:16] Memory Segment (instruction type): 0 = flat, 1 = scratch, 2 = global.
OP [24:18] Opcode. See tables below for FLAT, SCRATCH and GLOBAL opcodes.
ENCODING [31:26] 'b110111
ADDR [39:32] VGPR that holds address or offset. For 64-bit addresses, ADDR has the LSBs and

ADDR+1 has the MSBs. For offset a single VGPR has a 32 bit unsigned offset.
For FLAT_*: specifies an address.
For GLOBAL_* and SCRATCH_* when SADDR is NULL or 0x7f: specifies an address.
For GLOBAL_* and SCRATCH_* when SADDR is not NULL or 0x7f: specifies an
offset.

DATA [47:40] VGPR that supplies data.
SADDR [54:48] Scalar SGPR that provides an address of offset (unsigned). Set this field to NULL or

0x7f to disable use.
Meaning of this field is different for Scratch and Global:
FLAT: Unused 
Scratch: use an SGPR for the address instead of a VGPR
Global: use the SGPR to provide a base address and the VGPR provides a 32-bit byte
offset.
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Field Name Bits Format or Description
SVE [55] Scratch VGPR Enable. 1 = scratch address includes a VGPR to provide an offset; 0 =

no VGPR used.
VDST [63:56] Destination VGPR for data returned from memory to VGPRs.

Table 108. FLAT Opcodes

Opcode # Name Opcode # Name
16 FLAT_LOAD_U8 56 FLAT_ATOMIC_MIN_I32
17 FLAT_LOAD_I8 57 FLAT_ATOMIC_MIN_U32
18 FLAT_LOAD_U16 58 FLAT_ATOMIC_MAX_I32
19 FLAT_LOAD_I16 59 FLAT_ATOMIC_MAX_U32
20 FLAT_LOAD_B32 60 FLAT_ATOMIC_AND_B32
21 FLAT_LOAD_B64 61 FLAT_ATOMIC_OR_B32
22 FLAT_LOAD_B96 62 FLAT_ATOMIC_XOR_B32
23 FLAT_LOAD_B128 63 FLAT_ATOMIC_INC_U32
24 FLAT_STORE_B8 64 FLAT_ATOMIC_DEC_U32
25 FLAT_STORE_B16 65 FLAT_ATOMIC_SWAP_B64
26 FLAT_STORE_B32 66 FLAT_ATOMIC_CMPSWAP_B64
27 FLAT_STORE_B64 67 FLAT_ATOMIC_ADD_U64
28 FLAT_STORE_B96 68 FLAT_ATOMIC_SUB_U64
29 FLAT_STORE_B128 69 FLAT_ATOMIC_MIN_I64
30 FLAT_LOAD_D16_U8 70 FLAT_ATOMIC_MIN_U64
31 FLAT_LOAD_D16_I8 71 FLAT_ATOMIC_MAX_I64
32 FLAT_LOAD_D16_B16 72 FLAT_ATOMIC_MAX_U64
33 FLAT_LOAD_D16_HI_U8 73 FLAT_ATOMIC_AND_B64
34 FLAT_LOAD_D16_HI_I8 74 FLAT_ATOMIC_OR_B64
35 FLAT_LOAD_D16_HI_B16 75 FLAT_ATOMIC_XOR_B64
36 FLAT_STORE_D16_HI_B8 76 FLAT_ATOMIC_INC_U64
37 FLAT_STORE_D16_HI_B16 77 FLAT_ATOMIC_DEC_U64
51 FLAT_ATOMIC_SWAP_B32 80 FLAT_ATOMIC_CMPSWAP_F32
52 FLAT_ATOMIC_CMPSWAP_B32 81 FLAT_ATOMIC_MIN_F32
53 FLAT_ATOMIC_ADD_U32 82 FLAT_ATOMIC_MAX_F32
54 FLAT_ATOMIC_SUB_U32 86 FLAT_ATOMIC_ADD_F32

15.9.2. GLOBAL

Table 109. GLOBAL Opcodes

Opcode # Name Opcode # Name
16 GLOBAL_LOAD_U8 55 GLOBAL_ATOMIC_CSUB_U32
17 GLOBAL_LOAD_I8 56 GLOBAL_ATOMIC_MIN_I32
18 GLOBAL_LOAD_U16 57 GLOBAL_ATOMIC_MIN_U32
19 GLOBAL_LOAD_I16 58 GLOBAL_ATOMIC_MAX_I32
20 GLOBAL_LOAD_B32 59 GLOBAL_ATOMIC_MAX_U32
21 GLOBAL_LOAD_B64 60 GLOBAL_ATOMIC_AND_B32
22 GLOBAL_LOAD_B96 61 GLOBAL_ATOMIC_OR_B32
23 GLOBAL_LOAD_B128 62 GLOBAL_ATOMIC_XOR_B32
24 GLOBAL_STORE_B8 63 GLOBAL_ATOMIC_INC_U32
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Opcode # Name Opcode # Name
25 GLOBAL_STORE_B16 64 GLOBAL_ATOMIC_DEC_U32
26 GLOBAL_STORE_B32 65 GLOBAL_ATOMIC_SWAP_B64
27 GLOBAL_STORE_B64 66 GLOBAL_ATOMIC_CMPSWAP_B64
28 GLOBAL_STORE_B96 67 GLOBAL_ATOMIC_ADD_U64
29 GLOBAL_STORE_B128 68 GLOBAL_ATOMIC_SUB_U64
30 GLOBAL_LOAD_D16_U8 69 GLOBAL_ATOMIC_MIN_I64
31 GLOBAL_LOAD_D16_I8 70 GLOBAL_ATOMIC_MIN_U64
32 GLOBAL_LOAD_D16_B16 71 GLOBAL_ATOMIC_MAX_I64
33 GLOBAL_LOAD_D16_HI_U8 72 GLOBAL_ATOMIC_MAX_U64
34 GLOBAL_LOAD_D16_HI_I8 73 GLOBAL_ATOMIC_AND_B64
35 GLOBAL_LOAD_D16_HI_B16 74 GLOBAL_ATOMIC_OR_B64
36 GLOBAL_STORE_D16_HI_B8 75 GLOBAL_ATOMIC_XOR_B64
37 GLOBAL_STORE_D16_HI_B16 76 GLOBAL_ATOMIC_INC_U64
40 GLOBAL_LOAD_ADDTID_B32 77 GLOBAL_ATOMIC_DEC_U64
41 GLOBAL_STORE_ADDTID_B32 80 GLOBAL_ATOMIC_CMPSWAP_F32
51 GLOBAL_ATOMIC_SWAP_B32 81 GLOBAL_ATOMIC_MIN_F32
52 GLOBAL_ATOMIC_CMPSWAP_B32 82 GLOBAL_ATOMIC_MAX_F32
53 GLOBAL_ATOMIC_ADD_U32 86 GLOBAL_ATOMIC_ADD_F32
54 GLOBAL_ATOMIC_SUB_U32

15.9.3. SCRATCH

Table 110. SCRATCH Opcodes

Opcode # Name Opcode # Name
16 SCRATCH_LOAD_U8 27 SCRATCH_STORE_B64
17 SCRATCH_LOAD_I8 28 SCRATCH_STORE_B96
18 SCRATCH_LOAD_U16 29 SCRATCH_STORE_B128
19 SCRATCH_LOAD_I16 30 SCRATCH_LOAD_D16_U8
20 SCRATCH_LOAD_B32 31 SCRATCH_LOAD_D16_I8
21 SCRATCH_LOAD_B64 32 SCRATCH_LOAD_D16_B16
22 SCRATCH_LOAD_B96 33 SCRATCH_LOAD_D16_HI_U8
23 SCRATCH_LOAD_B128 34 SCRATCH_LOAD_D16_HI_I8
24 SCRATCH_STORE_B8 35 SCRATCH_LOAD_D16_HI_B16
25 SCRATCH_STORE_B16 36 SCRATCH_STORE_D16_HI_B8
26 SCRATCH_STORE_B32 37 SCRATCH_STORE_D16_HI_B16

"RDNA3" Instruction Set Architecture

15.9. Flat Formats 185 of 600



15.10. Export Format

15.10.1. EXP

Description EXPORT instructions

The export format has only a single opcode, "EXPORT".

Table 111. EXP Fields

Field Name Bits Format or Description
EN [3:0] VGPR Enables: [0] enables VSRC0, … [3] enables VSRC3.
TARGET [9:4]  Export destination:

  0..7   MRT 0..7
  8      Z
  12-16  Position 0-4
  20     Primitive data
  21     Dual Source Blend Left
  22     Dual Source Blend Right

DONE [11] Indicates that this is the last export from the shader. Used only for Position and
Pixel/color data.

ROW [13] Row to export
ENCODING [31:26] 'b111110
VSRC0 [39:32] VGPR for source 0.
VSRC1 [47:40] VGPR for source 1.
VSRC2 [55:48] VGPR for source 2.
VSRC3 [63:56] VGPR for source 3.
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Chapter 16. Instructions
This chapter lists, and provides descriptions for, all instructions in the RDNA3 Generation environment.
Instructions are grouped according to their format.

Note: Rounding and Denormal modes apply to all floating-point operations unless otherwise specified in the
instruction description.
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16.1. SOP2 Instructions

Instructions in this format may use a 32-bit literal constant that occurs immediately after the instruction.

S_ADD_U32 0

Add two unsigned inputs, store the result into a scalar register and store the carry-out bit into SCC.

tmp = 64'U(S0.u) + 64'U(S1.u);
SCC = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// unsigned overflow or carry-out for S_ADDC_U32.
D0.u = tmp.u

S_SUB_U32 1

Subtract the second unsigned input from the first input, store the result into a scalar register and store the
carry-out bit into SCC.

tmp = S0.u - S1.u;
SCC = S1.u > S0.u ? 1'1U : 1'0U;
// unsigned overflow or carry-out for S_SUBB_U32.
D0.u = tmp.u

S_ADD_I32 2

Add two signed inputs, store the result into a scalar register and store the carry-out bit into SCC.

tmp = S0.i + S1.i;
SCC = ((S0.u[31] == S1.u[31]) && (S0.u[31] != tmp.u[31]));
// signed overflow.
D0.i = tmp.i

Notes

This opcode is not suitable for use with S_ADDC_U32 for implementing 64-bit operations.

S_SUB_I32 3
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Subtract the second signed input from the first input, store the result into a scalar register and store the carry-
out bit into SCC.

tmp = S0.i - S1.i;
SCC = ((S0.u[31] != S1.u[31]) && (S0.u[31] != tmp.u[31]));
// signed overflow.
D0.i = tmp.i

Notes

This opcode is not suitable for use with S_SUBB_U32 for implementing 64-bit operations.

S_ADDC_U32 4

Add two unsigned inputs and a carry-in bit, store the result into a scalar register and store the carry-out bit into
SCC.

tmp = 64'U(S0.u) + 64'U(S1.u) + SCC.u64;
SCC = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// unsigned overflow.
D0.u = tmp.u

S_SUBB_U32 5

Subtract the second unsigned input from the first input, subtract the carry-in bit, store the result into a scalar
register and store the carry-out bit into SCC.

tmp = S0.u - S1.u - SCC.u;
SCC = 64'U(S1.u) + SCC.u64 > 64'U(S0.u) ? 1'1U : 1'0U;
// unsigned overflow.
D0.u = tmp.u

S_ABSDIFF_I32 6

Calculate the absolute value of difference between two scalar inputs, store the result into a scalar register and
set SCC iff the result is nonzero.

D0.i = S0.i - S1.i;
if D0.i < 0 then
    D0.i = -D0.i
endif;
SCC = D0.i != 0
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Notes

Functional examples:

S_ABSDIFF_I32(0x00000002, 0x00000005) => 0x00000003
S_ABSDIFF_I32(0xffffffff, 0x00000000) => 0x00000001
S_ABSDIFF_I32(0x80000000, 0x00000000) => 0x80000000     // Note: result is negative!
S_ABSDIFF_I32(0x80000000, 0x00000001) => 0x7fffffff
S_ABSDIFF_I32(0x80000000, 0xffffffff) => 0x7fffffff
S_ABSDIFF_I32(0x80000000, 0xfffffffe) => 0x7ffffffe

S_LSHL_B32 8

Given a shift count in the second scalar input, calculate the logical shift left of the first scalar input, store the
result into a scalar register and set SCC iff the result is nonzero.

D0.u = (S0.u << S1.u[4 : 0].u);
SCC = D0.u != 0U

S_LSHL_B64 9

Given a shift count in the second scalar input, calculate the logical shift left of the first scalar input, store the
result into a scalar register and set SCC iff the result is nonzero.

D0.u64 = (S0.u64 << S1.u[5 : 0].u);
SCC = D0.u64 != 0ULL

S_LSHR_B32 10

Given a shift count in the second scalar input, calculate the logical shift right of the first scalar input, store the
result into a scalar register and set SCC iff the result is nonzero.

D0.u = (S0.u >> S1.u[4 : 0].u);
SCC = D0.u != 0U

S_LSHR_B64 11

Given a shift count in the second scalar input, calculate the logical shift right of the first scalar input, store the
result into a scalar register and set SCC iff the result is nonzero.
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D0.u64 = (S0.u64 >> S1.u[5 : 0].u);
SCC = D0.u64 != 0ULL

S_ASHR_I32 12

Given a shift count in the second scalar input, calculate the arithmetic shift right (preserving sign bit) of the
first scalar input, store the result into a scalar register and set SCC iff the result is nonzero.

D0.i = 32'I(signext(S0.i) >> S1.u[4 : 0].u);
SCC = D0.i != 0

S_ASHR_I64 13

Given a shift count in the second scalar input, calculate the arithmetic shift right (preserving sign bit) of the
first scalar input, store the result into a scalar register and set SCC iff the result is nonzero.

D0.i64 = (signext(S0.i64) >> S1.u[5 : 0].u);
SCC = D0.i64 != 0LL

S_LSHL1_ADD_U32 14

Calculate the logical shift left of the first input by 1, then add the second input, store the result into a scalar
register and set SCC iff the summation results in an unsigned overflow.

tmp = (64'U(S0.u) << 1U) + 64'U(S1.u);
SCC = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// unsigned overflow.
D0.u = tmp.u

S_LSHL2_ADD_U32 15

Calculate the logical shift left of the first input by 2, then add the second input, store the result into a scalar
register and set SCC iff the summation results in an unsigned overflow.

tmp = (64'U(S0.u) << 2U) + 64'U(S1.u);
SCC = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// unsigned overflow.
D0.u = tmp.u
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S_LSHL3_ADD_U32 16

Calculate the logical shift left of the first input by 3, then add the second input, store the result into a scalar
register and set SCC iff the summation results in an unsigned overflow.

tmp = (64'U(S0.u) << 3U) + 64'U(S1.u);
SCC = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// unsigned overflow.
D0.u = tmp.u

S_LSHL4_ADD_U32 17

Calculate the logical shift left of the first input by 4, then add the second input, store the result into a scalar
register and set SCC iff the summation results in an unsigned overflow.

tmp = (64'U(S0.u) << 4U) + 64'U(S1.u);
SCC = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// unsigned overflow.
D0.u = tmp.u

S_MIN_I32 18

Select the minimum of two signed integers, store the selected value into a scalar register and set SCC iff the
first value is selected.

SCC = S0.i < S1.i;
D0.i = SCC ? S0.i : S1.i

S_MIN_U32 19

Select the minimum of two unsigned integers, store the selected value into a scalar register and set SCC iff the
first value is selected.

SCC = S0.u < S1.u;
D0.u = SCC ? S0.u : S1.u

S_MAX_I32 20
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Select the maximum of two signed integers, store the selected value into a scalar register and set SCC iff the
first value is selected.

SCC = S0.i > S1.i;
D0.i = SCC ? S0.i : S1.i

S_MAX_U32 21

Select the maximum of two unsigned integers, store the selected value into a scalar register and set SCC iff the
first value is selected.

SCC = S0.u > S1.u;
D0.u = SCC ? S0.u : S1.u

S_AND_B32 22

Calculate bitwise AND on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.u = (S0.u & S1.u);
SCC = D0.u != 0U

S_AND_B64 23

Calculate bitwise AND on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.u64 = (S0.u64 & S1.u64);
SCC = D0.u64 != 0ULL

S_OR_B32 24

Calculate bitwise OR on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.u = (S0.u | S1.u);
SCC = D0.u != 0U
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S_OR_B64 25

Calculate bitwise OR on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.u64 = (S0.u64 | S1.u64);
SCC = D0.u64 != 0ULL

S_XOR_B32 26

Calculate bitwise XOR on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.u = (S0.u ^ S1.u);
SCC = D0.u != 0U

S_XOR_B64 27

Calculate bitwise XOR on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.u64 = (S0.u64 ^ S1.u64);
SCC = D0.u64 != 0ULL

S_NAND_B32 28

Calculate bitwise NAND on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

D0.u = ~(S0.u & S1.u);
SCC = D0.u != 0U

S_NAND_B64 29

Calculate bitwise NAND on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.
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D0.u64 = ~(S0.u64 & S1.u64);
SCC = D0.u64 != 0ULL

S_NOR_B32 30

Calculate bitwise NOR on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

D0.u = ~(S0.u | S1.u);
SCC = D0.u != 0U

S_NOR_B64 31

Calculate bitwise NOR on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

D0.u64 = ~(S0.u64 | S1.u64);
SCC = D0.u64 != 0ULL

S_XNOR_B32 32

Calculate bitwise XNOR on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

D0.u = ~(S0.u ^ S1.u);
SCC = D0.u != 0U

S_XNOR_B64 33

Calculate bitwise XNOR on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

D0.u64 = ~(S0.u64 ^ S1.u64);
SCC = D0.u64 != 0ULL

S_AND_NOT1_B32 34
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Calculate bitwise AND with the first input and the negation of the second input, store the result into a scalar
register and set SCC if the result is nonzero.

D0.u = (S0.u & ~S1.u);
SCC = D0.u != 0U

S_AND_NOT1_B64 35

Calculate bitwise AND with the first input and the negation of the second input, store the result into a scalar
register and set SCC if the result is nonzero.

D0.u64 = (S0.u64 & ~S1.u64);
SCC = D0.u64 != 0ULL

S_OR_NOT1_B32 36

Calculate bitwise OR with the first input and the negation of the second input, store the result into a scalar
register and set SCC if the result is nonzero.

D0.u = (S0.u | ~S1.u);
SCC = D0.u != 0U

S_OR_NOT1_B64 37

Calculate bitwise OR with the first input and the negation of the second input, store the result into a scalar
register and set SCC if the result is nonzero.

D0.u64 = (S0.u64 | ~S1.u64);
SCC = D0.u64 != 0ULL

S_BFE_U32 38

Extract an unsigned bitfield from the first input using field offset and size encoded in the second input, store
the result into a scalar register and set SCC iff the result is nonzero.

D0.u = ((S0.u >> S1.u[4 : 0].u) & ((1U << S1.u[22 : 16].u) - 1U));
SCC = D0.u != 0U
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S_BFE_I32 39

Extract a signed bitfield from the first input using field offset and size encoded in the second input, store the
result into a scalar register and set SCC iff the result is nonzero.

tmp = ((S0.i >> S1.u[4 : 0].u) & ((1 << S1.u[22 : 16].u) - 1));
D0.i = 32'I(signextFromBit(tmp, S1.i[22 : 16].i));
SCC = D0.i != 0

S_BFE_U64 40

Extract an unsigned bitfield from the first input using field offset and size encoded in the second input, store
the result into a scalar register and set SCC iff the result is nonzero.

D0.u64 = ((S0.u64 >> S1.u[5 : 0].u) & ((1ULL << S1.u[22 : 16].u) - 1ULL));
SCC = D0.u64 != 0ULL

S_BFE_I64 41

Extract a signed bitfield from the first input using field offset and size encoded in the second input, store the
result into a scalar register and set SCC iff the result is nonzero.

tmp = ((S0.i64 >> S1.u[5 : 0].u) & ((1LL << S1.u[22 : 16].u) - 1LL));
D0.i64 = signextFromBit(tmp, S1.i[22 : 16].i64);
SCC = D0.i64 != 0LL

S_BFM_B32 42

Calculate a bitfield mask given a field offset and size and store the result in a scalar register.

D0.u = (((1U << S0.u[4 : 0].u) - 1U) << S1.u[4 : 0].u)

S_BFM_B64 43

Calculate a bitfield mask given a field offset and size and store the result in a scalar register.

D0.u64 = (((1ULL << S0.u[5 : 0].u) - 1ULL) << S1.u[5 : 0].u)
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S_MUL_I32 44

Multiply two signed integers and store the result into a scalar register.

D0.i = S0.i * S1.i

S_MUL_HI_U32 45

Multiply two unsigned integers and store the high 32 bits of the result into a scalar register.

D0.u = 32'U((64'U(S0.u) * 64'U(S1.u)) >> 32U)

S_MUL_HI_I32 46

Multiply two signed integers and store the high 32 bits of the result into a scalar register.

D0.i = 32'I((64'I(S0.i) * 64'I(S1.i)) >> 32U)

S_CSELECT_B32 48

Select the first input if SCC is true otherwise select the second input, then store the selected input into a scalar
register.

D0.u = SCC ? S0.u : S1.u

S_CSELECT_B64 49

Select the first input if SCC is true otherwise select the second input, then store the selected input into a scalar
register.

D0.u64 = SCC ? S0.u64 : S1.u64

S_PACK_LL_B32_B16 50
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Pack two 16-bit scalar values into a scalar register.

D0 = { S1[15 : 0].u16, S0[15 : 0].u16 }

S_PACK_LH_B32_B16 51

Pack two 16-bit scalar values into a scalar register.

D0 = { S1[31 : 16].u16, S0[15 : 0].u16 }

S_PACK_HH_B32_B16 52

Pack two 16-bit scalar values into a scalar register.

D0 = { S1[31 : 16].u16, S0[31 : 16].u16 }

S_PACK_HL_B32_B16 53

Pack two 16-bit scalar values into a scalar register.

D0 = { S1[15 : 0].u16, S0[31 : 16].u16 }
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16.2. SOPK Instructions

Instructions in this format may not use a 32-bit literal constant that occurs immediately after the instruction.

S_MOVK_I32 0

Sign extend a literal 16-bit constant and store the result into a scalar register.

D0.i = 32'I(signext(SIMM16.i16))

S_VERSION 1

Do nothing. This opcode is used to specify the microcode version for tools that interpret shader microcode.

Argument is ignored by hardware. This opcode is not designed for inserting wait states as the next instruction
may issue in the same cycle. Do not use this opcode to resolve wait state hazards, use S_NOP instead.

This opcode may also be used to validate microcode is running with the correct compatibility settings in
drivers and functional models that support multiple generations. We strongly encourage this opcode be
included at the top of every shader block to simplify debug and catch configuration errors.

This opcode must appear in the first 16 bytes of a block of shader code in order to be recognized by external
tools and functional models. Avoid placing opcodes > 32 bits or encodings that are not available in all versions
of the microcode before the S_VERSION opcode. If this opcode is absent then tools are allowed to make an
educated guess of the microcode version using cues from the environment; the guess may be incorrect and
lead to an invalid decode. It is highly recommended that this be the first opcode of a shader block except for
trap handlers, where it should be the second opcode (allowing the first opcode to be a 32-bit branch to
accommodate context switch).

SIMM16[7:0] specifies the microcode version.
SIMM16[15:8] must be set to zero.

nop();
// Do nothing - for use by tools only

S_CMOVK_I32 2

Move the sign extension of a literal 16-bit constant into a scalar register iff SCC is nonzero.

if SCC then
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    D0.i = 32'I(signext(SIMM16.i16))
endif

S_CMPK_EQ_I32 3

Set SCC to 1 iff scalar input is equal to the sign extension of a literal 16-bit constant.

SCC = 64'I(S0.i) == signext(SIMM16.i16)

S_CMPK_LG_I32 4

Set SCC to 1 iff scalar input is less than or greater than the sign extension of a literal 16-bit constant.

SCC = 64'I(S0.i) != signext(SIMM16.i16)

S_CMPK_GT_I32 5

Set SCC to 1 iff scalar input is greater than the sign extension of a literal 16-bit constant.

SCC = 64'I(S0.i) > signext(SIMM16.i16)

S_CMPK_GE_I32 6

Set SCC to 1 iff scalar input is greater than or equal to the sign extension of a literal 16-bit constant.

SCC = 64'I(S0.i) >= signext(SIMM16.i16)

S_CMPK_LT_I32 7

Set SCC to 1 iff scalar input is less than the sign extension of a literal 16-bit constant.

SCC = 64'I(S0.i) < signext(SIMM16.i16)
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S_CMPK_LE_I32 8

Set SCC to 1 iff scalar input is less than or equal to the sign extension of a literal 16-bit constant.

SCC = 64'I(S0.i) <= signext(SIMM16.i16)

S_CMPK_EQ_U32 9

Set SCC to 1 iff scalar input is equal to the zero extension of a literal 16-bit constant.

SCC = S0.u == 32'U(SIMM16.u16)

S_CMPK_LG_U32 10

Set SCC to 1 iff scalar input is less than or greater than the zero extension of a literal 16-bit constant.

SCC = S0.u != 32'U(SIMM16.u16)

S_CMPK_GT_U32 11

Set SCC to 1 iff scalar input is greater than the zero extension of a literal 16-bit constant.

SCC = S0.u > 32'U(SIMM16.u16)

S_CMPK_GE_U32 12

Set SCC to 1 iff scalar input is greater than or equal to the zero extension of a literal 16-bit constant.

SCC = S0.u >= 32'U(SIMM16.u16)

S_CMPK_LT_U32 13

Set SCC to 1 iff scalar input is less than the zero extension of a literal 16-bit constant.
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SCC = S0.u < 32'U(SIMM16.u16)

S_CMPK_LE_U32 14

Set SCC to 1 iff scalar input is less than or equal to the zero extension of a literal 16-bit constant.

SCC = S0.u <= 32'U(SIMM16.u16)

S_ADDK_I32 15

Add a scalar input and the sign extension of a literal 16-bit constant, store the result into a scalar register and
store the carry-out bit into SCC.

tmp = D0.i;
// save value so we can check sign bits for overflow later.
D0.i = 32'I(64'I(D0.i) + signext(SIMM16.i16));
SCC = ((tmp[31] == SIMM16.i16[15]) && (tmp[31] != D0.i[31]));
// signed overflow.

S_MULK_I32 16

Multiply a scalar input with the sign extension of a literal 16-bit constant and store the result into a scalar
register.

D0.i = 32'I(64'I(D0.i) * signext(SIMM16.i16))

S_GETREG_B32 17

Read some or all of a hardware register into the LSBs of destination.

The SIMM16 argument is encoded as follows:

ID = SIMM16[5:0]
ID of hardware register to access.

OFFSET = SIMM16[10:6]
LSB offset of register bits to access.
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SIZE = SIMM16[15:11]
Size of register bits to access, minus 1. Set this field to 31 to read/write all bits of the hardware register.

hwRegId = SIMM16.u16[5 : 0];
offset = SIMM16.u16[10 : 6];
size = SIMM16.u16[15 : 11].u + 1U;
// logical size is in range 1:32
value = HW_REGISTERS[hwRegId];
D0.u = 32'U(32'I(value >> offset.u) & ((1 << size) - 1))

S_SETREG_B32 18

Write some or all of the LSBs of source argument into a hardware register.

The SIMM16 argument is encoded as follows:

ID = SIMM16[5:0]
ID of hardware register to access.

OFFSET = SIMM16[10:6]
LSB offset of register bits to access.

SIZE = SIMM16[15:11]
Size of register bits to access, minus 1. Set this field to 31 to read/write all bits of the hardware register.

hwRegId = SIMM16.u16[5 : 0];
offset = SIMM16.u16[10 : 6];
size = SIMM16.u16[15 : 11].u + 1U;
// logical size is in range 1:32
mask = (1 << size) - 1;
mask = (mask & 32'I(writeableBitMask(hwRegId.u, WAVE_STATUS.PRIV)));
// Mask of bits we are allowed to modify
value = ((S0.u << offset.u) & mask.u);
value = (value | 32'U(HW_REGISTERS[hwRegId].i & ~mask));
HW_REGISTERS[hwRegId] = value.b;
// Side-effects may trigger here if certain bits are modified

S_SETREG_IMM32_B32 19

Write some or all of the LSBs of a 32-bit literal constant into a hardware register; this instruction requires a 32-
bit literal constant.

The SIMM16 argument is encoded as follows:

ID = SIMM16[5:0]
ID of hardware register to access.
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OFFSET = SIMM16[10:6]
LSB offset of register bits to access.

SIZE = SIMM16[15:11]
Size of register bits to access, minus 1. Set this field to 31 to read/write all bits of the hardware register.

hwRegId = SIMM16.u16[5 : 0];
offset = SIMM16.u16[10 : 6];
size = SIMM16.u16[15 : 11].u + 1U;
// logical size is in range 1:32
mask = (1 << size) - 1;
mask = (mask & 32'I(writeableBitMask(hwRegId.u, WAVE_STATUS.PRIV)));
// Mask of bits we are allowed to modify
value = ((SIMM32.u << offset.u) & mask.u);
value = (value | 32'U(HW_REGISTERS[hwRegId].i & ~mask));
HW_REGISTERS[hwRegId] = value.b;
// Side-effects may trigger here if certain bits are modified

S_CALL_B64 20

Store the address of the next instruction to a scalar register and then jump to a constant offset relative to the
current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction. The byte address of
the instruction immediately following this instruction is saved to the destination.

D0.i64 = PC + 4LL;
PC = PC + signext(SIMM16.i16 * 16'4) + 4LL

Notes

This implements a short subroutine call where the return address (the next instruction after the S_CALL_B64)
is saved to D. Long calls should consider S_SWAPPC_B64 instead.

This instruction must be 4 bytes.

S_WAITCNT_VSCNT 24

Wait for the counts of outstanding vector store events -- vector memory stores and atomics that DO NOT return
data -- to be at or below the specified level. This counter is not used in 'all-in-order' mode.

Waits for the following condition to hold before continuing:

    vscnt <= S0.u[5:0] + S1.u[5:0].
    // Comparison is 6 bits, no clamping is applied for add overflow
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To wait on a literal constant only, write 'null' for the GPR argument.

This opcode may only appear inside a clause if the SGPR operand is set to NULL.

See also S_WAITCNT.

S_WAITCNT_VMCNT 25

Wait for the counts of outstanding vector memory events -- everything except for memory stores and atomics-
without-return -- to be at or below the specified level. When in 'all-in-order' mode, wait for all vector memory
events.

Waits for the following condition to hold before continuing:

    vmcnt <= S0.u[5:0] + S1.u[5:0].
    // Comparison is 6 bits, no clamping is applied for add overflow

To wait on a literal constant only, write 'null' for the GPR argument or use S_WAITCNT.

This opcode may only appear inside a clause if the SGPR operand is set to NULL.

See also S_WAITCNT.

S_WAITCNT_EXPCNT 26

Wait for the counts of outstanding export events to be at or below the specified level.

Waits for the following condition to hold before continuing:

    expcnt <= S0.u[2:0] + S1.u[2:0].
    // Comparison is 3 bits, no clamping is applied for add overflow

To wait on a literal constant only, write 'null' for the GPR argument or use S_WAITCNT.

This opcode may only appear inside a clause if the SGPR operand is set to NULL.

See also S_WAITCNT.

S_WAITCNT_LGKMCNT 27

Wait for the counts of outstanding DS (LG), scalar memory (K) and message (M) events to be at or below the
specified level.

Waits for the following condition to hold before continuing:
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    lgkmcnt <= S0.u[5:0] + S1.u[5:0].
    // Comparison is 6 bits, no clamping is applied for add overflow

To wait on a literal constant only, write 'null' for the GPR argument or use S_WAITCNT.

This opcode may only appear inside a clause if the SGPR operand is set to NULL.

See also S_WAITCNT.
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16.3. SOP1 Instructions

Instructions in this format may use a 32-bit literal constant that occurs immediately after the instruction.

S_MOV_B32 0

Move scalar input into a scalar register.

D0.b = S0.b

S_MOV_B64 1

Move scalar input into a scalar register.

D0.b64 = S0.b64

S_CMOV_B32 2

Move scalar input into a scalar register iff SCC is nonzero.

if SCC then
    D0.b = S0.b
endif

S_CMOV_B64 3

Move scalar input into a scalar register iff SCC is nonzero.

if SCC then
    D0.b64 = S0.b64
endif

S_BREV_B32 4
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Reverse the order of bits in a scalar input and store the result into a scalar register.

D0.u[31 : 0] = S0.u[0 : 31]

S_BREV_B64 5

Reverse the order of bits in a scalar input and store the result into a scalar register.

D0.u64[63 : 0] = S0.u64[0 : 63]

S_CTZ_I32_B32 8

Count the number of trailing "0" bits before the first "1" in a scalar input and store the result into a scalar
register. Store -1 if there are no "1" bits in the input.

tmp = -1;
// Set if no ones are found
for i in 0 : 31 do
    // Search from LSB
    if S0.u[i] == 1'1U then
        tmp = i;
        break
    endif
endfor;
D0.i = tmp

Notes

Functional examples:

S_CTZ_I32_B32(0xaaaaaaaa) => 1
S_CTZ_I32_B32(0x55555555) => 0
S_CTZ_I32_B32(0x00000000) => 0xffffffff
S_CTZ_I32_B32(0xffffffff) => 0
S_CTZ_I32_B32(0x00010000) => 16

Compare with V_CTZ_I32_B32, which performs the equivalent operation in the vector ALU.

S_CTZ_I32_B64 9

Count the number of trailing "0" bits before the first "1" in a scalar input and store the result into a scalar
register. Store -1 if there are no "1" bits in the input.
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tmp = -1;
// Set if no ones are found
for i in 0 : 63 do
    // Search from LSB
    if S0.u64[i] == 1'1U then
        tmp = i;
        break
    endif
endfor;
D0.i = tmp

S_CLZ_I32_U32 10

Count the number of leading "0" bits before the first "1" in a scalar input and store the result into a scalar
register. Store -1 if there are no "1" bits.

tmp = -1;
// Set if no ones are found
for i in 0 : 31 do
    // Search from MSB
    if S0.u[31 - i] == 1'1U then
        tmp = i;
        break
    endif
endfor;
D0.i = tmp

Notes

Functional examples:

S_CLZ_I32_U32(0x00000000) => 0xffffffff
S_CLZ_I32_U32(0x0000cccc) => 16
S_CLZ_I32_U32(0xffff3333) => 0
S_CLZ_I32_U32(0x7fffffff) => 1
S_CLZ_I32_U32(0x80000000) => 0
S_CLZ_I32_U32(0xffffffff) => 0

Compare with V_CLZ_I32_U32, which performs the equivalent operation in the vector ALU.

S_CLZ_I32_U64 11

Count the number of leading "0" bits before the first "1" in a scalar input and store the result into a scalar
register. Store -1 if there are no "1" bits.

tmp = -1;
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// Set if no ones are found
for i in 0 : 63 do
    // Search from MSB
    if S0.u64[63 - i] == 1'1U then
        tmp = i;
        break
    endif
endfor;
D0.i = tmp

S_CLS_I32 12

Count the number of leading bits that are the same as the sign bit of a scalar input and store the result into a
scalar register. Store -1 if all input bits are the same.

tmp = -1;
// Set if all bits are the same
for i in 1 : 31 do
    // Search from MSB
    if S0.u[31 - i] != S0.u[31] then
        tmp = i;
        break
    endif
endfor;
D0.i = tmp

Notes

Functional examples:

S_CLS_I32(0x00000000) => 0xffffffff
S_CLS_I32(0x0000cccc) => 16
S_CLS_I32(0xffff3333) => 16
S_CLS_I32(0x7fffffff) => 1
S_CLS_I32(0x80000000) => 1
S_CLS_I32(0xffffffff) => 0xffffffff

Compare with V_CLS_I32, which performs the equivalent operation in the vector ALU.

S_CLS_I32_I64 13

Count the number of leading bits that are the same as the sign bit of a scalar input and store the result into a
scalar register. Store -1 if all input bits are the same.

tmp = -1;
// Set if all bits are the same
for i in 1 : 63 do
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    // Search from MSB
    if S0.u64[63 - i] != S0.u64[63] then
        tmp = i;
        break
    endif
endfor;
D0.i = tmp

S_SEXT_I32_I8 14

Sign extend a signed 8 bit scalar input to 32 bits and store the result into a scalar register.

D0.i = 32'I(signext(S0.i8))

S_SEXT_I32_I16 15

Sign extend a signed 16 bit scalar input to 32 bits and store the result into a scalar register.

D0.i = 32'I(signext(S0.i16))

S_BITSET0_B32 16

Given a bit offset in a scalar input, set the indicated bit in the destination scalar register to 0.

D0.u[S0.u[4 : 0]] = 1'0U

S_BITSET0_B64 17

Given a bit offset in a scalar input, set the indicated bit in the destination scalar register to 0.

D0.u64[S0.u[5 : 0]] = 1'0U

S_BITSET1_B32 18

Given a bit offset in a scalar input, set the indicated bit in the destination scalar register to 1.
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D0.u[S0.u[4 : 0]] = 1'1U

S_BITSET1_B64 19

Given a bit offset in a scalar input, set the indicated bit in the destination scalar register to 1.

D0.u64[S0.u[5 : 0]] = 1'1U

S_BITREPLICATE_B64_B32 20

Substitute each bit of a 32 bit scalar input with two instances of itself and store the result into a 64 bit scalar
register.

tmp = S0.u;
for i in 0 : 31 do
    D0.u64[i * 2 + 0] = tmp[i];
    D0.u64[i * 2 + 1] = tmp[i]
endfor

Notes

This opcode can be used to convert a quad mask into a pixel mask; given quad mask in s0, the following
sequence produces a pixel mask in s2:

    s_bitreplicate_b64 s2, s0
    s_bitreplicate_b64 s2, s2

To perform the inverse operation see S_QUADMASK_B64.

S_ABS_I32 21

Compute the absolute value of a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.i = S0.i < 0 ? -S0.i : S0.i;
SCC = D0.i != 0

Notes

Functional examples:
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S_ABS_I32(0x00000001) => 0x00000001
S_ABS_I32(0x7fffffff) => 0x7fffffff
S_ABS_I32(0x80000000) => 0x80000000     // Note this is negative!
S_ABS_I32(0x80000001) => 0x7fffffff
S_ABS_I32(0x80000002) => 0x7ffffffe
S_ABS_I32(0xffffffff) => 0x00000001

S_BCNT0_I32_B32 22

Count the number of "0" bits in a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

tmp = 0;
for i in 0 : 31 do
    tmp += S0.u[i].u == 0U ? 1 : 0
endfor;
D0.i = tmp;
SCC = D0.u != 0U

Notes

Functional examples:

S_BCNT0_I32_B32(0x00000000) => 32
S_BCNT0_I32_B32(0xcccccccc) => 16
S_BCNT0_I32_B32(0xffffffff) => 0

S_BCNT0_I32_B64 23

Count the number of "0" bits in a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

tmp = 0;
for i in 0 : 63 do
    tmp += S0.u64[i].u == 0U ? 1 : 0
endfor;
D0.i = tmp;
SCC = D0.u64 != 0ULL

S_BCNT1_I32_B32 24

Count the number of "1" bits in a scalar input, store the result into a scalar register and set SCC iff the result is
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nonzero.

tmp = 0;
for i in 0 : 31 do
    tmp += S0.u[i].u == 1U ? 1 : 0
endfor;
D0.i = tmp;
SCC = D0.u != 0U

Notes

Functional examples:

S_BCNT1_I32_B32(0x00000000) => 0
S_BCNT1_I32_B32(0xcccccccc) => 16
S_BCNT1_I32_B32(0xffffffff) => 32

S_BCNT1_I32_B64 25

Count the number of "1" bits in a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

tmp = 0;
for i in 0 : 63 do
    tmp += S0.u64[i].u == 1U ? 1 : 0
endfor;
D0.i = tmp;
SCC = D0.u64 != 0ULL

S_QUADMASK_B32 26

Reduce a pixel mask from the scalar input into a quad mask, store the result in a scalar register and set SCC iff
the result is nonzero.

tmp = 0U;
for i in 0 : 7 do
    tmp[i] = S0.u[i * 4 + 3 : i * 4] != 0U
endfor;
D0.u = tmp;
SCC = D0.u != 0U

Notes

To perform the inverse operation see S_BITREPLICATE_B64_B32.
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S_QUADMASK_B64 27

Reduce a pixel mask from the scalar input into a quad mask, store the result in a scalar register and set SCC iff
the result is nonzero.

tmp = 0ULL;
for i in 0 : 15 do
    tmp[i] = S0.u64[i * 4 + 3 : i * 4] != 0ULL
endfor;
D0.u64 = tmp;
SCC = D0.u64 != 0ULL

Notes

To perform the inverse operation see S_BITREPLICATE_B64_B32.

S_WQM_B32 28

Given an active pixel mask in a scalar input, calculate whole quad mode mask for that input, store the result
into a scalar register and set SCC iff the result is nonzero.

In whole quad mode, if any pixel in a quad is active then all pixels of the quad are marked active.

tmp = 0U;
declare i : 6'U;
for i in 6'0U : 6'31U do
    tmp[i] = S0.u[i | 6'3U : i & 6'60U] != 0U
endfor;
D0.u = tmp;
SCC = D0.u != 0U

S_WQM_B64 29

Given an active pixel mask in a scalar input, calculate whole quad mode mask for that input, store the result
into a scalar register and set SCC iff the result is nonzero.

In whole quad mode, if any pixel in a quad is active then all pixels of the quad are marked active.

tmp = 0ULL;
declare i : 6'U;
for i in 6'0U : 6'63U do
    tmp[i] = S0.u64[i | 6'3U : i & 6'60U] != 0ULL
endfor;
D0.u64 = tmp;
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SCC = D0.u64 != 0ULL

S_NOT_B32 30

Calculate bitwise negation on a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.u = ~S0.u;
SCC = D0.u != 0U

S_NOT_B64 31

Calculate bitwise negation on a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

D0.u64 = ~S0.u64;
SCC = D0.u64 != 0ULL

S_AND_SAVEEXEC_B32 32

Calculate bitwise AND on the scalar input and the EXEC mask, store the calculated result into the EXEC mask,
set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar
destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (S0.u & EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_AND_SAVEEXEC_B64 33

Calculate bitwise AND on the scalar input and the EXEC mask, store the calculated result into the EXEC mask,
set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar
destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.
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saveexec = EXEC.u64;
EXEC.u64 = (S0.u64 & EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_OR_SAVEEXEC_B32 34

Calculate bitwise OR on the scalar input and the EXEC mask, store the calculated result into the EXEC mask, set
SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar destination
register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (S0.u | EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_OR_SAVEEXEC_B64 35

Calculate bitwise OR on the scalar input and the EXEC mask, store the calculated result into the EXEC mask, set
SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar destination
register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = (S0.u64 | EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_XOR_SAVEEXEC_B32 36

Calculate bitwise XOR on the scalar input and the EXEC mask, store the calculated result into the EXEC mask,
set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar
destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (S0.u ^ EXEC.u);
D0.u = saveexec.u;
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SCC = EXEC.u != 0U

S_XOR_SAVEEXEC_B64 37

Calculate bitwise XOR on the scalar input and the EXEC mask, store the calculated result into the EXEC mask,
set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar
destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = (S0.u64 ^ EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_NAND_SAVEEXEC_B32 38

Bitwise NAND with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = ~(S0.u & EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_NAND_SAVEEXEC_B64 39

Bitwise NAND with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = ~(S0.u64 & EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_NOR_SAVEEXEC_B32 40

Bitwise NOR with EXEC mask.
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The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = ~(S0.u | EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_NOR_SAVEEXEC_B64 41

Bitwise NOR with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = ~(S0.u64 | EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_XNOR_SAVEEXEC_B32 42

Bitwise XNOR with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = ~(S0.u ^ EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_XNOR_SAVEEXEC_B64 43

Bitwise XNOR with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = ~(S0.u64 ^ EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL
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S_AND_NOT0_SAVEEXEC_B32 44

Calculate bitwise AND on the EXEC mask and the negation of the scalar input, store the calculated result into
the EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into
the scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (~S0.u & EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_AND_NOT0_SAVEEXEC_B64 45

Calculate bitwise AND on the EXEC mask and the negation of the scalar input, store the calculated result into
the EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into
the scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = (~S0.u64 & EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_OR_NOT0_SAVEEXEC_B32 46

Calculate bitwise OR on the EXEC mask and the negation of the scalar input, store the calculated result into the
EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the
scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (~S0.u | EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_OR_NOT0_SAVEEXEC_B64 47

Calculate bitwise OR on the EXEC mask and the negation of the scalar input, store the calculated result into the
EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the
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scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = (~S0.u64 | EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_AND_NOT1_SAVEEXEC_B32 48

Calculate bitwise AND on the scalar input and the negation of the EXEC mask, store the calculated result into
the EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into
the scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (S0.u & ~EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_AND_NOT1_SAVEEXEC_B64 49

Calculate bitwise AND on the scalar input and the negation of the EXEC mask, store the calculated result into
the EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into
the scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = (S0.u64 & ~EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_OR_NOT1_SAVEEXEC_B32 50

Calculate bitwise OR on the scalar input and the negation of the EXEC mask, store the calculated result into the
EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the
scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

"RDNA3" Instruction Set Architecture

16.3. SOP1 Instructions 222 of 600



saveexec = EXEC.u;
EXEC.u = (S0.u | ~EXEC.u);
D0.u = saveexec.u;
SCC = EXEC.u != 0U

S_OR_NOT1_SAVEEXEC_B64 51

Calculate bitwise OR on the scalar input and the negation of the EXEC mask, store the calculated result into the
EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the
scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = (S0.u64 | ~EXEC.u64);
D0.u64 = saveexec.u64;
SCC = EXEC.u64 != 0ULL

S_AND_NOT0_WREXEC_B32 52

Calculate bitwise AND on the EXEC mask and the negation of the scalar input, store the calculated result into
the EXEC mask and also into the scalar destination register, and set SCC iff the calculated result is nonzero.

Unlike the SAVEEXEC series of opcodes, the value written to destination SGPRs is the result of the bitwise-op
result. EXEC and the destination SGPRs have the same value at the end of this instruction. This instruction is
intended to help accelerate waterfalling.

EXEC.u = (~S0.u & EXEC.u);
D0.u = EXEC.u;
SCC = EXEC.u != 0U

S_AND_NOT0_WREXEC_B64 53

Calculate bitwise AND on the EXEC mask and the negation of the scalar input, store the calculated result into
the EXEC mask and also into the scalar destination register, and set SCC iff the calculated result is nonzero.

Unlike the SAVEEXEC series of opcodes, the value written to destination SGPRs is the result of the bitwise-op
result. EXEC and the destination SGPRs have the same value at the end of this instruction. This instruction is
intended to help accelerate waterfalling.

EXEC.u64 = (~S0.u64 & EXEC.u64);
D0.u64 = EXEC.u64;

"RDNA3" Instruction Set Architecture

16.3. SOP1 Instructions 223 of 600



SCC = EXEC.u64 != 0ULL

S_AND_NOT1_WREXEC_B32 54

Calculate bitwise AND on the scalar input and the negation of the EXEC mask, store the calculated result into
the EXEC mask and also into the scalar destination register, and set SCC iff the calculated result is nonzero.

Unlike the SAVEEXEC series of opcodes, the value written to destination SGPRs is the result of the bitwise-op
result. EXEC and the destination SGPRs have the same value at the end of this instruction. This instruction is
intended to help accelerate waterfalling.

EXEC.u = (S0.u & ~EXEC.u);
D0.u = EXEC.u;
SCC = EXEC.u != 0U

Notes

See S_AND_NOT1_WREXEC_B64 for example code.

S_AND_NOT1_WREXEC_B64 55

Calculate bitwise AND on the scalar input and the negation of the EXEC mask, store the calculated result into
the EXEC mask and also into the scalar destination register, and set SCC iff the calculated result is nonzero.

Unlike the SAVEEXEC series of opcodes, the value written to destination SGPRs is the result of the bitwise-op
result. EXEC and the destination SGPRs have the same value at the end of this instruction. This instruction is
intended to help accelerate waterfalling.

EXEC.u64 = (S0.u64 & ~EXEC.u64);
D0.u64 = EXEC.u64;
SCC = EXEC.u64 != 0ULL

Notes

In particular, the following sequence of waterfall code is optimized by using a WREXEC instead of two separate
scalar ops:

// V0 holds the index value per lane
// save exec mask for restore at the end
s_mov_b64 s2, exec
// exec mask of remaining (unprocessed) threads
s_mov_b64 s4, exec
loop:
// get the index value for the first active lane
v_readfirstlane_b32  s0, v0
// find all other lanes with same index value

"RDNA3" Instruction Set Architecture

16.3. SOP1 Instructions 224 of 600



v_cmpx_eq s0, v0
<OP>        // do the operation using the current EXEC mask. S0 holds the index.
// mask out thread that was just executed
// s_andn2_b64  s4, s4, exec
// s_mov_b64    exec, s4
s_andn2_wrexec_b64 s4, s4     // replaces above 2 ops
// repeat until EXEC==0
s_cbranch_scc1  loop
s_mov_b64    exec, s2

S_MOVRELS_B32 64

Move data from a relatively-indexed scalar register into another scalar register.

addr = SRC0.u;
// Raw value from instruction
addr += M0.u[31 : 0];
D0.b = SGPR[addr].b

Notes

Example: The following instruction sequence performs the move s5 <= s17:

    s_mov_b32 m0, 10
    s_movrels_b32 s5, s7

S_MOVRELS_B64 65

Move data from a relatively-indexed scalar register into another scalar register.

The index in M0.u and the operand address in SRC0.u must be even for this operation.

addr = SRC0.u;
// Raw value from instruction
addr += M0.u[31 : 0];
D0.b64 = SGPR[addr].b64

S_MOVRELD_B32 66

Move data from a scalar input into a relatively-indexed scalar register.

addr = DST.u;
// Raw value from instruction
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addr += M0.u[31 : 0];
SGPR[addr].b = S0.b

Notes

Example: The following instruction sequence performs the move s15 <= s7:

    s_mov_b32 m0, 10
    s_movreld_b32 s5, s7

S_MOVRELD_B64 67

Move data from a scalar input into a relatively-indexed scalar register.

The index in M0.u and the operand address in DST.u must be even for this operation.

addr = DST.u;
// Raw value from instruction
addr += M0.u[31 : 0];
SGPR[addr].b64 = S0.b64

S_MOVRELSD_2_B32 68

Move data from a relatively-indexed scalar register into another relatively-indexed scalar register, using
different offsets for each index.

addrs = SRC0.u;
// Raw value from instruction
addrd = DST.u;
// Raw value from instruction
addrs += M0.u[9 : 0].u;
addrd += M0.u[25 : 16].u;
SGPR[addrd].b = SGPR[addrs].b

Notes

Example: The following instruction sequence performs the move s25 <= s17:

    s_mov_b32 m0, ((20 << 16) | 10)
    s_movrelsd_2_b32 s5, s7
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S_GETPC_B64 71

Store the address of the next instruction to a scalar register.

The byte address of the instruction immediately following this instruction is saved to the destination.

D0.i64 = PC + 4LL

Notes

This instruction must be 4 bytes.

S_SETPC_B64 72

Jump to an address specified in a scalar register.

The argument is a byte address of the instruction to jump to.

PC = S0.i64

S_SWAPPC_B64 73

Store the address of the next instruction to a scalar register and then jump to an address specified in the scalar
input.

The argument is a byte address of the instruction to jump to. The byte address of the instruction immediately
following this instruction is saved to the destination.

jump_addr = S0.i64;
D0.i64 = PC + 4LL;
PC = jump_addr.i64

Notes

This instruction must be 4 bytes.

S_RFE_B64 74

Return from the exception handler. Clear the wave's PRIV bit and then jump to an address specified by the
scalar input.

The argument is a byte address of the instruction to jump to; this address is likely derived from the state passed
into the trap handler.
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This instruction may only be used within a trap handler.

WAVE_STATUS.PRIV = 1'0U;
PC = S0.i64

S_SENDMSG_RTN_B32 76

Send a message to upstream control hardware.

SSRC[7:0] contains the message type encoded in the instruction directly (this instruction does not read an
SGPR). The message is expected to return a response from the upstream control hardware and the result is
written to SDST. Use s_waitcnt lgkmcnt(…) to wait for the response on the dependent instruction.

S_SENDMSG_RTN* instructions return data in-order among themselves but out-of-order with other
instructions that manipulate lgkmcnt (including S_SENDMSG and S_SENDMSGHALT).

If the message returns a 64 bit value then only the lower 32 bits are written to SDST.

If SDST is VCC then VCCZ is undefined.

S_SENDMSG_RTN_B64 77

Send a message to upstream control hardware.

SSRC[7:0] contains the message type encoded in the instruction directly (this instruction does not read an
SGPR). The message is expected to return a response from the upstream control hardware and the result is
written to SDST. Use s_waitcnt lgkmcnt(…) to wait for the response on the dependent instruction.

S_SENDMSG_RTN* instructions return data in-order among themselves but out-of-order with other
instructions that manipulate lgkmcnt (including S_SENDMSG and S_SENDMSGHALT).

If the message returns a 32 bit value then this instruction fills the upper bits of SDST with zero.

If SDST is VCC then VCCZ is undefined.
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16.4. SOPC Instructions

Instructions in this format may use a 32-bit literal constant that occurs immediately after the instruction.

S_CMP_EQ_I32 0

Set SCC to 1 iff the first scalar input is equal to the second scalar input.

SCC = S0.i == S1.i

Notes

Note that S_CMP_EQ_I32 and S_CMP_EQ_U32 are identical opcodes, but both are provided for symmetry.

S_CMP_LG_I32 1

Set SCC to 1 iff the first scalar input is less than or greater than the second scalar input.

SCC = S0.i <> S1.i

Notes

Note that S_CMP_LG_I32 and S_CMP_LG_U32 are identical opcodes, but both are provided for symmetry.

S_CMP_GT_I32 2

Set SCC to 1 iff the first scalar input is greater than the second scalar input.

SCC = S0.i > S1.i

S_CMP_GE_I32 3

Set SCC to 1 iff the first scalar input is greater than or equal to the second scalar input.

SCC = S0.i >= S1.i
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S_CMP_LT_I32 4

Set SCC to 1 iff the first scalar input is less than the second scalar input.

SCC = S0.i < S1.i

S_CMP_LE_I32 5

Set SCC to 1 iff the first scalar input is less than or equal to the second scalar input.

SCC = S0.i <= S1.i

S_CMP_EQ_U32 6

Set SCC to 1 iff the first scalar input is equal to the second scalar input.

SCC = S0.u == S1.u

Notes

Note that S_CMP_EQ_I32 and S_CMP_EQ_U32 are identical opcodes, but both are provided for symmetry.

S_CMP_LG_U32 7

Set SCC to 1 iff the first scalar input is less than or greater than the second scalar input.

SCC = S0.u <> S1.u

Notes

Note that S_CMP_LG_I32 and S_CMP_LG_U32 are identical opcodes, but both are provided for symmetry.

S_CMP_GT_U32 8

Set SCC to 1 iff the first scalar input is greater than the second scalar input.

SCC = S0.u > S1.u
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S_CMP_GE_U32 9

Set SCC to 1 iff the first scalar input is greater than or equal to the second scalar input.

SCC = S0.u >= S1.u

S_CMP_LT_U32 10

Set SCC to 1 iff the first scalar input is less than the second scalar input.

SCC = S0.u < S1.u

S_CMP_LE_U32 11

Set SCC to 1 iff the first scalar input is less than or equal to the second scalar input.

SCC = S0.u <= S1.u

S_BITCMP0_B32 12

Extract a bit from the first scalar input based on an index in the second scalar input, and set SCC to 1 iff the
extracted bit is equal to 0.

SCC = S0.u[S1.u[4 : 0]] == 1'0U

S_BITCMP1_B32 13

Extract a bit from the first scalar input based on an index in the second scalar input, and set SCC to 1 iff the
extracted bit is equal to 1.

SCC = S0.u[S1.u[4 : 0]] == 1'1U

S_BITCMP0_B64 14
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Extract a bit from the first scalar input based on an index in the second scalar input, and set SCC to 1 iff the
extracted bit is equal to 0.

SCC = S0.u64[S1.u[5 : 0]] == 1'0U

S_BITCMP1_B64 15

Extract a bit from the first scalar input based on an index in the second scalar input, and set SCC to 1 iff the
extracted bit is equal to 1.

SCC = S0.u64[S1.u[5 : 0]] == 1'1U

S_CMP_EQ_U64 16

Set SCC to 1 iff the first scalar input is equal to the second scalar input.

SCC = S0.u64 == S1.u64

S_CMP_LG_U64 17

Set SCC to 1 iff the first scalar input is less than or greater than the second scalar input.

SCC = S0.u64 <> S1.u64
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16.5. SOPP Instructions

S_NOP 0

Do nothing. Delay issue of next instruction by a small, fixed amount.

Insert 0..15 wait states based on SIMM16[3:0]. 0x0 means the next instruction can issue on the next clock, 0xf
means the next instruction can issue 16 clocks later.

for i in 0U : SIMM16.u16[3 : 0].u do
    nop()
endfor

Notes

Examples:

    s_nop 0         // Wait 1 cycle.
    s_nop 0xf       // Wait 16 cycles.

S_SETKILL 1

Kill this wave if the least significant bit of the immediate constant is 1.

Used primarily for debugging kill wave host command behavior.

S_SETHALT 2

Set or clear the HALT or FATAL_HALT status bits.

The particular status bit is chosen by halt type control as indicated in SIMM16[2]; 0 = HALT bit select; 1 =
FATAL_HALT bit select.

When halt type control is set to 0 (HALT bit select): Set HALT bit to value of SIMM16[0]; 1 = halt, 0 = clear HALT
bit. The halt flag is ignored while PRIV == 1 (inside trap handlers) but the shader halts after the handler returns
if HALT is still set at that time.

When halt type control is set to 1 (FATAL HALT bit select): Set FATAL_HALT bit to value of SIMM16[0]; 1 =
fatal_halt, 0 = clear FATAL_HALT bit. Setting the fatal_halt flag halts the shader in or outside of the trap
handlers.
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S_SLEEP 3

Cause a wave to sleep for up to ~8000 clocks.

The wave sleeps for (64*(SIMM16[6:0]-1) .. 64*SIMM16[6:0]) clocks. The exact amount of delay is approximate.
Compare with S_NOP. When SIMM16[6:0] is zero then no sleep occurs.

Notes

Examples:

    s_sleep 0       // Wait for 0 clocks.
    s_sleep 1       // Wait for 1-64 clocks.
    s_sleep 2       // Wait for 65-128 clocks.

S_SET_INST_PREFETCH_DISTANCE 4

Change instruction prefetch mode. This controls how many cachelines ahead of the current PC the shader will
try to prefetch.

SIMM16[1:0] specifies the prefetch mode to switch to. Prefetch modes are:

PREFETCH_SAFE (0x0)
Reserved, do not use.

PREFETCH_1_LINE (0x1)
Prefetch 1 cache line ahead of PC; keep 2 lines behind PC.

PREFETCH_2_LINES (0x2)
Prefetch 2 cache lines ahead of PC; keep 1 line behind PC.

PREFETCH_3_LINES (0x3)
Prefetch 3 cache lines ahead of PC; keep 0 lines behind PC.

SIMM16[15:2] must be set to zero.

S_CLAUSE 5

Mark the beginning of a clause.

The next instruction determines the clause type, which may be one of the following types.

• Image Load (non-sample instructions )
• Image Sample
• Image Store
• Image Atomic
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• Buffer/Global/Scratch Load
• Buffer/Global/Scratch Store
• Buffer/Global/Scratch Atomic
• Flat Load
• Flat Store
• Flat Atomic
• LDS (loads, stores, atomics may be in same clause)
• Scalar Memory
• Vector ALU

Once the clause type is determined, any instruction encountered within the clause that is not of the same type
(and not an internal instruction described below) is illegal and may lead to undefined behaviour. Attempting to
issue S_CLAUSE while inside a clause is also illegal.

Instructions that are processed internally do not interrupt the clause. The following instructions are internal:

• S_NOP,
• S_WAITCNT and its variants, unless they read an SGPR,
• S_SLEEP,
• S_DELAY_ALU.

Halting or killing a wave breaks the clause. VALU exceptions and other traps that cause the shader to enter its
trap handler breaks the clause. The single-step debug mode breaks the clause.

The clause length must be between 2 and 63 instructions, inclusive. Clause breaks may be from 1 to 15, or may
be disabled entirely. Clause length and breaks are encoded in the SIMM16 argument as follows:

LENGTH = SIMM16[5:0]
This field is set to the logical number of instructions in the clause, minus 1 (e.g. if a clause has 4
instructions, program this field to 3). The minimum number of instructions required for a clause is 2 and
the maximum number of instructions is 63, therefore this field must be programmed in the range [1, 62]
inclusive.

BREAK_SPAN = SIMM16[11:8]
This field is set to the number of instructions to issue before each clause break. If set to zero then there are
no clause breaks. If set to nonzero value then the maximum number of instructions between clause breaks
is 15.

The following instruction types cannot appear in a clause:

• SALU
• Export
• Branch
• Message
• LDSDIR
• VINTERP
• GDS

To schedule an S_WAITCNT or S_DELAY_ALU instruction for the first instruction in the clause, the
waitcnt/delay instruction must appear before the S_CLAUSE instruction so that S_CLAUSE can accurately
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determine the clause type.

S_DELAY_ALU must not appear inside a clause. The features are orthogonal; ALU clauses should be structured
to avoid any stalling.

S_DELAY_ALU 7

Insert delay between dependent SALU/VALU instructions.

The SIMM16 argument is encoded as:

INSTID0 = SIMM16[3:0]
Hazard to delay for with the next VALU instruction.

INSTSKIP = SIMM16[6:4]
Identify the VALU instruction that the second delay condition applies to.

INSTID1 = SIMM16[10:7]
Hazard to delay for with the VALU instruction identified by INSTSKIP.

Legal values for the InstID0 and InstID1 fields are:

INSTID_NO_DEP (0x0)
No dependency on any prior instruction.

INSTID_VALU_DEP_1 (0x1)
Dependent on previous VALU instruction, 1 instruction back.

INSTID_VALU_DEP_2 (0x2)
Dependent on previous VALU instruction, 2 instructions back.

INSTID_VALU_DEP_3 (0x3)
Dependent on previous VALU instruction, 3 instructions back.

INSTID_VALU_DEP_4 (0x4)
Dependent on previous VALU instruction, 4 instructions back.

INSTID_TRANS32_DEP_1 (0x5)
Dependent on previous TRANS32 instruction, 1 instruction back.

INSTID_TRANS32_DEP_2 (0x6)
Dependent on previous TRANS32 instruction, 2 instructions back.

INSTID_TRANS32_DEP_3 (0x7)
Dependent on previous TRANS32 instruction, 3 instructions back.

INSTID_FMA_ACCUM_CYCLE_1 (0x8)
Single cycle penalty for FMA accumulation (reserved).
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INSTID_SALU_CYCLE_1 (0x9)
1 cycle penalty for a prior SALU instruction.

INSTID_SALU_CYCLE_2 (0xa)
2 cycle penalty for a prior SALU instruction (reserved).

INSTID_SALU_CYCLE_3 (0xb)
3 cycle penalty for a prior SALU instruction (reserved).

Legal values for the InstSkip field are:

INSTSKIP_SAME (0x0)
Apply second dependency to same instruction (2 dependencies on one instruction).

INSTSKIP_NEXT (0x1)
Apply second dependency to next instruction (no skip).

INSTSKIP_SKIP_1 (0x2)
Skip 1 instruction then apply dependency.

INSTSKIP_SKIP_2 (0x3)
Skip 2 instructions then apply dependency.

INSTSKIP_SKIP_3 (0x4)
Skip 3 instructions then apply dependency.

INSTSKIP_SKIP_4 (0x5)
Skip 4 instructions then apply dependency.

This instruction describes dependencies for two instructions, directing the hardware to insert delay if the
dependent instruction was issued too recently to forward data to the second.

S_DELAY_ALU instructions record the required delay with respect to a previous VALU instruction and indicate
data dependencies that benefit from having extra idle cycles inserted between them. These instructions are
optional: without them the program still functions correctly but performance may suffer when multiple waves
are in flight; IB may issue dependent instructions that stall in the ALU, preventing those cycles from being
utilized by other wavefronts.

If enough independent instructions are between dependent ones then no delay is necessary and this
instruction may be omitted. For wave64 the compiler may not know the status of the EXEC mask and hence
does not know if instructions require 1 or 2 passes to issue. S_DELAY_ALU encodes the type of dependency so
that hardware may apply the correct delay depending on the number of active passes.

S_DELAY_ALU may execute in zero cycles.

To reduce instruction stream overhead the S_DELAY_ALU instructions packs two delay values into one
instruction, with a "skip" indicator so the two delayed instructions don't need to be back-to-back.

S_DELAY_ALU is illegal inside of a clause created by S_CLAUSE.

Example:
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v_mov_b32 v3, v0
v_lshlrev_b32   v30, 1, v31
v_lshlrev_b32   v24, 1, v25
s_delay_alu instid0(INSTID_VALU_DEP_3) | instskip(INSTSKIP_SKIP_1) | instid1(INSTID_VALU_DEP_1)
    // 1 cycle delay here
v_add_f32  v0, v1, v3
v_sub_f32  v11, v9, v9
    // 2 cycles delay here
v_mul_f32  v10, v13, v11

S_WAITCNT 9

Wait for the counts of outstanding lds, vector-memory and export/vmem-write-data to be at or below the
specified levels.

The SIMM16 argument is encoded as:

EXP = SIMM16[2:0]
Export wait count. 0x7 means do not wait on EXPCNT.

LGKM = SIMM16[9:4]
LGKM wait count. 0x3f means do not wait on LGKMCNT.

VM = SIMM16[15:10]
VM wait count. 0x3f means do not wait on VMCNT.

Waits for all of the following conditions to hold before continuing:

    expcnt <= WaitEXPCNT
    lgkmcnt <= WaitLGKMCNT
    vmcnt <= WaitVMCNT

VMCNT only counts vector memory loads, image sample instructions, and vector memory atomics that return
data. Contrast with the VSCNT counter.

See also S_WAITCNT_VSCNT.

S_WAIT_IDLE 10

Wait for all activity in the wave to be complete (all dependency and memory counters at zero).

S_WAIT_EVENT 11

Wait for an event to occur or a condition to be satisfied before continuing. The SIMM16 argument specifies
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which event(s) to wait on.

DONT_WAIT_EXPORT_READY = SIMM16[0]
If this value is ZERO then sleep until the export_ready bit is 1. If the export_ready bit is already 1, no sleep
occurs. Effect is the same as the export_ready check performed before issuing an export instruction.

No wait occurs if this value is ONE.

This wait can be broken or preempted by KILL, context-save, host trap, single-step or trap after instruction
events. IB waits for the event to occur before processing internal exceptions which can delay entry to the trap
handler for a significant amount of time.

S_TRAP 16

Enter the trap handler.

This instruction may be generated internally as well in response to a host trap (HT = 1) or an exception. TrapID
0 is reserved for hardware use and should not be used in a shader-generated trap.

TrapID = SIMM16.u16[7 : 0];
"Wait for all instructions to complete";
// PC passed into trap handler points to S_TRAP itself,
// *not* to the next instruction.
{ TTMP[1], TTMP[0] } = { 7'0, HT[0], TrapID[7 : 0], PC[47 : 0] };
PC = TBA.i64;
// trap base address
WAVE_STATUS.PRIV = 1'1U

S_ROUND_MODE 17

Set floating point round mode using an immediate constant.

Avoids wait state penalty that would be imposed by S_SETREG.

S_DENORM_MODE 18

Set floating point denormal mode using an immediate constant.

Avoids wait state penalty that would be imposed by S_SETREG.

S_CODE_END 31

Generate an illegal instruction interrupt. This instruction is used to mark the end of a shader buffer for debug
tools.
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This instruction should not appear in typical shader code. It is used to pad the end of a shader program to make
it easier for analysis programs to locate the end of a shader program buffer. Use of this opcode in an embedded
shader block may cause analysis tools to fail.

To unambiguously mark the end of a shader buffer, this instruction must be specified five times in a row (total
of 20 bytes) and analysis tools must ensure the opcode occurs at least five times to be certain they are at the end
of the buffer. This is because the bit pattern generated by this opcode could incidentally appear in a valid
instruction's second dword, literal constant or as part of a multi-DWORD image instruction.

In short: do not embed this opcode in the middle of a valid shader program. DO use this opcode 5 times at the
end of a shader program to clearly mark the end of the program.

Example:

    ...
    s_endpgm     // last real instruction in shader buffer
    s_code_end      // 1
    s_code_end      // 2
    s_code_end      // 3
    s_code_end      // 4
    s_code_end      // done!

S_BRANCH 32

Jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

PC = PC + signext(SIMM16.i16 * 16'4) + 4LL;
// short jump.

Notes

For a long jump or an indirect jump use S_SETPC_B64.

Examples:

    s_branch label    // Set SIMM16 = +4 = 0x0004
    s_nop 0    // 4 bytes
label:
    s_nop 0    // 4 bytes
    s_branch label    // Set SIMM16 = -8 = 0xfff8

S_CBRANCH_SCC0 33
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If SCC is 0 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if SCC == 1'0U then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_CBRANCH_SCC1 34

If SCC is 1 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if SCC == 1'1U then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_CBRANCH_VCCZ 35

If VCCZ is 1 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if VCCZ.u1 == 1'1U then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_CBRANCH_VCCNZ 36

If VCCZ is 0 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if VCCZ.u1 == 1'0U then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
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    PC = PC + 4LL
endif

S_CBRANCH_EXECZ 37

If EXECZ is 1 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if EXECZ.u1 == 1'1U then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_CBRANCH_EXECNZ 38

If EXECZ is 0 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if EXECZ.u1 == 1'0U then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_CBRANCH_CDBGSYS 39

If the system debug flag is set then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if WAVE_STATUS.COND_DBG_SYS.u != 0U then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_CBRANCH_CDBGUSER 40
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If the user debug flag is set then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if WAVE_STATUS.COND_DBG_USER.u != 0U then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_CBRANCH_CDBGSYS_OR_USER 41

If either the system debug flag or the user debug flag is set then jump to a constant offset relative to the current
PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if (WAVE_STATUS.COND_DBG_SYS || WAVE_STATUS.COND_DBG_USER) then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_CBRANCH_CDBGSYS_AND_USER 42

If both the system debug flag and the user debug flag are set then jump to a constant offset relative to the
current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if (WAVE_STATUS.COND_DBG_SYS && WAVE_STATUS.COND_DBG_USER) then
    PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
    PC = PC + 4LL
endif

S_ENDPGM 48

End of program; terminate wavefront.

The hardware implicitly executes S_WAITCNT 0 and S_WAITCNT_VSCNT 0 before executing this instruction.
See S_ENDPGM_SAVED for the context-switch version of this instruction and
S_ENDPGM_ORDERED_PS_DONE for the POPS critical region version of this instruction.
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S_ENDPGM_SAVED 49

End of program; signal that a wave has been saved by the context-switch trap handler and terminate
wavefront.

The hardware implicitly executes S_WAITCNT 0 and S_WAITCNT_VSCNT 0 before executing this instruction.
See S_ENDPGM for additional variants.

S_ENDPGM_ORDERED_PS_DONE 50

End of program; signal that a wave has exited its POPS critical section and terminate wavefront.

The hardware implicitly executes S_WAITCNT 0 and S_WAITCNT_VSCNT 0 before executing this instruction.
This instruction is an optimization that combines S_SENDMSG(MSG_ORDERED_PS_DONE) and S_ENDPGM;
there may be cases where the message needs to be sent separately, in which case the shader can be terminated
with a normal S_ENDPGM instruction.

See S_ENDPGM for additional variants.

S_WAKEUP 52

Allow a wave to 'ping' all the other waves in its threadgroup to force them to wake up early from an S_SLEEP
instruction.

The ping is ignored if the waves are not sleeping. This allows for efficient polling on a memory location. The
waves which are polling can sit in a long S_SLEEP between memory reads, but the wave which writes the value
can tell them all to wake up early now that the data is available. This method is also safe from races because if
any wave misses the ping, everything is expected to work fine (waves which missed it just complete their
S_SLEEP).

If the wave executing S_WAKEUP is in a threadgroup (in_wg set), then it wakes up all waves associated with the
same threadgroup ID. Otherwise, S_WAKEUP is treated as an S_NOP.

S_SETPRIO 53

Change wave user priority.

User settable wave priority is set to SIMM16[1:0]. 0 is the lowest priority and 3 is the highest. The overall wave
priority is:

Priority = {SysUserPrio[1:0], WaveAge[3:0]}
SysUserPrio = MIN(3, SysPrio[1:0] + UserPrio[1:0]).

The system priority cannot be modified from within the wave.
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S_SENDMSG 54

Send a message to upstream control hardware.

SIMM16[7:0] contains the message type.

Notes

S_SENDMSGHALT 55

Send a message to upstream control hardware and then HALT the wavefront; see S_SENDMSG for details.

S_INCPERFLEVEL 56

Increment performance counter specified in SIMM16[3:0] by 1.

S_DECPERFLEVEL 57

Decrement performance counter specified in SIMM16[3:0] by 1.

S_ICACHE_INV 60

Invalidate entire first level instruction cache.

S_BARRIER 61

Synchronize waves within a threadgroup.

If not all waves of the threadgroup have been created yet, waits for entire group before proceeding. If some
waves in the threadgroup have already terminated, this waits on only the surviving waves. Barriers are legal
inside trap handlers.

Barrier instructions do not wait for any counters to go to zero before issuing. If the barrier is being used to
protect an outstanding memory operation use the appropriate S_WAITCNT instruction before the barrier.
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16.6. SMEM Instructions

S_LOAD_B32 0

Load 32 bits of data from the scalar data cache into a scalar register.

SDATA[31 : 0] = MEM[ADDR + 0U].b

Notes

If the offset is specified as an SGPR, the SGPR contains an UNSIGNED BYTE offset (the 2 LSBs are ignored).

If the offset is specified as an immediate 21-bit constant, the constant is a SIGNED BYTE offset.

S_LOAD_B64 1

Load 64 bits of data from the scalar data cache into a scalar register.

SDATA[31 : 0] = MEM[ADDR + 0U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_LOAD_B128 2

Load 128 bits of data from the scalar data cache into a scalar register.

SDATA[31 : 0] = MEM[ADDR + 0U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b

Notes

See S_LOAD_B32 for details on the offset input.
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S_LOAD_B256 3

Load 256 bits of data from the scalar data cache into a scalar register.

SDATA[31 : 0] = MEM[ADDR + 0U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b;
SDATA[159 : 128] = MEM[ADDR + 16U].b;
SDATA[191 : 160] = MEM[ADDR + 20U].b;
SDATA[223 : 192] = MEM[ADDR + 24U].b;
SDATA[255 : 224] = MEM[ADDR + 28U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_LOAD_B512 4

Load 512 bits of data from the scalar data cache into a scalar register.

SDATA[31 : 0] = MEM[ADDR + 0U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b;
SDATA[159 : 128] = MEM[ADDR + 16U].b;
SDATA[191 : 160] = MEM[ADDR + 20U].b;
SDATA[223 : 192] = MEM[ADDR + 24U].b;
SDATA[255 : 224] = MEM[ADDR + 28U].b;
SDATA[287 : 256] = MEM[ADDR + 32U].b;
SDATA[319 : 288] = MEM[ADDR + 36U].b;
SDATA[351 : 320] = MEM[ADDR + 40U].b;
SDATA[383 : 352] = MEM[ADDR + 44U].b;
SDATA[415 : 384] = MEM[ADDR + 48U].b;
SDATA[447 : 416] = MEM[ADDR + 52U].b;
SDATA[479 : 448] = MEM[ADDR + 56U].b;
SDATA[511 : 480] = MEM[ADDR + 60U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B32 8

Load 32 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.
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SDATA[31 : 0] = MEM[ADDR + 0U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B64 9

Load 64 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.

SDATA[31 : 0] = MEM[ADDR + 0U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B128 10

Load 128 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.

SDATA[31 : 0] = MEM[ADDR + 0U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B256 11

Load 256 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.

SDATA[31 : 0] = MEM[ADDR + 0U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b;
SDATA[159 : 128] = MEM[ADDR + 16U].b;
SDATA[191 : 160] = MEM[ADDR + 20U].b;
SDATA[223 : 192] = MEM[ADDR + 24U].b;
SDATA[255 : 224] = MEM[ADDR + 28U].b
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Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B512 12

Load 512 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.

SDATA[31 : 0] = MEM[ADDR + 0U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b;
SDATA[159 : 128] = MEM[ADDR + 16U].b;
SDATA[191 : 160] = MEM[ADDR + 20U].b;
SDATA[223 : 192] = MEM[ADDR + 24U].b;
SDATA[255 : 224] = MEM[ADDR + 28U].b;
SDATA[287 : 256] = MEM[ADDR + 32U].b;
SDATA[319 : 288] = MEM[ADDR + 36U].b;
SDATA[351 : 320] = MEM[ADDR + 40U].b;
SDATA[383 : 352] = MEM[ADDR + 44U].b;
SDATA[415 : 384] = MEM[ADDR + 48U].b;
SDATA[447 : 416] = MEM[ADDR + 52U].b;
SDATA[479 : 448] = MEM[ADDR + 56U].b;
SDATA[511 : 480] = MEM[ADDR + 60U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_GL1_INV 32

Invalidate the GL1 cache only.

S_DCACHE_INV 33

Invalidate the scalar data L0 cache.
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16.7. VOP2 Instructions

Instructions in this format may use a 32-bit literal constant or DPP that occurs immediately after the
instruction.

V_CNDMASK_B32 1

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

D0.u = VCC.u64[laneId] ? S1.u : S0.u

Notes

In VOP3 the VCC source may be a scalar GPR specified in S2.

Floating-point modifiers are valid for this instruction if S0 and S1 are 32-bit floating point values. This
instruction is suitable for negating or taking the absolute value of a floating-point value.

V_DOT2ACC_F32_F16 2

Dot product of packed FP16 values, accumulate with destination.

// Accumulate with destination
D0.f += 32'F(S0[15 : 0].f16) * 32'F(S1[15 : 0].f16);
D0.f += 32'F(S0[31 : 16].f16) * 32'F(S1[31 : 16].f16)

V_ADD_F32 3

Add two floating point inputs and store the result into a vector register.

D0.f = S0.f + S1.f

Notes

0.5ULP precision, denormals are supported.

V_SUB_F32 4
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Subtract the second floating point input from the first input and store the result into a vector register.

D0.f = S0.f - S1.f

Notes

0.5ULP precision, denormals are supported.

V_SUBREV_F32 5

Subtract the first floating point input from the second input and store the result into a vector register.

D0.f = S1.f - S0.f

Notes

0.5ULP precision, denormals are supported.

V_FMAC_DX9_ZERO_F32 6

Multiply two single-precision values and accumulate the result with the destination. Follows DX9 rules where
0.0 times anything produces 0.0 (this is not IEEE compliant).

if ((64'F(S0.f) == 0.0) || (64'F(S1.f) == 0.0)) then
    // DX9 rules, 0.0 * x = 0.0
    D0.f = S2.f
else
    D0.f = fma(S0.f, S1.f, D0.f)
endif

V_MUL_DX9_ZERO_F32 7

Multiply two floating point inputs and store the result in a vector register. Follows DX9 rules where 0.0 times
anything produces 0.0 (this differs from other APIs when the other input is infinity or NaN).

if ((64'F(S0.f) == 0.0) || (64'F(S1.f) == 0.0)) then
    // DX9 rules, 0.0 * x = 0.0
    D0.f = 0.0F
else
    D0.f = S0.f * S1.f
endif
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V_MUL_F32 8

Multiply two floating point inputs and store the result into a vector register.

D0.f = S0.f * S1.f

Notes

0.5ULP precision, denormals are supported.

V_MUL_I32_I24 9

Multiply two signed 24 bit integer inputs and store the result as a signed 32 bit integer into a vector register.

D0.i = 32'I(S0.i24) * 32'I(S1.i24)

Notes

This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_I32_I24.

V_MUL_HI_I32_I24 10

Multiply two signed 24 bit integer inputs and store the high 32 bits of the result as a signed 32 bit integer into a
vector register.

D0.i = 32'I((64'I(S0.i24) * 64'I(S1.i24)) >> 32U)

Notes

See also V_MUL_I32_I24.

V_MUL_U32_U24 11

Multiply two unsigned 24 bit integer inputs and store the result as a unsigned 32 bit integer into a vector
register.

D0.u = 32'U(S0.u24) * 32'U(S1.u24)

Notes
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This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_U32_U24.

V_MUL_HI_U32_U24 12

Multiply two unsigned 24 bit integer inputs and store the high 32 bits of the result as a unsigned 32 bit integer
into a vector register.

D0.u = 32'U((64'U(S0.u24) * 64'U(S1.u24)) >> 32U)

Notes

See also V_MUL_U32_U24.

V_MIN_F32 15

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
    ((a < b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(64'F(S0.f)) then
        D0.f = 32'F(cvtToQuietNAN(64'F(S0.f)))
    elsif isSignalNAN(64'F(S1.f)) then
        D0.f = 32'F(cvtToQuietNAN(64'F(S1.f)))
    elsif isQuietNAN(64'F(S1.f)) then
        D0.f = S0.f
    elsif isQuietNAN(64'F(S0.f)) then
        D0.f = S1.f
    elsif LT_NEG_ZERO(S0.f, S1.f) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f = S0.f
    else
        D0.f = S1.f
    endif
else
    if isNAN(64'F(S1.f)) then
        D0.f = S0.f
    elsif isNAN(64'F(S0.f)) then
        D0.f = S1.f
    elsif LT_NEG_ZERO(S0.f, S1.f) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f = S0.f
    else
        D0.f = S1.f
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
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// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MAX_F32 16

Select the maximum of two floating point inputs and store the result into a vector register.

GT_NEG_ZERO = lambda(a, b) (
    ((a > b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(64'F(S0.f)) then
        D0.f = 32'F(cvtToQuietNAN(64'F(S0.f)))
    elsif isSignalNAN(64'F(S1.f)) then
        D0.f = 32'F(cvtToQuietNAN(64'F(S1.f)))
    elsif isQuietNAN(64'F(S1.f)) then
        D0.f = S0.f
    elsif isQuietNAN(64'F(S0.f)) then
        D0.f = S1.f
    elsif GT_NEG_ZERO(S0.f, S1.f) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f = S0.f
    else
        D0.f = S1.f
    endif
else
    if isNAN(64'F(S1.f)) then
        D0.f = S0.f
    elsif isNAN(64'F(S0.f)) then
        D0.f = S1.f
    elsif GT_NEG_ZERO(S0.f, S1.f) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f = S0.f
    else
        D0.f = S1.f
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.
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Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MIN_I32 17

Select the minimum of two signed integers and store the selected value into a vector register.

D0.i = S0.i < S1.i ? S0.i : S1.i

V_MAX_I32 18

Select the maximum of two signed integers and store the selected value into a vector register.

D0.i = S0.i >= S1.i ? S0.i : S1.i

V_MIN_U32 19

Select the minimum of two unsigned integers and store the selected value into a vector register.

D0.u = S0.u < S1.u ? S0.u : S1.u

V_MAX_U32 20

Select the maximum of two unsigned integers and store the selected value into a vector register.

D0.u = S0.u >= S1.u ? S0.u : S1.u

V_LSHLREV_B32 24

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.

D0.u = (S1.u << S0[4 : 0].u)
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V_LSHRREV_B32 25

Given a shift count in the first vector input, calculate the logical shift right of the second vector input and store
the result into a vector register.

D0.u = (S1.u >> S0[4 : 0].u)

V_ASHRREV_I32 26

Given a shift count in the first vector input, calculate the arithmetic shift right (preserving sign bit) of the second
vector input and store the result into a vector register.

D0.i = (S1.i >> S0[4 : 0].u)

V_AND_B32 27

Calculate bitwise AND on two vector inputs and store the result into a vector register.

D0.u = (S0.u & S1.u)

Notes

Input and output modifiers not supported.

V_OR_B32 28

Calculate bitwise OR on two vector inputs and store the result into a vector register.

D0.u = (S0.u | S1.u)

Notes

Input and output modifiers not supported.

V_XOR_B32 29

Calculate bitwise XOR on two vector inputs and store the result into a vector register.
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D0.u = (S0.u ^ S1.u)

Notes

Input and output modifiers not supported.

V_XNOR_B32 30

Calculate bitwise XNOR on two vector inputs and store the result into a vector register.

D0.u = ~(S0.u ^ S1.u)

Notes

Input and output modifiers not supported.

V_ADD_CO_CI_U32 32

Add two unsigned inputs and a bit from a carry-in mask, store the result into a vector register and store the
carry-out mask into a scalar register.

tmp = 64'U(S0.u) + 64'U(S1.u) + VCC.u64[laneId].u64;
VCC.u64[laneId] = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
D0.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_SUB_CO_CI_U32 33

Subtract the second unsigned input from the first input, subtract a bit from the carry-in mask, store the result
into a vector register and store the carry-out mask to a scalar register.

tmp = S0.u - S1.u - VCC.u64[laneId].u;
VCC.u64[laneId] = 64'U(S1.u) + VCC.u64[laneId].u64 > 64'U(S0.u) ? 1'1U : 1'0U;
D0.u = tmp.u
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Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_SUBREV_CO_CI_U32 34

Subtract the first unsigned input from the second input, subtract a bit from the carry-in mask, store the result
into a vector register and store the carry-out mask to a scalar register.

tmp = S1.u - S0.u - VCC.u64[laneId].u;
VCC.u64[laneId] = 64'U(S1.u) + VCC.u64[laneId].u64 > 64'U(S0.u) ? 1'1U : 1'0U;
D0.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_ADD_NC_U32 37

Add two unsigned inputs and store the result into a vector register. No carry-in or carry-out support.

D0.u = S0.u + S1.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_SUB_NC_U32 38

Subtract the second unsigned input from the first input and store the result into a vector register. No carry-in
or carry-out support.

D0.u = S0.u - S1.u

Notes

Supports saturation (unsigned 32-bit integer domain).
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V_SUBREV_NC_U32 39

Subtract the first unsigned input from the second input and store the result into a vector register. No carry-in or
carry-out support.

D0.u = S1.u - S0.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_FMAC_F32 43

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

D0.f = fma(S0.f, S1.f, D0.f)

V_FMAMK_F32 44

Multiply a single-precision float with a literal constant and add a second single-precision float using fused
multiply-add.

D0.f = fma(S0.f, SIMM32.f, S1.f)

Notes

This opcode cannot use the VOP3 encoding and cannot use input/output modifiers.

V_FMAAK_F32 45

Multiply two single-precision floats and add a literal constant using fused multiply-add.

D0.f = fma(S0.f, S1.f, SIMM32.f)

Notes

This opcode cannot use the VOP3 encoding and cannot use input/output modifiers.

"RDNA3" Instruction Set Architecture

16.7. VOP2 Instructions 259 of 600



V_CVT_PK_RTZ_F16_F32 47

Convert two single-precision float inputs into a packed FP16 result with round toward zero semantics (ignore
the current rounding mode), and store the result into a vector register.

D0[15 : 0].f16 = f32_to_f16(S0.f);
D0[31 : 16].f16 = f32_to_f16(S1.f);
// Round-toward-zero regardless of current round mode setting in hardware.

Notes

This opcode is intended for use with 16-bit compressed exports. See V_CVT_F16_F32 for a version that respects
the current rounding mode.

V_ADD_F16 50

Add two floating point inputs and store the result into a vector register.

D0.f16 = S0.f16 + S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_SUB_F16 51

Subtract the second floating point input from the first input and store the result into a vector register.

D0.f16 = S0.f16 - S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_SUBREV_F16 52

Subtract the first floating point input from the second input and store the result into a vector register.

D0.f16 = S1.f16 - S0.f16
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Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_MUL_F16 53

Multiply two floating point inputs and store the result into a vector register.

D0.f16 = S0.f16 * S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_FMAC_F16 54

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

D0.f16 = fma(S0.f16, S1.f16, D0.f16)

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_FMAMK_F16 55

Multiply a FP16 value with a literal constant and add a second FP16 value using fused multiply-add.

D0.f16 = fma(S0.f16, SIMM32.f16, S1.f16)

Notes

This opcode cannot use the VOP3 encoding and cannot use input/output modifiers. Supports round mode,
exception flags, saturation.

V_FMAAK_F16 56

Multiply two FP16 values and add a literal constant using fused multiply-add.
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D0.f16 = fma(S0.f16, S1.f16, SIMM32.f16)

Notes

This opcode cannot use the VOP3 encoding and cannot use input/output modifiers. Supports round mode,
exception flags, saturation.

V_MAX_F16 57

Select the maximum of two floating point inputs and store the result into a vector register.

GT_NEG_ZERO = lambda(a, b) (
    ((a > b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(64'F(S0.f16)) then
        D0.f16 = 16'F(cvtToQuietNAN(64'F(S0.f16)))
    elsif isSignalNAN(64'F(S1.f16)) then
        D0.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
    elsif isQuietNAN(64'F(S1.f16)) then
        D0.f16 = S0.f16
    elsif isQuietNAN(64'F(S0.f16)) then
        D0.f16 = S1.f16
    elsif GT_NEG_ZERO(S0.f16, S1.f16) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f16 = S0.f16
    else
        D0.f16 = S1.f16
    endif
else
    if isNAN(64'F(S1.f16)) then
        D0.f16 = S0.f16
    elsif isNAN(64'F(S0.f16)) then
        D0.f16 = S1.f16
    elsif GT_NEG_ZERO(S0.f16, S1.f16) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f16 = S0.f16
    else
        D0.f16 = S1.f16
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
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be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MIN_F16 58

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
    ((a < b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(64'F(S0.f16)) then
        D0.f16 = 16'F(cvtToQuietNAN(64'F(S0.f16)))
    elsif isSignalNAN(64'F(S1.f16)) then
        D0.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
    elsif isQuietNAN(64'F(S1.f16)) then
        D0.f16 = S0.f16
    elsif isQuietNAN(64'F(S0.f16)) then
        D0.f16 = S1.f16
    elsif LT_NEG_ZERO(S0.f16, S1.f16) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f16 = S0.f16
    else
        D0.f16 = S1.f16
    endif
else
    if isNAN(64'F(S1.f16)) then
        D0.f16 = S0.f16
    elsif isNAN(64'F(S0.f16)) then
        D0.f16 = S1.f16
    elsif LT_NEG_ZERO(S0.f16, S1.f16) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f16 = S0.f16
    else
        D0.f16 = S1.f16
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_LDEXP_F16 59
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Multiply the first input, a floating point value, by an integral power of 2 specified in the second input, a signed
integer value, and store the floating point result into a vector register. Compare with the ldexp() function in C.

D0.f16 = S0.f16 * 16'F(2.0F ** 32'I(S1.i16))

V_PK_FMAC_F16 60

Multiply packed FP16 values and accumulate with destination.

D0[31 : 16].f16 = fma(S0[31 : 16].f16, S1[31 : 16].f16, D0[31 : 16].f16);
D0[15 : 0].f16 = fma(S0[15 : 0].f16, S1[15 : 0].f16, D0[15 : 0].f16)

Notes

VOP2 version of V_PK_FMA_F16 with third source VGPR address is the destination.

16.7.1. VOP2 using VOP3 or VOP3SD encoding

Instructions in this format may also be encoded as VOP3. VOP3 allows access to the extra control bits (e.g. ABS,
OMOD) at the expense of a larger instruction word. The VOP3 opcode is: VOP2 opcode + 0x100.
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16.8. VOP1 Instructions

Instructions in this format may use a 32-bit literal constant or DPP that occurs immediately after the
instruction.

V_NOP 0

Do nothing.

V_MOV_B32 1

Move data from a vector input into a vector register.

D0.b = S0.b

Notes

Floating-point modifiers are valid for this instruction if S0.u is a 32-bit floating point value. This instruction is
suitable for negating or taking the absolute value of a floating-point value.

Functional examples:

    v_mov_b32 v0, v1    // Move v1 to v0
    v_mov_b32 v0, -v1   // Set v1 to the negation of v0
    v_mov_b32 v0, abs(v1)   // Set v1 to the absolute value of v0

V_READFIRSTLANE_B32 2

Read the scalar value in the lowest active lane of the input vector register and store it into a scalar register.

declare lane : 32'U;
if WAVE64 then
    // 64 lanes
    if EXEC == 0x0LL then
        lane = 0U;
        // Force lane 0 if all lanes are disabled
    else
        lane = 32'U(s_ff1_i32_b64(EXEC));
        // Lowest active lane
    endif
else
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    // 32 lanes
    if EXEC_LO.i == 0 then
        lane = 0U;
        // Force lane 0 if all lanes are disabled
    else
        lane = 32'U(s_ff1_i32_b32(EXEC_LO));
        // Lowest active lane
    endif
endif;
D0.b = VGPR[lane][SRC0.u]

Notes

Overrides EXEC mask for the VGPR read. Input and output modifiers not supported; this is an untyped
operation.

V_CVT_I32_F64 3

Convert from a double-precision float input to a signed 32-bit integer and store the result into a vector register.

D0.i = f64_to_i32(S0.f64)

Notes

0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_F64_I32 4

Convert from a signed 32-bit integer input to a double-precision float and store the result into a vector register.

D0.f64 = i32_to_f64(S0.i)

Notes

0ULP accuracy.

V_CVT_F32_I32 5

Convert from a signed 32-bit integer input to a single-precision float and store the result into a vector register.
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D0.f = i32_to_f32(S0.i)

Notes

0.5ULP accuracy.

V_CVT_F32_U32 6

Convert from an unsigned 32-bit integer input to a single-precision float and store the result into a vector
register.

D0.f = u32_to_f32(S0.u)

Notes

0.5ULP accuracy.

V_CVT_U32_F32 7

Convert from a single-precision float input to an unsigned 32-bit integer and store the result into a vector
register.

D0.u = f32_to_u32(S0.f)

Notes

1ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_I32_F32 8

Convert from a single-precision float input to a signed 32-bit integer and store the result into a vector register.

D0.i = f32_to_i32(S0.f)

Notes

1ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.
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Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_F16_F32 10

Convert from a single-precision float input to an FP16 float and store the result into a vector register.

D0.f16 = f32_to_f16(S0.f)

Notes

0.5ULP accuracy, supports input modifiers and creates FP16 denormals when appropriate. Flush denorms on
output if specified based on DP denorm mode. Output rounding based on DP rounding mode.

V_CVT_F32_F16 11

Convert from an FP16 float input to a single-precision float and store the result into a vector register.

D0.f = f16_to_f32(S0.f16)

Notes

0ULP accuracy, FP16 denormal inputs are accepted. Flush denorms on input if specified based on DP denorm
mode.

V_CVT_NEAREST_I32_F32 12

Convert from a single-precision float input to a signed 32-bit integer using round-to-nearest-integer semantics
(ignore the default rounding mode) and store the result into a vector register.

D0.i = f32_to_i32(floor(S0.f + 0.5F))

Notes

0.5ULP accuracy, denormals are supported.

V_CVT_FLOOR_I32_F32 13

Convert from a single-precision float input to a signed 32-bit integer using round-down semantics (ignore the
default rounding mode) and store the result into a vector register.
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D0.i = f32_to_i32(floor(S0.f))

Notes

1ULP accuracy, denormals are supported.

V_CVT_OFF_F32_I4 14

Convert from a signed 4-bit integer to a single-precision float using an offset table and store the result into a
vector register.

Used for interpolation in shader. Lookup table on S0[3:0]:

S0 binary Result
1000 -0.5000f
1001 -0.4375f
1010 -0.3750f
1011 -0.3125f
1100 -0.2500f
1101 -0.1875f
1110 -0.1250f
1111 -0.0625f
0000 +0.0000f
0001 +0.0625f
0010 +0.1250f
0011 +0.1875f
0100 +0.2500f
0101 +0.3125f
0110 +0.3750f
0111 +0.4375f

declare CVT_OFF_TABLE : 32'F[16];
D0.f = CVT_OFF_TABLE[S0.u[3 : 0]]

V_CVT_F32_F64 15

Convert from a double-precision float input to a single-precision float and store the result into a vector register.

D0.f = f64_to_f32(S0.f64)

Notes

0.5ULP accuracy, denormals are supported.
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V_CVT_F64_F32 16

Convert from a single-precision float input to a double-precision float and store the result into a vector register.

D0.f64 = f32_to_f64(S0.f)

Notes

0ULP accuracy, denormals are supported.

V_CVT_F32_UBYTE0 17

Convert an unsigned byte in byte 0 of the input to a single-precision float and store the result into a vector
register.

D0.f = u32_to_f32(S0.u[7 : 0].u)

V_CVT_F32_UBYTE1 18

Convert an unsigned byte in byte 1 of the input to a single-precision float and store the result into a vector
register.

D0.f = u32_to_f32(S0.u[15 : 8].u)

V_CVT_F32_UBYTE2 19

Convert an unsigned byte in byte 2 of the input to a single-precision float and store the result into a vector
register.

D0.f = u32_to_f32(S0.u[23 : 16].u)

V_CVT_F32_UBYTE3 20

Convert an unsigned byte in byte 3 of the input to a single-precision float and store the result into a vector
register.
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D0.f = u32_to_f32(S0.u[31 : 24].u)

V_CVT_U32_F64 21

Convert from a double-precision float input to an unsigned 32-bit integer and store the result into a vector
register.

D0.u = f64_to_u32(S0.f64)

Notes

0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_F64_U32 22

Convert from an unsigned 32-bit integer input to a double-precision float and store the result into a vector
register.

D0.f64 = u32_to_f64(S0.u)

Notes

0ULP accuracy.

V_TRUNC_F64 23

Compute the integer part of a double-precision float input with round-toward-zero semantics and store the
result in floating point format into a vector register.

D0.f64 = trunc(S0.f64)

V_CEIL_F64 24

Round the double-precision float input up to next integer and store the result in floating point format into a
vector register.
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D0.f64 = trunc(S0.f64);
if ((S0.f64 > 0.0) && (S0.f64 != D0.f64)) then
    D0.f64 += 1.0
endif

V_RNDNE_F64 25

Round the double-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

D0.f64 = floor(S0.f64 + 0.5);
if (isEven(floor(S0.f64)) && (fract(S0.f64) == 0.5)) then
    D0.f64 -= 1.0
endif

V_FLOOR_F64 26

Round the double-precision float input down to previous integer and store the result in floating point format
into a vector register.

D0.f64 = trunc(S0.f64);
if ((S0.f64 < 0.0) && (S0.f64 != D0.f64)) then
    D0.f64 += -1.0
endif

V_PIPEFLUSH 27

Flush the VALU destination cache.

V_MOV_B16 28

Move data to a VGPR.

D0.b16 = S0.b16

Notes

Floating-point modifiers are valid for this instruction if S0.u16 is a 16-bit floating point value. This instruction is
suitable for negating or taking the absolute value of a floating-point value.
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V_FRACT_F32 32

Compute the fractional portion of a single-precision float input and store the result in floating point format into
a vector register.

D0.f = S0.f + -floor(S0.f)

Notes

0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

Obey round mode, result clamped to 0x3f7fffff.

V_TRUNC_F32 33

Compute the integer part of a single-precision float input with round-toward-zero semantics and store the
result in floating point format into a vector register.

D0.f = trunc(S0.f)

V_CEIL_F32 34

Round the single-precision float input up to next integer and store the result in floating point format into a
vector register.

D0.f = trunc(S0.f);
if ((S0.f > 0.0F) && (S0.f != D0.f)) then
    D0.f += 1.0F
endif

V_RNDNE_F32 35

Round the single-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

D0.f = floor(S0.f + 0.5F);
if (isEven(64'F(floor(S0.f))) && (fract(S0.f) == 0.5F)) then
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    D0.f -= 1.0F
endif

V_FLOOR_F32 36

Round the single-precision float input down to previous integer and store the result in floating point format
into a vector register.

D0.f = trunc(S0.f);
if ((S0.f < 0.0F) && (S0.f != D0.f)) then
    D0.f += -1.0F
endif

V_EXP_F32 37

Calculate 2 raised to the power of the single-precision float input and store the result into a vector register.

D0.f = pow(2.0F, S0.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:

V_EXP_F32(0xff800000) => 0x00000000     // exp(-INF) = 0
V_EXP_F32(0x80000000) => 0x3f800000     // exp(-0.0) = 1
V_EXP_F32(0x7f800000) => 0x7f800000     // exp(+INF) = +INF

V_LOG_F32 39

Calculate the base 2 logarithm of the single-precision float input and store the result into a vector register.

D0.f = log2(S0.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:
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V_LOG_F32(0xff800000) => 0xffc00000     // log(-INF) = NAN
V_LOG_F32(0xbf800000) => 0xffc00000     // log(-1.0) = NAN
V_LOG_F32(0x80000000) => 0xff800000     // log(-0.0) = -INF
V_LOG_F32(0x00000000) => 0xff800000     // log(+0.0) = -INF
V_LOG_F32(0x3f800000) => 0x00000000     // log(+1.0) = 0
V_LOG_F32(0x7f800000) => 0x7f800000     // log(+INF) = +INF

V_RCP_F32 42

Calculate the reciprocal of the single-precision float input using IEEE rules and store the result into a vector
register.

D0.f = 1.0F / S0.f

Notes

1ULP accuracy. Accuracy converges to < 0.5ULP when using the Newton-Raphson method and 2 FMA
operations. Denormals are flushed.

Functional examples:

V_RCP_F32(0xff800000) => 0x80000000     // rcp(-INF) = -0
V_RCP_F32(0xc0000000) => 0xbf000000     // rcp(-2.0) = -0.5
V_RCP_F32(0x80000000) => 0xff800000     // rcp(-0.0) = -INF
V_RCP_F32(0x00000000) => 0x7f800000     // rcp(+0.0) = +INF
V_RCP_F32(0x7f800000) => 0x00000000     // rcp(+INF) = +0

V_RCP_IFLAG_F32 43

Calculate the reciprocal of the vector float input in a manner suitable for integer division and store the result
into a vector register. This opcode is intended for use as part of an integer division macro.

D0.f = 1.0F / S0.f;
// Can only raise integer DIV_BY_ZERO exception

Notes

Can raise integer DIV_BY_ZERO exception but cannot raise floating-point exceptions. To be used in an integer
reciprocal macro by the compiler with one of the sequences listed below (depending on signed or unsigned
operation).

Unsigned usage:
CVT_F32_U32
RCP_IFLAG_F32
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MUL_F32 (2**32 - 1)
CVT_U32_F32

Signed usage:
CVT_F32_I32
RCP_IFLAG_F32
MUL_F32 (2**31 - 1)
CVT_I32_F32

V_RSQ_F32 46

Calculate the reciprocal of the square root of the single-precision float input using IEEE rules and store the
result into a vector register.

D0.f = 1.0F / sqrt(S0.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:

V_RSQ_F32(0xff800000) => 0xffc00000     // rsq(-INF) = NAN
V_RSQ_F32(0x80000000) => 0xff800000     // rsq(-0.0) = -INF
V_RSQ_F32(0x00000000) => 0x7f800000     // rsq(+0.0) = +INF
V_RSQ_F32(0x40800000) => 0x3f000000     // rsq(+4.0) = +0.5
V_RSQ_F32(0x7f800000) => 0x00000000     // rsq(+INF) = +0

V_RCP_F64 47

Calculate the reciprocal of the double-precision float input using IEEE rules and store the result into a vector
register.

D0.f64 = 1.0 / S0.f64

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_RSQ_F64 49

Calculate the reciprocal of the square root of the double-precision float input using IEEE rules and store the
result into a vector register.
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D0.f64 = 1.0 / sqrt(S0.f64)

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_SQRT_F32 51

Calculate the square root of the single-precision float input using IEEE rules and store the result into a vector
register.

D0.f = sqrt(S0.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:

V_SQRT_F32(0xff800000) => 0xffc00000     // sqrt(-INF) = NAN
V_SQRT_F32(0x80000000) => 0x80000000     // sqrt(-0.0) = -0
V_SQRT_F32(0x00000000) => 0x00000000     // sqrt(+0.0) = +0
V_SQRT_F32(0x40800000) => 0x40000000     // sqrt(+4.0) = +2.0
V_SQRT_F32(0x7f800000) => 0x7f800000     // sqrt(+INF) = +INF

V_SQRT_F64 52

Calculate the square root of the double-precision float input using IEEE rules and store the result into a vector
register.

D0.f64 = sqrt(S0.f64)

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_SIN_F32 53

Calculate the trigonometric sine of a single-precision float value using IEEE rules and store the result into a
vector register. The operand is calculated by scaling the vector input by 2 PI.
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D0.f = 32'F(sin(64'F(S0.f) * 2.0 * PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_SIN_F32(0xff800000) => 0xffc00000     // sin(-INF) = NAN
V_SIN_F32(0xff7fffff) => 0x00000000     // -MaxFloat, finite
V_SIN_F32(0x80000000) => 0x80000000     // sin(-0.0) = -0
V_SIN_F32(0x3e800000) => 0x3f800000     // sin(0.25) = 1
V_SIN_F32(0x7f800000) => 0xffc00000     // sin(+INF) = NAN

V_COS_F32 54

Calculate the trigonometric cosine of a single-precision float value using IEEE rules and store the result into a
vector register. The operand is calculated by scaling the vector input by 2 PI.

D0.f = 32'F(cos(64'F(S0.f) * 2.0 * PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_COS_F32(0xff800000) => 0xffc00000     // cos(-INF) = NAN
V_COS_F32(0xff7fffff) => 0x3f800000     // -MaxFloat, finite
V_COS_F32(0x80000000) => 0x3f800000     // cos(-0.0) = 1
V_COS_F32(0x3e800000) => 0x00000000     // cos(0.25) = 0
V_COS_F32(0x7f800000) => 0xffc00000     // cos(+INF) = NAN

V_NOT_B32 55

Calculate bitwise negation on a vector input and store the result into a vector register.

D0.u = ~S0.u

Notes

Input and output modifiers not supported.
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V_BFREV_B32 56

Reverse the order of bits in a vector input and store the result into a vector register.

D0.u[31 : 0] = S0.u[0 : 31]

Notes

Input and output modifiers not supported.

V_CLZ_I32_U32 57

Count the number of leading "0" bits before the first "1" in a vector input and store the result into a vector
register. Store -1 if there are no "1" bits.

D0.i = -1;
// Set if no ones are found
for i in 0 : 31 do
    // Search from MSB
    if S0.u[31 - i] == 1'1U then
        D0.i = i;
        break
    endif
endfor

Notes

Compare with S_CLZ_I32_U32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CLZ_I32_U32(0x00000000) => 0xffffffff
V_CLZ_I32_U32(0x800000ff) => 0
V_CLZ_I32_U32(0x100000ff) => 3
V_CLZ_I32_U32(0x0000ffff) => 16
V_CLZ_I32_U32(0x00000001) => 31

V_CTZ_I32_B32 58

Count the number of trailing "0" bits before the first "1" in a vector input and store the result into a vector
register. Store -1 if there are no "1" bits in the input.

D0.i = -1;
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// Set if no ones are found
for i in 0 : 31 do
    // Search from LSB
    if S0.u[i] == 1'1U then
        D0.i = i;
        break
    endif
endfor

Notes

Compare with S_CTZ_I32_B32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CTZ_I32_B32(0x00000000) => 0xffffffff
V_CTZ_I32_B32(0xff000001) => 0
V_CTZ_I32_B32(0xff000008) => 3
V_CTZ_I32_B32(0xffff0000) => 16
V_CTZ_I32_B32(0x80000000) => 31

V_CLS_I32 59

Count the number of leading bits that are the same as the sign bit of a vector input and store the result into a
vector register. Store -1 if all input bits are the same.

D0.i = -1;
// Set if all bits are the same
for i in 1 : 31 do
    // Search from MSB
    if S0.i[31 - i] != S0.i[31] then
        D0.i = i;
        break
    endif
endfor

Notes

Compare with S_CLS_I32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CLS_I32(0x00000000) => 0xffffffff
V_CLS_I32(0x40000000) => 1
V_CLS_I32(0x80000000) => 1
V_CLS_I32(0x0fffffff) => 4
V_CLS_I32(0xffff0000) => 16
V_CLS_I32(0xfffffffe) => 31
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V_CLS_I32(0xffffffff) => 0xffffffff

V_FREXP_EXP_I32_F64 60

Extract the exponent of a double-precision float input and store the result as a signed 32-bit integer into a
vector register.

if ((S0.f64 == +INF) || (S0.f64 == -INF) || isNAN(S0.f64)) then
    D0.i = 0
else
    D0.i = exponent(S0.f64) - 1023 + 1
endif

Notes

This operation satisfies the invariant S0.f64 = significand * (2 ** exponent). See also V_FREXP_MANT_F64,
which returns the significand. See the C library function frexp() for more information.

V_FREXP_MANT_F64 61

Extract the binary significand, or mantissa, of a double-precision float input and store the result as a double-
precision float into a vector register.

if ((S0.f64 == +INF) || (S0.f64 == -INF) || isNAN(S0.f64)) then
    D0.f64 = S0.f64
else
    D0.f64 = mantissa(S0.f64)
endif

Notes

This operation satisfies the invariant S0.f64 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F64, which returns integer exponent. See the C library function
frexp() for more information.

V_FRACT_F64 62

Compute the fractional portion of a double-precision float input and store the result in floating point format
into a vector register.

D0.f64 = S0.f64 + -floor(S0.f64)
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Notes

0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

Obey round mode, result clamped to 0x3fefffffffffffff.

V_FREXP_EXP_I32_F32 63

Extract the exponent of a single-precision float input and store the result as a signed 32-bit integer into a vector
register.

if ((64'F(S0.f) == +INF) || (64'F(S0.f) == -INF) || isNAN(64'F(S0.f))) then
    D0.i = 0
else
    D0.i = exponent(S0.f) - 127 + 1
endif

Notes

This operation satisfies the invariant S0.f32 = significand * (2 ** exponent). See also V_FREXP_MANT_F32,
which returns the significand. See the C library function frexp() for more information.

V_FREXP_MANT_F32 64

Extract the binary significand, or mantissa, of a single-precision float input and store the result as a single-
precision float into a vector register.

if ((64'F(S0.f) == +INF) || (64'F(S0.f) == -INF) || isNAN(64'F(S0.f))) then
    D0.f = S0.f
else
    D0.f = mantissa(S0.f)
endif

Notes

This operation satisfies the invariant S0.f32 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F32, which returns integer exponent. See the C library function
frexp() for more information.

V_MOVRELD_B32 66
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Move to a relative destination address.

addr = DST.u;
// Raw value from instruction
addr += M0.u[31 : 0];
VGPR[laneId][addr].b = S0.b

Notes

Example: The following instruction sequence performs the move v15 <= v7:

    s_mov_b32 m0, 10
    v_movreld_b32 v5, v7

V_MOVRELS_B32 67

Move from a relative source address.

addr = SRC0.u;
// Raw value from instruction
addr += M0.u[31 : 0];
D0.b = VGPR[laneId][addr].b

Notes

Example: The following instruction sequence performs the move v5 <= v17:

    s_mov_b32 m0, 10
    v_movrels_b32 v5, v7

V_MOVRELSD_B32 68

Move from a relative source address to a relative destination address.

addrs = SRC0.u;
// Raw value from instruction
addrd = DST.u;
// Raw value from instruction
addrs += M0.u[31 : 0];
addrd += M0.u[31 : 0];
VGPR[laneId][addrd].b = VGPR[laneId][addrs].b

Notes
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Example: The following instruction sequence performs the move v15 <= v17:

    s_mov_b32 m0, 10
    v_movrelsd_b32 v5, v7

V_MOVRELSD_2_B32 72

Move from a relative source address to a relative destination address, with different relative offsets.

addrs = SRC0.u;
// Raw value from instruction
addrd = DST.u;
// Raw value from instruction
addrs += M0.u[9 : 0].u;
addrd += M0.u[25 : 16].u;
VGPR[laneId][addrd].b = VGPR[laneId][addrs].b

Notes

Example: The following instruction sequence performs the move v25 <= v17:

    s_mov_b32 m0, ((20 << 16) | 10)
    v_movrelsd_2_b32 v5, v7

V_CVT_F16_U16 80

Convert from an unsigned 16-bit integer input to an FP16 float and store the result into a vector register.

D0.f16 = u16_to_f16(S0.u16)

Notes

0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

V_CVT_F16_I16 81

Convert from a signed 16-bit integer input to an FP16 float and store the result into a vector register.

D0.f16 = i16_to_f16(S0.i16)
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Notes

0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

V_CVT_U16_F16 82

Convert from an FP16 float input to an unsigned 16-bit integer and store the result into a vector register.

D0.u16 = f16_to_u16(S0.f16)

Notes

1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion
is done with truncation.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_I16_F16 83

Convert from an FP16 float input to a signed 16-bit integer and store the result into a vector register.

D0.i16 = f16_to_i16(S0.f16)

Notes

1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion
is done with truncation.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_RCP_F16 84

Calculate the reciprocal of the half-precision float input using IEEE rules and store the result into a vector
register.

D0.f16 = 16'1.0 / S0.f16

Notes

0.51ULP accuracy.
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Functional examples:

V_RCP_F16(0xfc00) => 0x8000     // rcp(-INF) = -0
V_RCP_F16(0xc000) => 0xb800     // rcp(-2.0) = -0.5
V_RCP_F16(0x8000) => 0xfc00     // rcp(-0.0) = -INF
V_RCP_F16(0x0000) => 0x7c00     // rcp(+0.0) = +INF
V_RCP_F16(0x7c00) => 0x0000     // rcp(+INF) = +0

V_SQRT_F16 85

Calculate the square root of the half-precision float input using IEEE rules and store the result into a vector
register.

D0.f16 = sqrt(S0.f16)

Notes

0.51ULP accuracy, denormals are supported.

Functional examples:

V_SQRT_F16(0xfc00) => 0xfe00     // sqrt(-INF) = NAN
V_SQRT_F16(0x8000) => 0x8000     // sqrt(-0.0) = -0
V_SQRT_F16(0x0000) => 0x0000     // sqrt(+0.0) = +0
V_SQRT_F16(0x4400) => 0x4000     // sqrt(+4.0) = +2.0
V_SQRT_F16(0x7c00) => 0x7c00     // sqrt(+INF) = +INF

V_RSQ_F16 86

Calculate the reciprocal of the square root of the half-precision float input using IEEE rules and store the result
into a vector register.

D0.f16 = 16'1.0 / sqrt(S0.f16)

Notes

0.51ULP accuracy, denormals are supported.

Functional examples:

V_RSQ_F16(0xfc00) => 0xfe00     // rsq(-INF) = NAN
V_RSQ_F16(0x8000) => 0xfc00     // rsq(-0.0) = -INF
V_RSQ_F16(0x0000) => 0x7c00     // rsq(+0.0) = +INF
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V_RSQ_F16(0x4400) => 0x3800     // rsq(+4.0) = +0.5
V_RSQ_F16(0x7c00) => 0x0000     // rsq(+INF) = +0

V_LOG_F16 87

Calculate the base 2 logarithm of the half-precision float input and store the result into a vector register.

D0.f16 = log2(S0.f16)

Notes

0.51ULP accuracy, denormals are supported.

Functional examples:

V_LOG_F16(0xfc00) => 0xfe00     // log(-INF) = NAN
V_LOG_F16(0xbc00) => 0xfe00     // log(-1.0) = NAN
V_LOG_F16(0x8000) => 0xfc00     // log(-0.0) = -INF
V_LOG_F16(0x0000) => 0xfc00     // log(+0.0) = -INF
V_LOG_F16(0x3c00) => 0x0000     // log(+1.0) = 0
V_LOG_F16(0x7c00) => 0x7c00     // log(+INF) = +INF

V_EXP_F16 88

Calculate 2 raised to the power of the half-precision float input and store the result into a vector register.

D0.f16 = pow(16'2.0, S0.f16)

Notes

0.51ULP accuracy, denormals are supported.

Functional examples:

V_EXP_F16(0xfc00) => 0x0000     // exp(-INF) = 0
V_EXP_F16(0x8000) => 0x3c00     // exp(-0.0) = 1
V_EXP_F16(0x7c00) => 0x7c00     // exp(+INF) = +INF

V_FREXP_MANT_F16 89

Extract the binary significand, or mantissa, of an FP16 float input and store the result as an FP16 float into a
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vector register.

if ((64'F(S0.f16) == +INF) || (64'F(S0.f16) == -INF) || isNAN(64'F(S0.f16))) then
    D0.f16 = S0.f16
else
    D0.f16 = mantissa(S0.f16)
endif

Notes

This operation satisfies the invariant S0.f16 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F16, which returns integer exponent. See the C library function
frexp() for more information.

V_FREXP_EXP_I16_F16 90

Extract the exponent of an FP16 float input and store the result as a signed 16-bit integer into a vector register.

if ((64'F(S0.f16) == +INF) || (64'F(S0.f16) == -INF) || isNAN(64'F(S0.f16))) then
    D0.i16 = 16'0
else
    D0.i16 = 16'I(exponent(S0.f16) - 15 + 1)
endif

Notes

This operation satisfies the invariant S0.f16 = significand * (2 ** exponent). See also V_FREXP_MANT_F16,
which returns the significand. See the C library function frexp() for more information.

V_FLOOR_F16 91

Round the half-precision float input down to previous integer and store the result in floating point format into
a vector register.

D0.f16 = trunc(S0.f16);
if ((S0.f16 < 16'0.0) && (S0.f16 != D0.f16)) then
    D0.f16 += -16'1.0
endif

V_CEIL_F16 92

Round the half-precision float input up to next integer and store the result in floating point format into a vector
register.
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D0.f16 = trunc(S0.f16);
if ((S0.f16 > 16'0.0) && (S0.f16 != D0.f16)) then
    D0.f16 += 16'1.0
endif

V_TRUNC_F16 93

Compute the integer part of an FP16 float input with round-toward-zero semantics and store the result in
floating point format into a vector register.

D0.f16 = trunc(S0.f16)

V_RNDNE_F16 94

Round the half-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

D0.f16 = floor(S0.f16 + 16'0.5);
if (isEven(64'F(floor(S0.f16))) && (fract(S0.f16) == 16'0.5)) then
    D0.f16 -= 16'1.0
endif

V_FRACT_F16 95

Compute the fractional portion of an FP16 float input and store the result in floating point format into a vector
register.

D0.f16 = S0.f16 + -floor(S0.f16)

Notes

0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

V_SIN_F16 96
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Calculate the trigonometric sine of an FP16 float value using IEEE rules and store the result into a vector
register. The operand is calculated by scaling the vector input by 2 PI.

D0.f16 = 16'F(sin(64'F(S0.f16) * 2.0 * PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_SIN_F16(0xfc00) => 0xfe00     // sin(-INF) = NAN
V_SIN_F16(0xfbff) => 0x0000     // Most negative finite FP16
V_SIN_F16(0x8000) => 0x8000     // sin(-0.0) = -0
V_SIN_F16(0x3400) => 0x3c00     // sin(0.25) = 1
V_SIN_F16(0x7bff) => 0x0000     // Most positive finite FP16
V_SIN_F16(0x7c00) => 0xfe00     // sin(+INF) = NAN

V_COS_F16 97

Calculate the trigonometric cosine of an FP16 float value using IEEE rules and store the result into a vector
register. The operand is calculated by scaling the vector input by 2 PI.

D0.f16 = 16'F(cos(64'F(S0.f16) * 2.0 * PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_COS_F16(0xfc00) => 0xfe00     // cos(-INF) = NAN
V_COS_F16(0xfbff) => 0x3c00     // Most negative finite FP16
V_COS_F16(0x8000) => 0x3c00     // cos(-0.0) = 1
V_COS_F16(0x3400) => 0x0000     // cos(0.25) = 0
V_COS_F16(0x7bff) => 0x3c00     // Most positive finite FP16
V_COS_F16(0x7c00) => 0xfe00     // cos(+INF) = NAN

V_SAT_PK_U8_I16 98

Given two 16-bit unsigned integer inputs, saturate each input over an 8-bit unsigned range, pack the resulting
values into a 16-bit word and store the result into a vector register.
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SAT8 = lambda(n) (
    if n.i <= 0 then
        return 8'0U
    elsif n >= 16'I(0xff) then
        return 8'255U
    else
        return n[7 : 0].u8
    endif);
D0.b16 = { SAT8(S0[31 : 16].i16), SAT8(S0[15 : 0].i16) }

Notes

Used for 4x16bit data packed as 4x8bit data.

V_CVT_NORM_I16_F16 99

Convert from an FP16 float input to a signed normalized short and store the result into a vector register.

D0.i16 = f16_to_snorm(S0.f16)

Notes

0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.

V_CVT_NORM_U16_F16 100

Convert from an FP16 float input to an unsigned normalized short and store the result into a vector register.

D0.u16 = f16_to_unorm(S0.f16)

Notes

0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.

V_SWAP_B32 101

Swap the values in two vector registers.

tmp = D0.b;
D0.b = S0.b;
S0.b = tmp
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Notes

Input and output modifiers not supported; this is an untyped operation.

V_SWAP_B16 102

Swap the values in two vector registers.

tmp = D0.b16;
D0.b16 = S0.b16;
S0.b16 = tmp

Notes

Input and output modifiers not supported; this is an untyped operation.

V_PERMLANE64_B32 103

Perform a specific permutation across lanes where the high half and low half of a wave64 are swapped.
Performs no operation in wave32 mode.

declare tmp : 32'B[64];
declare lane : 32'U;
if WAVE32 then
    // Supported in wave64 ONLY
    v_nop()
else
    for lane in 0U : 63U do
        // Copy original S0 in case D==S0
        tmp[lane] = VGPR[lane][SRC0.u]
    endfor;
    for lane in 0U : 63U do
        altlane = { ~lane[5], lane[4 : 0] };
        // 0<->32, ..., 31<->63
        if EXEC[lane].u1 then
            VGPR[lane][VDST.u] = tmp[altlane]
        endif
    endfor
endif

Notes

In wave32 mode this opcode is translated to V_NOP and performs no writes.

In wave64 the EXEC mask of the destination lane is used as the read mask for the alternate lane; as a result this
opcode may read values from disabled lanes.

The source must be a VGPR and SVGPRs are not allowed for this opcode.
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ABS, NEG and OMOD modifiers should all be zeroed for this instruction.

V_SWAPREL_B32 104

Swap values of two operands. The two addresses are relatively indexed using M0.

addrs = SRC0.u;
// Raw value from instruction
addrd = DST.u;
// Raw value from instruction
addrs += M0.u[9 : 0].u;
addrd += M0.u[25 : 16].u;
tmp = VGPR[laneId][addrd].b;
VGPR[laneId][addrd].b = VGPR[laneId][addrs].b;
VGPR[laneId][addrs].b = tmp

Notes

Input and output modifiers not supported; this is an untyped operation.

Example: The following instruction sequence swaps v25 and v17:

    s_mov_b32 m0, ((20 << 16) | 10)
    v_swaprel_b32 v5, v7

V_NOT_B16 105

Calculate bitwise negation on a vector input and store the result into a vector register.

D0.u16 = ~S0.u16

Notes

Input and output modifiers not supported.

V_CVT_I32_I16 106

Convert from an 16-bit signed integer to a 32-bit signed integer, sign extending as needed.

D0.i = 32'I(signext(S0.i16))

Notes
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To convert in the other direction (from 32-bit to 16-bit integer) use V_MOV_B16.

V_CVT_U32_U16 107

Convert from an 16-bit unsigned integer to a 32-bit unsigned integer, zero extending as needed.

D0 = { 16'0, S0.u16 }

Notes

To convert in the other direction (from 32-bit to 16-bit integer) use V_MOV_B16.

16.8.1. VOP1 using VOP3 encoding

Instructions in this format may also be encoded as VOP3. VOP3 allows access to the extra control bits (e.g. ABS,
OMOD) at the expense of a larger instruction word. The VOP3 opcode is: VOP2 opcode + 0x180.

"RDNA3" Instruction Set Architecture

16.8. VOP1 Instructions 294 of 600



16.9. VOPC Instructions
The bitfield map for VOPC is:

    SRC0  = First operand for instruction.
    VSRC1 = Second operand for instruction.
    OP    = Instruction opcode.
    All VOPC instructions can alternatively be encoded in the VOP3 format.

Compare instructions perform the same compare operation on each lane (work-Item or thread) using that
lane’s private data, and producing a 1 bit result per lane into VCC or EXEC.

Instructions in this format may use a 32-bit literal constant that occurs immediately after the instruction.

Most compare instructions fall into one of two categories:

• Those which can use one of 16 compare operations (floating point types). "{COMPF}"
• Those which can use one of 8 compare operations (integer types). "{COMPI}"

The opcode number is such that for these the opcode number can be calculated from a base opcode number
for the data type, plus an offset for the specific compare operation.

Table 112. Float Compare Operations

Compare Operation Opcode Offset Description
F 0 D.u = 0
LT 1 D.u = (S0 < S1)
EQ 2 D.u = (S0 == S1)
LE 3 D.u = (S0 <= S1)
GT 4 D.u = (S0 > S1)
LG 5 D.u = (S0 <> S1)
GE 6 D.u = (S0 >= S1)
O 7 D.u = (!isNaN(S0) && !isNaN(S1))
U 8 D.u = (!isNaN(S0) || !isNaN(S1))
NGE 9 D.u = !(S0 >= S1)
NLG 10 D.u = !(S0 <> S1)
NGT 11 D.u = !(S0 > S1)
NLE 12 D.u = !(S0 <= S1)
NEQ 13 D.u = !(S0 == S1)
NLT 14 D.u = !(S0 < S1)
TRU 15 D.u = 1

Table 113. Instructions with Sixteen Compare Operations

Instruction Description Hex Range
V_CMP_{COMPF}_F16 16-bit float compare. Writes VCC/SGPR. 0x20 to 0x2F
V_CMPX_{COMPF}_F16 16-bit float compare. Writes EXEC. 0x30 to 0x3F
V_CMP_{COMPF}_F32 32-bit float compare. Writes VCC/SGPR. 0x40 to 0x4F
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Instruction Description Hex Range
V_CMPX_{COMPF}_F32 32-bit float compare. Writes EXEC. 0x50 to 0x5F
V_CMP_{COMPF}_F64 64-bit float compare. Writes VCC/SGPR. 0x60 to 0x6F
V_CMPX_{COMPF}_F64 64-bit float compare. Writes EXEC. 0x70 to 0x7F

Table 114. Integer Compare Operations

Compare Operation Opcode Offset Description
F 0 D.u = 0
LT 1 D.u = (S0 < S1)
EQ 2 D.u = (S0 == S1)
LE 3 D.u = (S0 <= S1)
GT 4 D.u = (S0 > S1)
LG 5 D.u = (S0 <> S1)
GE 6 D.u = (S0 >= S1)
TRU 7 D.u = 1

Table 115. Instructions with Eight Compare Operations

Instruction Description Hex Range
V_CMP_{COMPI}_I16 16-bit signed integer compare. Writes VCC/SGPR. 0xA0 - 0xA7
V_CMP_{COMPI}_U16 16-bit signed integer compare. Writes VCC/SGPR. 0xA8 - 0xAF
V_CMPX_{COMPI}_I16 16-bit unsigned integer compare. Writes EXEC. 0xB0 - 0xB7
V_CMPX_{COMPI}_U16 16-bit unsigned integer compare. Writes EXEC. 0xB8 - 0xBF
V_CMP_{COMPI}_I32 32-bit signed integer compare. Writes VCC/SGPR. 0xC0 - 0xC7
V_CMP_{COMPI}_U32 32-bit signed integer compare. Writes VCC/SGPR. 0xC8 - 0xCF
V_CMPX_{COMPI}_I32 32-bit unsigned integer compare. Writes EXEC. 0xD0 - 0xD7
V_CMPX_{COMPI}_U32 32-bit unsigned integer compare. Writes EXEC. 0xD8 - 0xDF
V_CMP_{COMPI}_I64 64-bit signed integer compare. Writes VCC/SGPR. 0xE0 - 0xE7
V_CMP_{COMPI}_U64 64-bit signed integer compare. Writes VCC/SGPR. 0xE8 - 0xEF
V_CMPX_{COMPI}_I64 64-bit unsigned integer compare. Writes EXEC. 0xF0 - 0xF7
V_CMPX_{COMPI}_U64 64-bit unsigned integer compare. Writes EXEC. 0xF8 - 0xFF

V_CMP_F_F16 0

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_F16 1

Return 1 iff A less than B.
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D0.u64[laneId] = S0.f16 < S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_F16 2

Return 1 iff A equal to B.

D0.u64[laneId] = S0.f16 == S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_F16 3

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.f16 <= S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_F16 4

Return 1 iff A greater than B.

D0.u64[laneId] = S0.f16 > S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_LG_F16 5

Return 1 iff A less than or greater than B.

D0.u64[laneId] = S0.f16 <> S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_F16 6

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.f16 >= S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_O_F16 7

Return 1 iff A orderable with B.

D0.u64[laneId] = (!isNAN(64'F(S0.f16)) && !isNAN(64'F(S1.f16)));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_U_F16 8

Return 1 iff A not orderable with B.

D0.u64[laneId] = (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)));
// D0 = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGE_F16 9

Return 1 iff A not greater than or equal to B.

D0.u64[laneId] = !(S0.f16 >= S1.f16);
// With NAN inputs this is not the same operation as <
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLG_F16 10

Return 1 iff A not less than or greater than B.

D0.u64[laneId] = !(S0.f16 <> S1.f16);
// With NAN inputs this is not the same operation as ==
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGT_F16 11

Return 1 iff A not greater than B.

D0.u64[laneId] = !(S0.f16 > S1.f16);
// With NAN inputs this is not the same operation as <=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLE_F16 12

Return 1 iff A not less than or equal to B.
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D0.u64[laneId] = !(S0.f16 <= S1.f16);
// With NAN inputs this is not the same operation as >
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NEQ_F16 13

Return 1 iff A not equal to B.

D0.u64[laneId] = !(S0.f16 == S1.f16);
// With NAN inputs this is not the same operation as !=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLT_F16 14

Return 1 iff A not less than B.

D0.u64[laneId] = !(S0.f16 < S1.f16);
// With NAN inputs this is not the same operation as >=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_F16 15

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_F_F32 16

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_F32 17

Return 1 iff A less than B.

D0.u64[laneId] = S0.f < S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_F32 18

Return 1 iff A equal to B.

D0.u64[laneId] = S0.f == S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_F32 19

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.f <= S1.f;
// D0 = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_F32 20

Return 1 iff A greater than B.

D0.u64[laneId] = S0.f > S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LG_F32 21

Return 1 iff A less than or greater than B.

D0.u64[laneId] = S0.f <> S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_F32 22

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.f >= S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_O_F32 23

Return 1 iff A orderable with B.
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D0.u64[laneId] = (!isNAN(64'F(S0.f)) && !isNAN(64'F(S1.f)));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_U_F32 24

Return 1 iff A not orderable with B.

D0.u64[laneId] = (isNAN(64'F(S0.f)) || isNAN(64'F(S1.f)));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGE_F32 25

Return 1 iff A not greater than or equal to B.

D0.u64[laneId] = !(S0.f >= S1.f);
// With NAN inputs this is not the same operation as <
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLG_F32 26

Return 1 iff A not less than or greater than B.

D0.u64[laneId] = !(S0.f <> S1.f);
// With NAN inputs this is not the same operation as ==
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_NGT_F32 27

Return 1 iff A not greater than B.

D0.u64[laneId] = !(S0.f > S1.f);
// With NAN inputs this is not the same operation as <=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLE_F32 28

Return 1 iff A not less than or equal to B.

D0.u64[laneId] = !(S0.f <= S1.f);
// With NAN inputs this is not the same operation as >
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NEQ_F32 29

Return 1 iff A not equal to B.

D0.u64[laneId] = !(S0.f == S1.f);
// With NAN inputs this is not the same operation as !=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLT_F32 30

Return 1 iff A not less than B.

D0.u64[laneId] = !(S0.f < S1.f);
// With NAN inputs this is not the same operation as >=
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// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_F32 31

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_F64 32

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_F64 33

Return 1 iff A less than B.

D0.u64[laneId] = S0.f64 < S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_F64 34
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Return 1 iff A equal to B.

D0.u64[laneId] = S0.f64 == S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_F64 35

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.f64 <= S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_F64 36

Return 1 iff A greater than B.

D0.u64[laneId] = S0.f64 > S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LG_F64 37

Return 1 iff A less than or greater than B.

D0.u64[laneId] = S0.f64 <> S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_GE_F64 38

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.f64 >= S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_O_F64 39

Return 1 iff A orderable with B.

D0.u64[laneId] = (!isNAN(S0.f64) && !isNAN(S1.f64));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_U_F64 40

Return 1 iff A not orderable with B.

D0.u64[laneId] = (isNAN(S0.f64) || isNAN(S1.f64));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGE_F64 41

Return 1 iff A not greater than or equal to B.

D0.u64[laneId] = !(S0.f64 >= S1.f64);
// With NAN inputs this is not the same operation as <
// D0 = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLG_F64 42

Return 1 iff A not less than or greater than B.

D0.u64[laneId] = !(S0.f64 <> S1.f64);
// With NAN inputs this is not the same operation as ==
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGT_F64 43

Return 1 iff A not greater than B.

D0.u64[laneId] = !(S0.f64 > S1.f64);
// With NAN inputs this is not the same operation as <=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLE_F64 44

Return 1 iff A not less than or equal to B.

D0.u64[laneId] = !(S0.f64 <= S1.f64);
// With NAN inputs this is not the same operation as >
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NEQ_F64 45
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Return 1 iff A not equal to B.

D0.u64[laneId] = !(S0.f64 == S1.f64);
// With NAN inputs this is not the same operation as !=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLT_F64 46

Return 1 iff A not less than B.

D0.u64[laneId] = !(S0.f64 < S1.f64);
// With NAN inputs this is not the same operation as >=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_F64 47

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_I16 49

Return 1 iff A less than B.

D0.u64[laneId] = S0.i16 < S1.i16;
// D0 = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_I16 50

Return 1 iff A equal to B.

D0.u64[laneId] = S0.i16 == S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_I16 51

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.i16 <= S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_I16 52

Return 1 iff A greater than B.

D0.u64[laneId] = S0.i16 > S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_I16 53

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.i16 <> S1.i16;
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// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_I16 54

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.i16 >= S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_U16 57

Return 1 iff A less than B.

D0.u64[laneId] = S0.u16 < S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_U16 58

Return 1 iff A equal to B.

D0.u64[laneId] = S0.u16 == S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_U16 59
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Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.u16 <= S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_U16 60

Return 1 iff A greater than B.

D0.u64[laneId] = S0.u16 > S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_U16 61

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.u16 <> S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_U16 62

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.u16 >= S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_F_I32 64

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_I32 65

Return 1 iff A less than B.

D0.u64[laneId] = S0.i < S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_I32 66

Return 1 iff A equal to B.

D0.u64[laneId] = S0.i == S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_I32 67

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.i <= S1.i;
// D0 = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_I32 68

Return 1 iff A greater than B.

D0.u64[laneId] = S0.i > S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_I32 69

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.i <> S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_I32 70

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.i >= S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_I32 71

Return 1.

"RDNA3" Instruction Set Architecture

16.9. VOPC Instructions 314 of 600



D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_U32 72

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_U32 73

Return 1 iff A less than B.

D0.u64[laneId] = S0.u < S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_U32 74

Return 1 iff A equal to B.

D0.u64[laneId] = S0.u == S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_LE_U32 75

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.u <= S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_U32 76

Return 1 iff A greater than B.

D0.u64[laneId] = S0.u > S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_U32 77

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.u <> S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_U32 78

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.u >= S1.u;
// D0 = VCC in VOPC encoding.

Notes

"RDNA3" Instruction Set Architecture

16.9. VOPC Instructions 316 of 600



Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_U32 79

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_I64 80

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_I64 81

Return 1 iff A less than B.

D0.u64[laneId] = S0.i64 < S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_I64 82

Return 1 iff A equal to B.

D0.u64[laneId] = S0.i64 == S1.i64;
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// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_I64 83

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.i64 <= S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_I64 84

Return 1 iff A greater than B.

D0.u64[laneId] = S0.i64 > S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_I64 85

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.i64 <> S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_I64 86
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Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.i64 >= S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_I64 87

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_U64 88

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_U64 89

Return 1 iff A less than B.

D0.u64[laneId] = S0.u64 < S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_EQ_U64 90

Return 1 iff A equal to B.

D0.u64[laneId] = S0.u64 == S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_U64 91

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.u64 <= S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_U64 92

Return 1 iff A greater than B.

D0.u64[laneId] = S0.u64 > S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_U64 93

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.u64 <> S1.u64;
// D0 = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_U64 94

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.u64 >= S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_U64 95

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_CLASS_F16 125

IEEE numeric class function specified in S1.u, performed on S0.f16.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.
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declare result : 1'U;
if isSignalNAN(64'F(S0.f16)) then
    result = S1.u[0]
elsif isQuietNAN(64'F(S0.f16)) then
    result = S1.u[1]
elsif exponent(S0.f16) == 31 then
    // +-INF
    result = S1.u[sign(S0.f16) ? 2 : 9]
elsif exponent(S0.f16) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f16) ? 3 : 8]
elsif 64'F(abs(S0.f16)) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f16) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f16) ? 5 : 6]
endif;
D0.u64[laneId] = result;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_CLASS_F32 126

IEEE numeric class function specified in S1.u, performed on S0.f.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S0.f)) then
    result = S1.u[0]
elsif isQuietNAN(64'F(S0.f)) then
    result = S1.u[1]
elsif exponent(S0.f) == 255 then
    // +-INF
    result = S1.u[sign(S0.f) ? 2 : 9]
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elsif exponent(S0.f) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f) ? 3 : 8]
elsif 64'F(abs(S0.f)) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f) ? 5 : 6]
endif;
D0.u64[laneId] = result;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_CLASS_F64 127

IEEE numeric class function specified in S1.u, performed on S0.f64.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(S0.f64) then
    result = S1.u[0]
elsif isQuietNAN(S0.f64) then
    result = S1.u[1]
elsif exponent(S0.f64) == 1023 then
    // +-INF
    result = S1.u[sign(S0.f64) ? 2 : 9]
elsif exponent(S0.f64) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f64) ? 3 : 8]
elsif abs(S0.f64) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f64) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f64) ? 5 : 6]
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endif;
D0.u64[laneId] = result;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F16 128

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F16 129

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.f16 < S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_F16 130

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.f16 == S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_F16 131
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Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.f16 <= S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F16 132

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.f16 > S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F16 133

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f16 <> S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_F16 134

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f16 >= S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_O_F16 135
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Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(64'F(S0.f16)) && !isNAN(64'F(S1.f16)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_F16 136

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F16 137

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S0.f16 >= S1.f16);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F16 138

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S0.f16 <> S1.f16);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMPX_NGT_F16 139

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S0.f16 > S1.f16);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLE_F16 140

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S0.f16 <= S1.f16);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NEQ_F16 141

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S0.f16 == S1.f16);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLT_F16 142

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S0.f16 < S1.f16);
// With NAN inputs this is not the same operation as >=

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_F16 143

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F32 144

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F32 145

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.f < S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_F32 146

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.f == S1.f

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_F32 147

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.f <= S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F32 148

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.f > S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F32 149

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f <> S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_F32 150

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f >= S1.f

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_O_F32 151

Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(64'F(S0.f)) && !isNAN(64'F(S1.f)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_F32 152

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(64'F(S0.f)) || isNAN(64'F(S1.f)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F32 153

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S0.f >= S1.f);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F32 154

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S0.f <> S1.f);
// With NAN inputs this is not the same operation as ==
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGT_F32 155

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S0.f > S1.f);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLE_F32 156

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S0.f <= S1.f);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NEQ_F32 157

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S0.f == S1.f);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLT_F32 158

Return 1 iff A not less than B.
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EXEC.u64[laneId] = !(S0.f < S1.f);
// With NAN inputs this is not the same operation as >=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_F32 159

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F64 160

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F64 161

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.f64 < S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_F64 162
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Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.f64 == S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_F64 163

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.f64 <= S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F64 164

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.f64 > S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F64 165

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f64 <> S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_F64 166
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Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f64 >= S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_O_F64 167

Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(S0.f64) && !isNAN(S1.f64))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_F64 168

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(S0.f64) || isNAN(S1.f64))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F64 169

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S0.f64 >= S1.f64);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMPX_NLG_F64 170

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S0.f64 <> S1.f64);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGT_F64 171

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S0.f64 > S1.f64);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLE_F64 172

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S0.f64 <= S1.f64);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NEQ_F64 173

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S0.f64 == S1.f64);
// With NAN inputs this is not the same operation as !=

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLT_F64 174

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S0.f64 < S1.f64);
// With NAN inputs this is not the same operation as >=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_F64 175

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_I16 177

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.i16 < S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_I16 178

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.i16 == S1.i16

"RDNA3" Instruction Set Architecture

16.9. VOPC Instructions 336 of 600



Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I16 179

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.i16 <= S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I16 180

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.i16 > S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_I16 181

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i16 <> S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_I16 182

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i16 >= S1.i16
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_U16 185

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.u16 < S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_U16 186

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.u16 == S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U16 187

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.u16 <= S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_U16 188

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.u16 > S1.u16
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_U16 189

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.u16 <> S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_U16 190

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.u16 >= S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_I32 192

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_I32 193

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.i < S1.i

"RDNA3" Instruction Set Architecture

16.9. VOPC Instructions 339 of 600



Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_I32 194

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.i == S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I32 195

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.i <= S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I32 196

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.i > S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_I32 197

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i <> S1.i
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_I32 198

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i >= S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_I32 199

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_U32 200

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_U32 201

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.u < S1.u
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_U32 202

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.u == S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U32 203

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.u <= S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_U32 204

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.u > S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_U32 205

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.u <> S1.u
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_U32 206

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.u >= S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_U32 207

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_I64 208

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_I64 209

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.i64 < S1.i64
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_I64 210

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.i64 == S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I64 211

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.i64 <= S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I64 212

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.i64 > S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_I64 213

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i64 <> S1.i64
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_I64 214

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i64 >= S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_I64 215

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_U64 216

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_U64 217

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.u64 < S1.u64
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_U64 218

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.u64 == S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U64 219

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.u64 <= S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_U64 220

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.u64 > S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_U64 221

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.u64 <> S1.u64
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_U64 222

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.u64 >= S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_U64 223

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_CLASS_F16 253

IEEE numeric class function specified in S1.u, performed on S0.f16.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
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if isSignalNAN(64'F(S0.f16)) then
    result = S1.u[0]
elsif isQuietNAN(64'F(S0.f16)) then
    result = S1.u[1]
elsif exponent(S0.f16) == 31 then
    // +-INF
    result = S1.u[sign(S0.f16) ? 2 : 9]
elsif exponent(S0.f16) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f16) ? 3 : 8]
elsif 64'F(abs(S0.f16)) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f16) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f16) ? 5 : 6]
endif;
EXEC.u64[laneId] = result

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_CLASS_F32 254

IEEE numeric class function specified in S1.u, performed on S0.f.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S0.f)) then
    result = S1.u[0]
elsif isQuietNAN(64'F(S0.f)) then
    result = S1.u[1]
elsif exponent(S0.f) == 255 then
    // +-INF
    result = S1.u[sign(S0.f) ? 2 : 9]
elsif exponent(S0.f) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f) ? 3 : 8]
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elsif 64'F(abs(S0.f)) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f) ? 5 : 6]
endif;
EXEC.u64[laneId] = result

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_CLASS_F64 255

IEEE numeric class function specified in S1.u, performed on S0.f64.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(S0.f64) then
    result = S1.u[0]
elsif isQuietNAN(S0.f64) then
    result = S1.u[1]
elsif exponent(S0.f64) == 1023 then
    // +-INF
    result = S1.u[sign(S0.f64) ? 2 : 9]
elsif exponent(S0.f64) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f64) ? 3 : 8]
elsif abs(S0.f64) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f64) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f64) ? 5 : 6]
endif;
EXEC.u64[laneId] = result
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

16.9.1. VOPC using VOP3 encoding

Instructions in this format may also be encoded as VOP3. VOP3 allows access to the extra control bits (e.g. ABS,
OMOD) at the expense of a larger instruction word. The VOP3 opcode is: VOP2 opcode + 0x000.

When the CLAMP microcode bit is set to 1, these compare instructions signal an exception when either of the
inputs is NaN. When CLAMP is set to zero, NaN does not signal an exception. The second eight VOPC
instructions have {OP8} embedded in them. This refers to each of the compare operations listed below.

  VDST   = Destination for instruction in the VGPR.
  ABS    = Floating-point absolute value.
  CLMP   = Clamp output.
  OP     = Instruction opcode.
  SRC0   = First operand for instruction.
  SRC1   = Second operand for instruction.
  SRC2   = Third operand for instruction. Unused in VOPC instructions.
  OMOD   = Output modifier for instruction. Unused in VOPC instructions.
  NEG    = Floating-point negation.
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16.10. VOP3P Instructions

V_PK_MAD_I16 0

Packed multiply-add on signed shorts.

D0[31 : 16].i16 = S0[31 : 16].i16 * S1[31 : 16].i16 + S2[31 : 16].i16;
D0[15 : 0].i16 = S0[15 : 0].i16 * S1[15 : 0].i16 + S2[15 : 0].i16

V_PK_MUL_LO_U16 1

Packed multiply on unsigned shorts.

D0[31 : 16].u16 = S0[31 : 16].u16 * S1[31 : 16].u16;
D0[15 : 0].u16 = S0[15 : 0].u16 * S1[15 : 0].u16

V_PK_ADD_I16 2

Packed addition on signed shorts.

D0[31 : 16].i16 = S0[31 : 16].i16 + S1[31 : 16].i16;
D0[15 : 0].i16 = S0[15 : 0].i16 + S1[15 : 0].i16

V_PK_SUB_I16 3

Packed subtraction on signed shorts. The second operand is subtracted from the first.

D0[31 : 16].i16 = S0[31 : 16].i16 - S1[31 : 16].i16;
D0[15 : 0].i16 = S0[15 : 0].i16 - S1[15 : 0].i16

V_PK_LSHLREV_B16 4

Packed logical shift left. The shift count is in the first operand.
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D0[31 : 16].u16 = (S1[31 : 16].u16 << S0.u[19 : 16].u);
D0[15 : 0].u16 = (S1[15 : 0].u16 << S0.u[3 : 0].u)

V_PK_LSHRREV_B16 5

Packed logical shift right. The shift count is in the first operand.

D0[31 : 16].u16 = (S1[31 : 16].u16 >> S0.u[19 : 16].u);
D0[15 : 0].u16 = (S1[15 : 0].u16 >> S0.u[3 : 0].u)

V_PK_ASHRREV_I16 6

Packed arithmetic shift right (preserve sign bit). The shift count is in the first operand.

D0[31 : 16].i16 = (S1[31 : 16].i16 >> S0.u[19 : 16].u);
D0[15 : 0].i16 = (S1[15 : 0].i16 >> S0.u[3 : 0].u)

V_PK_MAX_I16 7

Packed maximum of signed shorts.

D0[31 : 16].i16 = S0[31 : 16].i16 >= S1[31 : 16].i16 ? S0[31 : 16].i16 : S1[31 : 16].i16;
D0[15 : 0].i16 = S0[15 : 0].i16 >= S1[15 : 0].i16 ? S0[15 : 0].i16 : S1[15 : 0].i16

V_PK_MIN_I16 8

Packed minimum of signed shorts.

D0[31 : 16].i16 = S0[31 : 16].i16 < S1[31 : 16].i16 ? S0[31 : 16].i16 : S1[31 : 16].i16;
D0[15 : 0].i16 = S0[15 : 0].i16 < S1[15 : 0].i16 ? S0[15 : 0].i16 : S1[15 : 0].i16

V_PK_MAD_U16 9

Packed multiply-add on unsigned shorts.

"RDNA3" Instruction Set Architecture

16.10. VOP3P Instructions 352 of 600



D0[31 : 16].u16 = S0[31 : 16].u16 * S1[31 : 16].u16 + S2[31 : 16].u16;
D0[15 : 0].u16 = S0[15 : 0].u16 * S1[15 : 0].u16 + S2[15 : 0].u16

V_PK_ADD_U16 10

Packed addition on unsigned shorts.

D0[31 : 16].u16 = S0[31 : 16].u16 + S1[31 : 16].u16;
D0[15 : 0].u16 = S0[15 : 0].u16 + S1[15 : 0].u16

V_PK_SUB_U16 11

Packed subtraction on unsigned shorts. The second operand is subtracted from the first.

D0[31 : 16].u16 = S0[31 : 16].u16 - S1[31 : 16].u16;
D0[15 : 0].u16 = S0[15 : 0].u16 - S1[15 : 0].u16

V_PK_MAX_U16 12

Packed maximum of unsigned shorts.

D0[31 : 16].u16 = S0[31 : 16].u16 >= S1[31 : 16].u16 ? S0[31 : 16].u16 : S1[31 : 16].u16;
D0[15 : 0].u16 = S0[15 : 0].u16 >= S1[15 : 0].u16 ? S0[15 : 0].u16 : S1[15 : 0].u16

V_PK_MIN_U16 13

Packed minimum of unsigned shorts.

D0[31 : 16].u16 = S0[31 : 16].u16 < S1[31 : 16].u16 ? S0[31 : 16].u16 : S1[31 : 16].u16;
D0[15 : 0].u16 = S0[15 : 0].u16 < S1[15 : 0].u16 ? S0[15 : 0].u16 : S1[15 : 0].u16

V_PK_FMA_F16 14

Packed fused-multiply-add of FP16 values.
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D0[31 : 16].f16 = fma(S0[31 : 16].f16, S1[31 : 16].f16, S2[31 : 16].f16);
D0[15 : 0].f16 = fma(S0[15 : 0].f16, S1[15 : 0].f16, S2[15 : 0].f16)

V_PK_ADD_F16 15

Packed addition of FP16 values.

D0[31 : 16].f16 = S0[31 : 16].f16 + S1[31 : 16].f16;
D0[15 : 0].f16 = S0[15 : 0].f16 + S1[15 : 0].f16

V_PK_MUL_F16 16

Packed multiply of FP16 values.

D0[31 : 16].f16 = S0[31 : 16].f16 * S1[31 : 16].f16;
D0[15 : 0].f16 = S0[15 : 0].f16 * S1[15 : 0].f16

V_PK_MIN_F16 17

Packed minimum of FP16 values.

D0[31 : 16].f16 = v_min_f16(S0[31 : 16].f16, S1[31 : 16].f16);
D0[15 : 0].f16 = v_min_f16(S0[15 : 0].f16, S1[15 : 0].f16)

V_PK_MAX_F16 18

Packed maximum of FP16 values.

D0[31 : 16].f16 = v_max_f16(S0[31 : 16].f16, S1[31 : 16].f16);
D0[15 : 0].f16 = v_max_f16(S0[15 : 0].f16, S1[15 : 0].f16)

V_DOT2_F32_F16 19

Dot product of packed FP16 values.
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tmp = 32'F(S0[15 : 0].f16) * 32'F(S1[15 : 0].f16);
tmp += 32'F(S0[31 : 16].f16) * 32'F(S1[31 : 16].f16);
tmp += S2.f;
D0.f = tmp

V_DOT4_I32_IU8 22

Dot product of signed or unsigned bytes.

declare A : 32'I[4];
declare B : 32'I[4];
// Figure out whether inputs are signed/unsigned.
for i in 0 : 3 do
    A8 = S0[i * 8 + 7 : i * 8];
    B8 = S1[i * 8 + 7 : i * 8];
    A[i] = NEG[0].u1 ? 32'I(signext(A8.i8)) : 32'I(32'U(A8.u8));
    B[i] = NEG[1].u1 ? 32'I(signext(B8.i8)) : 32'I(32'U(B8.u8))
endfor;
C = S2.i;
// Signed multiplier/adder. Extend unsigned inputs with leading 0.
D0.i = A[0] * B[0];
D0.i += A[1] * B[1];
D0.i += A[2] * B[2];
D0.i += A[3] * B[3];
D0.i += C

Notes

This opcode does not depend on the inference or deep learning features being enabled.

V_DOT4_U32_U8 23

Dot product of unsigned bytes.

tmp = 32'U(S0[7 : 0].u8) * 32'U(S1[7 : 0].u8);
tmp += 32'U(S0[15 : 8].u8) * 32'U(S1[15 : 8].u8);
tmp += 32'U(S0[23 : 16].u8) * 32'U(S1[23 : 16].u8);
tmp += 32'U(S0[31 : 24].u8) * 32'U(S1[31 : 24].u8);
tmp += S2.u;
D0.u = tmp

Notes

This opcode does not depend on the inference or deep learning features being enabled.
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V_DOT8_I32_IU4 24

Dot product of signed or unsigned nibbles.

declare A : 32'I[8];
declare B : 32'I[8];
// Figure out whether inputs are signed/unsigned.
for i in 0 : 7 do
    A4 = S0[i * 4 + 3 : i * 4];
    B4 = S1[i * 4 + 3 : i * 4];
    A[i] = NEG[0].u1 ? 32'I(signext(A4.i4)) : 32'I(32'U(A4.u4));
    B[i] = NEG[1].u1 ? 32'I(signext(B4.i4)) : 32'I(32'U(B4.u4))
endfor;
C = S2.i;
// Signed multiplier/adder. Extend unsigned inputs with leading 0.
D0.i = A[0] * B[0];
D0.i += A[1] * B[1];
D0.i += A[2] * B[2];
D0.i += A[3] * B[3];
D0.i += A[4] * B[4];
D0.i += A[5] * B[5];
D0.i += A[6] * B[6];
D0.i += A[7] * B[7];
D0.i += C

V_DOT8_U32_U4 25

Dot product of unsigned nibbles.

tmp = 32'U(S0[3 : 0].u4) * 32'U(S1[3 : 0].u4);
tmp += 32'U(S0[7 : 4].u4) * 32'U(S1[7 : 4].u4);
tmp += 32'U(S0[11 : 8].u4) * 32'U(S1[11 : 8].u4);
tmp += 32'U(S0[15 : 12].u4) * 32'U(S1[15 : 12].u4);
tmp += 32'U(S0[19 : 16].u4) * 32'U(S1[19 : 16].u4);
tmp += 32'U(S0[23 : 20].u4) * 32'U(S1[23 : 20].u4);
tmp += 32'U(S0[27 : 24].u4) * 32'U(S1[27 : 24].u4);
tmp += 32'U(S0[31 : 28].u4) * 32'U(S1[31 : 28].u4);
tmp += S2.u;
D0.u = tmp

V_DOT2_F32_BF16 26

Dot product of packed brain-float values.

tmp = 32'F(S0[15 : 0].bf16) * 32'F(S1[15 : 0].bf16);
tmp += 32'F(S0[31 : 16].bf16) * 32'F(S1[31 : 16].bf16);
tmp += S2.f;
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D0.f = tmp

V_FMA_MIX_F32 32

Fused-multiply-add of single-precision values with MIX encoding.

Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also,
for FMA_MIX, the NEG_HI field acts instead as an absolute-value modifier.

declare in : 32'F[3];
declare S : 32'B[3];
for i in 0 : 2 do
    if !OPSEL_HI.u3[i] then
        in[i] = S[i].f
    elsif OPSEL.u3[i] then
        in[i] = f16_to_f32(S[i][31 : 16].f16)
    else
        in[i] = f16_to_f32(S[i][15 : 0].f16)
    endif
endfor;
D0[31 : 0].f = fma(in[0], in[1], in[2])

V_FMA_MIXLO_F16 33

Fused-multiply-add of FP16 values with MIX encoding, result stored in low 16 bits of destination.

Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also,
for FMA_MIX, the NEG_HI field acts instead as an absolute-value modifier.

declare in : 32'F[3];
declare S : 32'B[3];
for i in 0 : 2 do
    if !OPSEL_HI.u3[i] then
        in[i] = S[i].f
    elsif OPSEL.u3[i] then
        in[i] = f16_to_f32(S[i][31 : 16].f16)
    else
        in[i] = f16_to_f32(S[i][15 : 0].f16)
    endif
endfor;
D0[15 : 0].f16 = f32_to_f16(fma(in[0], in[1], in[2]))

V_FMA_MIXHI_F16 34

Fused-multiply-add of FP16 values with MIX encoding, result stored in HIGH 16 bits of destination.
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Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also,
for FMA_MIX, the NEG_HI field acts instead as an absolute-value modifier.

declare in : 32'F[3];
declare S : 32'B[3];
for i in 0 : 2 do
    if !OPSEL_HI.u3[i] then
        in[i] = S[i].f
    elsif OPSEL.u3[i] then
        in[i] = f16_to_f32(S[i][31 : 16].f16)
    else
        in[i] = f16_to_f32(S[i][15 : 0].f16)
    endif
endfor;
D0[31 : 16].f16 = f32_to_f16(fma(in[0], in[1], in[2]))

V_WMMA_F32_16X16X16_F16 64

WMMA matrix multiplication with F16 multiplicands and single precision result.

saved_exec = EXEC;
EXEC = 64'B(-1);
eval "D0.f32(16x16) = S0.f16(16x16) * S1.f16(16x16) + S2.f32(16x16)";
EXEC = saved_exec

V_WMMA_F32_16X16X16_BF16 65

WMMA matrix multiplication with brain float multiplicands and single precision result.

saved_exec = EXEC;
EXEC = 64'B(-1);
eval "D0.f32(16x16) = S0.bf16(16x16) * S1.bf16(16x16) + S2.f32(16x16)";
EXEC = saved_exec

V_WMMA_F16_16X16X16_F16 66

WMMA matrix multiplication with F16 multiplicands and F16 result.

saved_exec = EXEC;
EXEC = 64'B(-1);
eval "D0.f16(16x16) = S0.f16(16x16) * S1.f16(16x16) + S2.f16(16x16)";
EXEC = saved_exec

"RDNA3" Instruction Set Architecture

16.10. VOP3P Instructions 358 of 600



V_WMMA_BF16_16X16X16_BF16 67

WMMA matrix multiplication with brain float multiplicands and brain float result.

saved_exec = EXEC;
EXEC = 64'B(-1);
eval "D0.bf16(16x16) = S0.bf16(16x16) * S1.bf16(16x16) + S2.bf16(16x16)";
EXEC = saved_exec

V_WMMA_I32_16X16X16_IU8 68

WMMA matrix multiplication with 8-bit integer multiplicands and signed 32-bit integer result.

saved_exec = EXEC;
EXEC = 64'B(-1);
eval "D0.i32(16x16) = S0.iu8(16x16) * S1.iu8(16x16) + S2.i32(16x16)";
EXEC = saved_exec

V_WMMA_I32_16X16X16_IU4 69

WMMA matrix multiplication with 4-bit integer multiplicands and signed 32-bit integer result.

saved_exec = EXEC;
EXEC = 64'B(-1);
eval "D0.i32(16x16) = S0.iu4(16x16) * S1.iu4(16x16) + S2.i32(16x16)";
EXEC = saved_exec
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16.11. VOPD Instructions

The VOPD encoded describes two VALU opcodes that are executed in parallel.

For instruction definitions, refer to the VOP1, VOP2 and VOP3 sections.

16.11.1. VOPD X-Instructions

V_DUAL_FMAC_F32 0

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

V_DUAL_FMAAK_F32 1

Multiply two single-precision floats and add a literal constant using fused multiply-add.

V_DUAL_FMAMK_F32 2

Multiply a single-precision float with a literal constant and add a second single-precision float using fused
multiply-add.

V_DUAL_MUL_F32 3

Multiply two floating point inputs and store the result into a vector register.

V_DUAL_ADD_F32 4

Add two floating point inputs and store the result into a vector register.

V_DUAL_SUB_F32 5

Subtract the second floating point input from the first input and store the result into a vector register.

"RDNA3" Instruction Set Architecture

16.11. VOPD Instructions 360 of 600



V_DUAL_SUBREV_F32 6

Subtract the first floating point input from the second input and store the result into a vector register.

V_DUAL_MUL_DX9_ZERO_F32 7

Multiply two floating point inputs and store the result in a vector register. Follows DX9 rules where 0.0 times
anything produces 0.0 (this differs from other APIs when the other input is infinity or NaN).

V_DUAL_MOV_B32 8

Move data from a vector input into a vector register.

V_DUAL_CNDMASK_B32 9

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

V_DUAL_MAX_F32 10

Select the maximum of two floating point inputs and store the result into a vector register.

V_DUAL_MIN_F32 11

Select the minimum of two floating point inputs and store the result into a vector register.

V_DUAL_DOT2ACC_F32_F16 12

Dot product of packed FP16 values, accumulate with destination. The initial value in D is used as S2.

V_DUAL_DOT2ACC_F32_BF16 13

Dot product of packed brain-float values, accumulate with destination. The initial value in D is used as S2.
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16.11.2. VOPD Y-Instructions

V_DUAL_FMAC_F32 0

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

V_DUAL_FMAAK_F32 1

Multiply two single-precision floats and add a literal constant using fused multiply-add.

V_DUAL_FMAMK_F32 2

Multiply a single-precision float with a literal constant and add a second single-precision float using fused
multiply-add.

V_DUAL_MUL_F32 3

Multiply two floating point inputs and store the result into a vector register.

V_DUAL_ADD_F32 4

Add two floating point inputs and store the result into a vector register.

V_DUAL_SUB_F32 5

Subtract the second floating point input from the first input and store the result into a vector register.

V_DUAL_SUBREV_F32 6

Subtract the first floating point input from the second input and store the result into a vector register.

V_DUAL_MUL_DX9_ZERO_F32 7

Multiply two floating point inputs and store the result in a vector register. Follows DX9 rules where 0.0 times
anything produces 0.0 (this differs from other APIs when the other input is infinity or NaN).
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V_DUAL_MOV_B32 8

Move data from a vector input into a vector register.

V_DUAL_CNDMASK_B32 9

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

V_DUAL_MAX_F32 10

Select the maximum of two floating point inputs and store the result into a vector register.

V_DUAL_MIN_F32 11

Select the minimum of two floating point inputs and store the result into a vector register.

V_DUAL_DOT2ACC_F32_F16 12

Dot product of packed FP16 values, accumulate with destination. The initial value in D is used as S2.

V_DUAL_DOT2ACC_F32_BF16 13

Dot product of packed brain-float values, accumulate with destination. The initial value in D is used as S2.

V_DUAL_ADD_NC_U32 16

Add two unsigned inputs and store the result into a vector register. No carry-in or carry-out support.

V_DUAL_LSHLREV_B32 17

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.

V_DUAL_AND_B32 18

Calculate bitwise AND on two vector inputs and store the result into a vector register.
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16.12. VOP3 & VOP3SD Instructions
VOP3 instructions use one of two encodings:

VOP3SD this encoding allows specifying a unique scalar destination, and is used only for:
V_ADD_CO_U32
V_SUB_CO_U32
V_SUBREV_CO_U32
V_ADDC_CO_U32
V_SUBB_CO_U32
V_SUBBREV_CO_U32
V_DIV_SCALE_F32
V_DIV_SCALE_F64
V_MAD_U64_U32
V_MAD_I64_I32

VOP3 all other VALU instructions use this encoding

V_NOP 384

Do nothing.

V_MOV_B32 385

Move data from a vector input into a vector register.

D0.b = S0.b

Notes

Floating-point modifiers are valid for this instruction if S0.u is a 32-bit floating point value. This instruction is
suitable for negating or taking the absolute value of a floating-point value.

Functional examples:

    v_mov_b32 v0, v1    // Move v1 to v0
    v_mov_b32 v0, -v1   // Set v1 to the negation of v0
    v_mov_b32 v0, abs(v1)   // Set v1 to the absolute value of v0
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V_READFIRSTLANE_B32 386

Read the scalar value in the lowest active lane of the input vector register and store it into a scalar register.

declare lane : 32'U;
if WAVE64 then
    // 64 lanes
    if EXEC == 0x0LL then
        lane = 0U;
        // Force lane 0 if all lanes are disabled
    else
        lane = 32'U(s_ff1_i32_b64(EXEC));
        // Lowest active lane
    endif
else
    // 32 lanes
    if EXEC_LO.i == 0 then
        lane = 0U;
        // Force lane 0 if all lanes are disabled
    else
        lane = 32'U(s_ff1_i32_b32(EXEC_LO));
        // Lowest active lane
    endif
endif;
D0.b = VGPR[lane][SRC0.u]

Notes

Overrides EXEC mask for the VGPR read. Input and output modifiers not supported; this is an untyped
operation.

V_CVT_I32_F64 387

Convert from a double-precision float input to a signed 32-bit integer and store the result into a vector register.

D0.i = f64_to_i32(S0.f64)

Notes

0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_F64_I32 388
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Convert from a signed 32-bit integer input to a double-precision float and store the result into a vector register.

D0.f64 = i32_to_f64(S0.i)

Notes

0ULP accuracy.

V_CVT_F32_I32 389

Convert from a signed 32-bit integer input to a single-precision float and store the result into a vector register.

D0.f = i32_to_f32(S0.i)

Notes

0.5ULP accuracy.

V_CVT_F32_U32 390

Convert from an unsigned 32-bit integer input to a single-precision float and store the result into a vector
register.

D0.f = u32_to_f32(S0.u)

Notes

0.5ULP accuracy.

V_CVT_U32_F32 391

Convert from a single-precision float input to an unsigned 32-bit integer and store the result into a vector
register.

D0.u = f32_to_u32(S0.f)

Notes

1ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
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conversion iff CLAMP == 1.

V_CVT_I32_F32 392

Convert from a single-precision float input to a signed 32-bit integer and store the result into a vector register.

D0.i = f32_to_i32(S0.f)

Notes

1ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_F16_F32 394

Convert from a single-precision float input to an FP16 float and store the result into a vector register.

D0.f16 = f32_to_f16(S0.f)

Notes

0.5ULP accuracy, supports input modifiers and creates FP16 denormals when appropriate. Flush denorms on
output if specified based on DP denorm mode. Output rounding based on DP rounding mode.

V_CVT_F32_F16 395

Convert from an FP16 float input to a single-precision float and store the result into a vector register.

D0.f = f16_to_f32(S0.f16)

Notes

0ULP accuracy, FP16 denormal inputs are accepted. Flush denorms on input if specified based on DP denorm
mode.

V_CVT_NEAREST_I32_F32 396

Convert from a single-precision float input to a signed 32-bit integer using round-to-nearest-integer semantics
(ignore the default rounding mode) and store the result into a vector register.
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D0.i = f32_to_i32(floor(S0.f + 0.5F))

Notes

0.5ULP accuracy, denormals are supported.

V_CVT_FLOOR_I32_F32 397

Convert from a single-precision float input to a signed 32-bit integer using round-down semantics (ignore the
default rounding mode) and store the result into a vector register.

D0.i = f32_to_i32(floor(S0.f))

Notes

1ULP accuracy, denormals are supported.

V_CVT_OFF_F32_I4 398

Convert from a signed 4-bit integer to a single-precision float using an offset table and store the result into a
vector register.

Used for interpolation in shader. Lookup table on S0[3:0]:

S0 binary Result
1000 -0.5000f
1001 -0.4375f
1010 -0.3750f
1011 -0.3125f
1100 -0.2500f
1101 -0.1875f
1110 -0.1250f
1111 -0.0625f
0000 +0.0000f
0001 +0.0625f
0010 +0.1250f
0011 +0.1875f
0100 +0.2500f
0101 +0.3125f
0110 +0.3750f
0111 +0.4375f

declare CVT_OFF_TABLE : 32'F[16];
D0.f = CVT_OFF_TABLE[S0.u[3 : 0]]
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V_CVT_F32_F64 399

Convert from a double-precision float input to a single-precision float and store the result into a vector register.

D0.f = f64_to_f32(S0.f64)

Notes

0.5ULP accuracy, denormals are supported.

V_CVT_F64_F32 400

Convert from a single-precision float input to a double-precision float and store the result into a vector register.

D0.f64 = f32_to_f64(S0.f)

Notes

0ULP accuracy, denormals are supported.

V_CVT_F32_UBYTE0 401

Convert an unsigned byte in byte 0 of the input to a single-precision float and store the result into a vector
register.

D0.f = u32_to_f32(S0.u[7 : 0].u)

V_CVT_F32_UBYTE1 402

Convert an unsigned byte in byte 1 of the input to a single-precision float and store the result into a vector
register.

D0.f = u32_to_f32(S0.u[15 : 8].u)

V_CVT_F32_UBYTE2 403

Convert an unsigned byte in byte 2 of the input to a single-precision float and store the result into a vector
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register.

D0.f = u32_to_f32(S0.u[23 : 16].u)

V_CVT_F32_UBYTE3 404

Convert an unsigned byte in byte 3 of the input to a single-precision float and store the result into a vector
register.

D0.f = u32_to_f32(S0.u[31 : 24].u)

V_CVT_U32_F64 405

Convert from a double-precision float input to an unsigned 32-bit integer and store the result into a vector
register.

D0.u = f64_to_u32(S0.f64)

Notes

0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_F64_U32 406

Convert from an unsigned 32-bit integer input to a double-precision float and store the result into a vector
register.

D0.f64 = u32_to_f64(S0.u)

Notes

0ULP accuracy.

V_TRUNC_F64 407

Compute the integer part of a double-precision float input with round-toward-zero semantics and store the
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result in floating point format into a vector register.

D0.f64 = trunc(S0.f64)

V_CEIL_F64 408

Round the double-precision float input up to next integer and store the result in floating point format into a
vector register.

D0.f64 = trunc(S0.f64);
if ((S0.f64 > 0.0) && (S0.f64 != D0.f64)) then
    D0.f64 += 1.0
endif

V_RNDNE_F64 409

Round the double-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

D0.f64 = floor(S0.f64 + 0.5);
if (isEven(floor(S0.f64)) && (fract(S0.f64) == 0.5)) then
    D0.f64 -= 1.0
endif

V_FLOOR_F64 410

Round the double-precision float input down to previous integer and store the result in floating point format
into a vector register.

D0.f64 = trunc(S0.f64);
if ((S0.f64 < 0.0) && (S0.f64 != D0.f64)) then
    D0.f64 += -1.0
endif

V_PIPEFLUSH 411

Flush the VALU destination cache.
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V_MOV_B16 412

Move data to a VGPR.

D0.b16 = S0.b16

Notes

Floating-point modifiers are valid for this instruction if S0.u16 is a 16-bit floating point value. This instruction is
suitable for negating or taking the absolute value of a floating-point value.

V_FRACT_F32 416

Compute the fractional portion of a single-precision float input and store the result in floating point format into
a vector register.

D0.f = S0.f + -floor(S0.f)

Notes

0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

Obey round mode, result clamped to 0x3f7fffff.

V_TRUNC_F32 417

Compute the integer part of a single-precision float input with round-toward-zero semantics and store the
result in floating point format into a vector register.

D0.f = trunc(S0.f)

V_CEIL_F32 418

Round the single-precision float input up to next integer and store the result in floating point format into a
vector register.

D0.f = trunc(S0.f);
if ((S0.f > 0.0F) && (S0.f != D0.f)) then
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    D0.f += 1.0F
endif

V_RNDNE_F32 419

Round the single-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

D0.f = floor(S0.f + 0.5F);
if (isEven(64'F(floor(S0.f))) && (fract(S0.f) == 0.5F)) then
    D0.f -= 1.0F
endif

V_FLOOR_F32 420

Round the single-precision float input down to previous integer and store the result in floating point format
into a vector register.

D0.f = trunc(S0.f);
if ((S0.f < 0.0F) && (S0.f != D0.f)) then
    D0.f += -1.0F
endif

V_EXP_F32 421

Calculate 2 raised to the power of the single-precision float input and store the result into a vector register.

D0.f = pow(2.0F, S0.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:

V_EXP_F32(0xff800000) => 0x00000000     // exp(-INF) = 0
V_EXP_F32(0x80000000) => 0x3f800000     // exp(-0.0) = 1
V_EXP_F32(0x7f800000) => 0x7f800000     // exp(+INF) = +INF
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V_LOG_F32 423

Calculate the base 2 logarithm of the single-precision float input and store the result into a vector register.

D0.f = log2(S0.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:

V_LOG_F32(0xff800000) => 0xffc00000     // log(-INF) = NAN
V_LOG_F32(0xbf800000) => 0xffc00000     // log(-1.0) = NAN
V_LOG_F32(0x80000000) => 0xff800000     // log(-0.0) = -INF
V_LOG_F32(0x00000000) => 0xff800000     // log(+0.0) = -INF
V_LOG_F32(0x3f800000) => 0x00000000     // log(+1.0) = 0
V_LOG_F32(0x7f800000) => 0x7f800000     // log(+INF) = +INF

V_RCP_F32 426

Calculate the reciprocal of the single-precision float input using IEEE rules and store the result into a vector
register.

D0.f = 1.0F / S0.f

Notes

1ULP accuracy. Accuracy converges to < 0.5ULP when using the Newton-Raphson method and 2 FMA
operations. Denormals are flushed.

Functional examples:

V_RCP_F32(0xff800000) => 0x80000000     // rcp(-INF) = -0
V_RCP_F32(0xc0000000) => 0xbf000000     // rcp(-2.0) = -0.5
V_RCP_F32(0x80000000) => 0xff800000     // rcp(-0.0) = -INF
V_RCP_F32(0x00000000) => 0x7f800000     // rcp(+0.0) = +INF
V_RCP_F32(0x7f800000) => 0x00000000     // rcp(+INF) = +0

V_RCP_IFLAG_F32 427

Calculate the reciprocal of the vector float input in a manner suitable for integer division and store the result
into a vector register. This opcode is intended for use as part of an integer division macro.
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D0.f = 1.0F / S0.f;
// Can only raise integer DIV_BY_ZERO exception

Notes

Can raise integer DIV_BY_ZERO exception but cannot raise floating-point exceptions. To be used in an integer
reciprocal macro by the compiler with one of the sequences listed below (depending on signed or unsigned
operation).

Unsigned usage:
CVT_F32_U32
RCP_IFLAG_F32
MUL_F32 (2**32 - 1)
CVT_U32_F32

Signed usage:
CVT_F32_I32
RCP_IFLAG_F32
MUL_F32 (2**31 - 1)
CVT_I32_F32

V_RSQ_F32 430

Calculate the reciprocal of the square root of the single-precision float input using IEEE rules and store the
result into a vector register.

D0.f = 1.0F / sqrt(S0.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:

V_RSQ_F32(0xff800000) => 0xffc00000     // rsq(-INF) = NAN
V_RSQ_F32(0x80000000) => 0xff800000     // rsq(-0.0) = -INF
V_RSQ_F32(0x00000000) => 0x7f800000     // rsq(+0.0) = +INF
V_RSQ_F32(0x40800000) => 0x3f000000     // rsq(+4.0) = +0.5
V_RSQ_F32(0x7f800000) => 0x00000000     // rsq(+INF) = +0

V_RCP_F64 431

Calculate the reciprocal of the double-precision float input using IEEE rules and store the result into a vector
register.
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D0.f64 = 1.0 / S0.f64

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_RSQ_F64 433

Calculate the reciprocal of the square root of the double-precision float input using IEEE rules and store the
result into a vector register.

D0.f64 = 1.0 / sqrt(S0.f64)

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_SQRT_F32 435

Calculate the square root of the single-precision float input using IEEE rules and store the result into a vector
register.

D0.f = sqrt(S0.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:

V_SQRT_F32(0xff800000) => 0xffc00000     // sqrt(-INF) = NAN
V_SQRT_F32(0x80000000) => 0x80000000     // sqrt(-0.0) = -0
V_SQRT_F32(0x00000000) => 0x00000000     // sqrt(+0.0) = +0
V_SQRT_F32(0x40800000) => 0x40000000     // sqrt(+4.0) = +2.0
V_SQRT_F32(0x7f800000) => 0x7f800000     // sqrt(+INF) = +INF

V_SQRT_F64 436

Calculate the square root of the double-precision float input using IEEE rules and store the result into a vector
register.
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D0.f64 = sqrt(S0.f64)

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_SIN_F32 437

Calculate the trigonometric sine of a single-precision float value using IEEE rules and store the result into a
vector register. The operand is calculated by scaling the vector input by 2 PI.

D0.f = 32'F(sin(64'F(S0.f) * 2.0 * PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_SIN_F32(0xff800000) => 0xffc00000     // sin(-INF) = NAN
V_SIN_F32(0xff7fffff) => 0x00000000     // -MaxFloat, finite
V_SIN_F32(0x80000000) => 0x80000000     // sin(-0.0) = -0
V_SIN_F32(0x3e800000) => 0x3f800000     // sin(0.25) = 1
V_SIN_F32(0x7f800000) => 0xffc00000     // sin(+INF) = NAN

V_COS_F32 438

Calculate the trigonometric cosine of a single-precision float value using IEEE rules and store the result into a
vector register. The operand is calculated by scaling the vector input by 2 PI.

D0.f = 32'F(cos(64'F(S0.f) * 2.0 * PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_COS_F32(0xff800000) => 0xffc00000     // cos(-INF) = NAN
V_COS_F32(0xff7fffff) => 0x3f800000     // -MaxFloat, finite
V_COS_F32(0x80000000) => 0x3f800000     // cos(-0.0) = 1
V_COS_F32(0x3e800000) => 0x00000000     // cos(0.25) = 0
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V_COS_F32(0x7f800000) => 0xffc00000     // cos(+INF) = NAN

V_NOT_B32 439

Calculate bitwise negation on a vector input and store the result into a vector register.

D0.u = ~S0.u

Notes

Input and output modifiers not supported.

V_BFREV_B32 440

Reverse the order of bits in a vector input and store the result into a vector register.

D0.u[31 : 0] = S0.u[0 : 31]

Notes

Input and output modifiers not supported.

V_CLZ_I32_U32 441

Count the number of leading "0" bits before the first "1" in a vector input and store the result into a vector
register. Store -1 if there are no "1" bits.

D0.i = -1;
// Set if no ones are found
for i in 0 : 31 do
    // Search from MSB
    if S0.u[31 - i] == 1'1U then
        D0.i = i;
        break
    endif
endfor

Notes

Compare with S_CLZ_I32_U32, which performs the equivalent operation in the scalar ALU.

Functional examples:
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V_CLZ_I32_U32(0x00000000) => 0xffffffff
V_CLZ_I32_U32(0x800000ff) => 0
V_CLZ_I32_U32(0x100000ff) => 3
V_CLZ_I32_U32(0x0000ffff) => 16
V_CLZ_I32_U32(0x00000001) => 31

V_CTZ_I32_B32 442

Count the number of trailing "0" bits before the first "1" in a vector input and store the result into a vector
register. Store -1 if there are no "1" bits in the input.

D0.i = -1;
// Set if no ones are found
for i in 0 : 31 do
    // Search from LSB
    if S0.u[i] == 1'1U then
        D0.i = i;
        break
    endif
endfor

Notes

Compare with S_CTZ_I32_B32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CTZ_I32_B32(0x00000000) => 0xffffffff
V_CTZ_I32_B32(0xff000001) => 0
V_CTZ_I32_B32(0xff000008) => 3
V_CTZ_I32_B32(0xffff0000) => 16
V_CTZ_I32_B32(0x80000000) => 31

V_CLS_I32 443

Count the number of leading bits that are the same as the sign bit of a vector input and store the result into a
vector register. Store -1 if all input bits are the same.

D0.i = -1;
// Set if all bits are the same
for i in 1 : 31 do
    // Search from MSB
    if S0.i[31 - i] != S0.i[31] then
        D0.i = i;
        break
    endif
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endfor

Notes

Compare with S_CLS_I32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CLS_I32(0x00000000) => 0xffffffff
V_CLS_I32(0x40000000) => 1
V_CLS_I32(0x80000000) => 1
V_CLS_I32(0x0fffffff) => 4
V_CLS_I32(0xffff0000) => 16
V_CLS_I32(0xfffffffe) => 31
V_CLS_I32(0xffffffff) => 0xffffffff

V_FREXP_EXP_I32_F64 444

Extract the exponent of a double-precision float input and store the result as a signed 32-bit integer into a
vector register.

if ((S0.f64 == +INF) || (S0.f64 == -INF) || isNAN(S0.f64)) then
    D0.i = 0
else
    D0.i = exponent(S0.f64) - 1023 + 1
endif

Notes

This operation satisfies the invariant S0.f64 = significand * (2 ** exponent). See also V_FREXP_MANT_F64,
which returns the significand. See the C library function frexp() for more information.

V_FREXP_MANT_F64 445

Extract the binary significand, or mantissa, of a double-precision float input and store the result as a double-
precision float into a vector register.

if ((S0.f64 == +INF) || (S0.f64 == -INF) || isNAN(S0.f64)) then
    D0.f64 = S0.f64
else
    D0.f64 = mantissa(S0.f64)
endif

Notes
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This operation satisfies the invariant S0.f64 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F64, which returns integer exponent. See the C library function
frexp() for more information.

V_FRACT_F64 446

Compute the fractional portion of a double-precision float input and store the result in floating point format
into a vector register.

D0.f64 = S0.f64 + -floor(S0.f64)

Notes

0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

Obey round mode, result clamped to 0x3fefffffffffffff.

V_FREXP_EXP_I32_F32 447

Extract the exponent of a single-precision float input and store the result as a signed 32-bit integer into a vector
register.

if ((64'F(S0.f) == +INF) || (64'F(S0.f) == -INF) || isNAN(64'F(S0.f))) then
    D0.i = 0
else
    D0.i = exponent(S0.f) - 127 + 1
endif

Notes

This operation satisfies the invariant S0.f32 = significand * (2 ** exponent). See also V_FREXP_MANT_F32,
which returns the significand. See the C library function frexp() for more information.

V_FREXP_MANT_F32 448

Extract the binary significand, or mantissa, of a single-precision float input and store the result as a single-
precision float into a vector register.

if ((64'F(S0.f) == +INF) || (64'F(S0.f) == -INF) || isNAN(64'F(S0.f))) then
    D0.f = S0.f
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else
    D0.f = mantissa(S0.f)
endif

Notes

This operation satisfies the invariant S0.f32 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F32, which returns integer exponent. See the C library function
frexp() for more information.

V_MOVRELD_B32 450

Move to a relative destination address.

addr = DST.u;
// Raw value from instruction
addr += M0.u[31 : 0];
VGPR[laneId][addr].b = S0.b

Notes

Example: The following instruction sequence performs the move v15 <= v7:

    s_mov_b32 m0, 10
    v_movreld_b32 v5, v7

V_MOVRELS_B32 451

Move from a relative source address.

addr = SRC0.u;
// Raw value from instruction
addr += M0.u[31 : 0];
D0.b = VGPR[laneId][addr].b

Notes

Example: The following instruction sequence performs the move v5 <= v17:

    s_mov_b32 m0, 10
    v_movrels_b32 v5, v7
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V_MOVRELSD_B32 452

Move from a relative source address to a relative destination address.

addrs = SRC0.u;
// Raw value from instruction
addrd = DST.u;
// Raw value from instruction
addrs += M0.u[31 : 0];
addrd += M0.u[31 : 0];
VGPR[laneId][addrd].b = VGPR[laneId][addrs].b

Notes

Example: The following instruction sequence performs the move v15 <= v17:

    s_mov_b32 m0, 10
    v_movrelsd_b32 v5, v7

V_MOVRELSD_2_B32 456

Move from a relative source address to a relative destination address, with different relative offsets.

addrs = SRC0.u;
// Raw value from instruction
addrd = DST.u;
// Raw value from instruction
addrs += M0.u[9 : 0].u;
addrd += M0.u[25 : 16].u;
VGPR[laneId][addrd].b = VGPR[laneId][addrs].b

Notes

Example: The following instruction sequence performs the move v25 <= v17:

    s_mov_b32 m0, ((20 << 16) | 10)
    v_movrelsd_2_b32 v5, v7

V_CVT_F16_U16 464

Convert from an unsigned 16-bit integer input to an FP16 float and store the result into a vector register.

D0.f16 = u16_to_f16(S0.u16)
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Notes

0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

V_CVT_F16_I16 465

Convert from a signed 16-bit integer input to an FP16 float and store the result into a vector register.

D0.f16 = i16_to_f16(S0.i16)

Notes

0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

V_CVT_U16_F16 466

Convert from an FP16 float input to an unsigned 16-bit integer and store the result into a vector register.

D0.u16 = f16_to_u16(S0.f16)

Notes

1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion
is done with truncation.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_I16_F16 467

Convert from an FP16 float input to a signed 16-bit integer and store the result into a vector register.

D0.i16 = f16_to_i16(S0.f16)

Notes

1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion
is done with truncation.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.
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V_RCP_F16 468

Calculate the reciprocal of the half-precision float input using IEEE rules and store the result into a vector
register.

D0.f16 = 16'1.0 / S0.f16

Notes

0.51ULP accuracy.

Functional examples:

V_RCP_F16(0xfc00) => 0x8000     // rcp(-INF) = -0
V_RCP_F16(0xc000) => 0xb800     // rcp(-2.0) = -0.5
V_RCP_F16(0x8000) => 0xfc00     // rcp(-0.0) = -INF
V_RCP_F16(0x0000) => 0x7c00     // rcp(+0.0) = +INF
V_RCP_F16(0x7c00) => 0x0000     // rcp(+INF) = +0

V_SQRT_F16 469

Calculate the square root of the half-precision float input using IEEE rules and store the result into a vector
register.

D0.f16 = sqrt(S0.f16)

Notes

0.51ULP accuracy, denormals are supported.

Functional examples:

V_SQRT_F16(0xfc00) => 0xfe00     // sqrt(-INF) = NAN
V_SQRT_F16(0x8000) => 0x8000     // sqrt(-0.0) = -0
V_SQRT_F16(0x0000) => 0x0000     // sqrt(+0.0) = +0
V_SQRT_F16(0x4400) => 0x4000     // sqrt(+4.0) = +2.0
V_SQRT_F16(0x7c00) => 0x7c00     // sqrt(+INF) = +INF

V_RSQ_F16 470

Calculate the reciprocal of the square root of the half-precision float input using IEEE rules and store the result
into a vector register.
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D0.f16 = 16'1.0 / sqrt(S0.f16)

Notes

0.51ULP accuracy, denormals are supported.

Functional examples:

V_RSQ_F16(0xfc00) => 0xfe00     // rsq(-INF) = NAN
V_RSQ_F16(0x8000) => 0xfc00     // rsq(-0.0) = -INF
V_RSQ_F16(0x0000) => 0x7c00     // rsq(+0.0) = +INF
V_RSQ_F16(0x4400) => 0x3800     // rsq(+4.0) = +0.5
V_RSQ_F16(0x7c00) => 0x0000     // rsq(+INF) = +0

V_LOG_F16 471

Calculate the base 2 logarithm of the half-precision float input and store the result into a vector register.

D0.f16 = log2(S0.f16)

Notes

0.51ULP accuracy, denormals are supported.

Functional examples:

V_LOG_F16(0xfc00) => 0xfe00     // log(-INF) = NAN
V_LOG_F16(0xbc00) => 0xfe00     // log(-1.0) = NAN
V_LOG_F16(0x8000) => 0xfc00     // log(-0.0) = -INF
V_LOG_F16(0x0000) => 0xfc00     // log(+0.0) = -INF
V_LOG_F16(0x3c00) => 0x0000     // log(+1.0) = 0
V_LOG_F16(0x7c00) => 0x7c00     // log(+INF) = +INF

V_EXP_F16 472

Calculate 2 raised to the power of the half-precision float input and store the result into a vector register.

D0.f16 = pow(16'2.0, S0.f16)

Notes

0.51ULP accuracy, denormals are supported.
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Functional examples:

V_EXP_F16(0xfc00) => 0x0000     // exp(-INF) = 0
V_EXP_F16(0x8000) => 0x3c00     // exp(-0.0) = 1
V_EXP_F16(0x7c00) => 0x7c00     // exp(+INF) = +INF

V_FREXP_MANT_F16 473

Extract the binary significand, or mantissa, of an FP16 float input and store the result as an FP16 float into a
vector register.

if ((64'F(S0.f16) == +INF) || (64'F(S0.f16) == -INF) || isNAN(64'F(S0.f16))) then
    D0.f16 = S0.f16
else
    D0.f16 = mantissa(S0.f16)
endif

Notes

This operation satisfies the invariant S0.f16 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F16, which returns integer exponent. See the C library function
frexp() for more information.

V_FREXP_EXP_I16_F16 474

Extract the exponent of an FP16 float input and store the result as a signed 16-bit integer into a vector register.

if ((64'F(S0.f16) == +INF) || (64'F(S0.f16) == -INF) || isNAN(64'F(S0.f16))) then
    D0.i16 = 16'0
else
    D0.i16 = 16'I(exponent(S0.f16) - 15 + 1)
endif

Notes

This operation satisfies the invariant S0.f16 = significand * (2 ** exponent). See also V_FREXP_MANT_F16,
which returns the significand. See the C library function frexp() for more information.

V_FLOOR_F16 475

Round the half-precision float input down to previous integer and store the result in floating point format into
a vector register.
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D0.f16 = trunc(S0.f16);
if ((S0.f16 < 16'0.0) && (S0.f16 != D0.f16)) then
    D0.f16 += -16'1.0
endif

V_CEIL_F16 476

Round the half-precision float input up to next integer and store the result in floating point format into a vector
register.

D0.f16 = trunc(S0.f16);
if ((S0.f16 > 16'0.0) && (S0.f16 != D0.f16)) then
    D0.f16 += 16'1.0
endif

V_TRUNC_F16 477

Compute the integer part of an FP16 float input with round-toward-zero semantics and store the result in
floating point format into a vector register.

D0.f16 = trunc(S0.f16)

V_RNDNE_F16 478

Round the half-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

D0.f16 = floor(S0.f16 + 16'0.5);
if (isEven(64'F(floor(S0.f16))) && (fract(S0.f16) == 16'0.5)) then
    D0.f16 -= 16'1.0
endif

V_FRACT_F16 479

Compute the fractional portion of an FP16 float input and store the result in floating point format into a vector
register.

D0.f16 = S0.f16 + -floor(S0.f16)
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Notes

0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

V_SIN_F16 480

Calculate the trigonometric sine of an FP16 float value using IEEE rules and store the result into a vector
register. The operand is calculated by scaling the vector input by 2 PI.

D0.f16 = 16'F(sin(64'F(S0.f16) * 2.0 * PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_SIN_F16(0xfc00) => 0xfe00     // sin(-INF) = NAN
V_SIN_F16(0xfbff) => 0x0000     // Most negative finite FP16
V_SIN_F16(0x8000) => 0x8000     // sin(-0.0) = -0
V_SIN_F16(0x3400) => 0x3c00     // sin(0.25) = 1
V_SIN_F16(0x7bff) => 0x0000     // Most positive finite FP16
V_SIN_F16(0x7c00) => 0xfe00     // sin(+INF) = NAN

V_COS_F16 481

Calculate the trigonometric cosine of an FP16 float value using IEEE rules and store the result into a vector
register. The operand is calculated by scaling the vector input by 2 PI.

D0.f16 = 16'F(cos(64'F(S0.f16) * 2.0 * PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_COS_F16(0xfc00) => 0xfe00     // cos(-INF) = NAN
V_COS_F16(0xfbff) => 0x3c00     // Most negative finite FP16
V_COS_F16(0x8000) => 0x3c00     // cos(-0.0) = 1
V_COS_F16(0x3400) => 0x0000     // cos(0.25) = 0
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V_COS_F16(0x7bff) => 0x3c00     // Most positive finite FP16
V_COS_F16(0x7c00) => 0xfe00     // cos(+INF) = NAN

V_SAT_PK_U8_I16 482

Given two 16-bit unsigned integer inputs, saturate each input over an 8-bit unsigned range, pack the resulting
values into a 16-bit word and store the result into a vector register.

SAT8 = lambda(n) (
    if n.i <= 0 then
        return 8'0U
    elsif n >= 16'I(0xff) then
        return 8'255U
    else
        return n[7 : 0].u8
    endif);
D0.b16 = { SAT8(S0[31 : 16].i16), SAT8(S0[15 : 0].i16) }

Notes

Used for 4x16bit data packed as 4x8bit data.

V_CVT_NORM_I16_F16 483

Convert from an FP16 float input to a signed normalized short and store the result into a vector register.

D0.i16 = f16_to_snorm(S0.f16)

Notes

0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.

V_CVT_NORM_U16_F16 484

Convert from an FP16 float input to an unsigned normalized short and store the result into a vector register.

D0.u16 = f16_to_unorm(S0.f16)

Notes

0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.
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V_NOT_B16 489

Calculate bitwise negation on a vector input and store the result into a vector register.

D0.u16 = ~S0.u16

Notes

Input and output modifiers not supported.

V_CVT_I32_I16 490

Convert from an 16-bit signed integer to a 32-bit signed integer, sign extending as needed.

D0.i = 32'I(signext(S0.i16))

Notes

To convert in the other direction (from 32-bit to 16-bit integer) use V_MOV_B16.

V_CVT_U32_U16 491

Convert from an 16-bit unsigned integer to a 32-bit unsigned integer, zero extending as needed.

D0 = { 16'0, S0.u16 }

Notes

To convert in the other direction (from 32-bit to 16-bit integer) use V_MOV_B16.

V_CNDMASK_B32 257

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

D0.u = VCC.u64[laneId] ? S1.u : S0.u

Notes

In VOP3 the VCC source may be a scalar GPR specified in S2.

Floating-point modifiers are valid for this instruction if S0 and S1 are 32-bit floating point values. This
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instruction is suitable for negating or taking the absolute value of a floating-point value.

V_ADD_F32 259

Add two floating point inputs and store the result into a vector register.

D0.f = S0.f + S1.f

Notes

0.5ULP precision, denormals are supported.

V_SUB_F32 260

Subtract the second floating point input from the first input and store the result into a vector register.

D0.f = S0.f - S1.f

Notes

0.5ULP precision, denormals are supported.

V_SUBREV_F32 261

Subtract the first floating point input from the second input and store the result into a vector register.

D0.f = S1.f - S0.f

Notes

0.5ULP precision, denormals are supported.

V_FMAC_DX9_ZERO_F32 262

Multiply two single-precision values and accumulate the result with the destination. Follows DX9 rules where
0.0 times anything produces 0.0 (this is not IEEE compliant).

if ((64'F(S0.f) == 0.0) || (64'F(S1.f) == 0.0)) then
    // DX9 rules, 0.0 * x = 0.0
    D0.f = S2.f
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else
    D0.f = fma(S0.f, S1.f, D0.f)
endif

V_MUL_DX9_ZERO_F32 263

Multiply two floating point inputs and store the result in a vector register. Follows DX9 rules where 0.0 times
anything produces 0.0 (this differs from other APIs when the other input is infinity or NaN).

if ((64'F(S0.f) == 0.0) || (64'F(S1.f) == 0.0)) then
    // DX9 rules, 0.0 * x = 0.0
    D0.f = 0.0F
else
    D0.f = S0.f * S1.f
endif

V_MUL_F32 264

Multiply two floating point inputs and store the result into a vector register.

D0.f = S0.f * S1.f

Notes

0.5ULP precision, denormals are supported.

V_MUL_I32_I24 265

Multiply two signed 24 bit integer inputs and store the result as a signed 32 bit integer into a vector register.

D0.i = 32'I(S0.i24) * 32'I(S1.i24)

Notes

This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_I32_I24.

V_MUL_HI_I32_I24 266

Multiply two signed 24 bit integer inputs and store the high 32 bits of the result as a signed 32 bit integer into a
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vector register.

D0.i = 32'I((64'I(S0.i24) * 64'I(S1.i24)) >> 32U)

Notes

See also V_MUL_I32_I24.

V_MUL_U32_U24 267

Multiply two unsigned 24 bit integer inputs and store the result as a unsigned 32 bit integer into a vector
register.

D0.u = 32'U(S0.u24) * 32'U(S1.u24)

Notes

This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_U32_U24.

V_MUL_HI_U32_U24 268

Multiply two unsigned 24 bit integer inputs and store the high 32 bits of the result as a unsigned 32 bit integer
into a vector register.

D0.u = 32'U((64'U(S0.u24) * 64'U(S1.u24)) >> 32U)

Notes

See also V_MUL_U32_U24.

V_MIN_F32 271

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
    ((a < b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(64'F(S0.f)) then
        D0.f = 32'F(cvtToQuietNAN(64'F(S0.f)))
    elsif isSignalNAN(64'F(S1.f)) then
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        D0.f = 32'F(cvtToQuietNAN(64'F(S1.f)))
    elsif isQuietNAN(64'F(S1.f)) then
        D0.f = S0.f
    elsif isQuietNAN(64'F(S0.f)) then
        D0.f = S1.f
    elsif LT_NEG_ZERO(S0.f, S1.f) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f = S0.f
    else
        D0.f = S1.f
    endif
else
    if isNAN(64'F(S1.f)) then
        D0.f = S0.f
    elsif isNAN(64'F(S0.f)) then
        D0.f = S1.f
    elsif LT_NEG_ZERO(S0.f, S1.f) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f = S0.f
    else
        D0.f = S1.f
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MAX_F32 272

Select the maximum of two floating point inputs and store the result into a vector register.

GT_NEG_ZERO = lambda(a, b) (
    ((a > b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(64'F(S0.f)) then
        D0.f = 32'F(cvtToQuietNAN(64'F(S0.f)))
    elsif isSignalNAN(64'F(S1.f)) then
        D0.f = 32'F(cvtToQuietNAN(64'F(S1.f)))
    elsif isQuietNAN(64'F(S1.f)) then
        D0.f = S0.f
    elsif isQuietNAN(64'F(S0.f)) then
        D0.f = S1.f
    elsif GT_NEG_ZERO(S0.f, S1.f) then
        // NOTE: +0>-0 is TRUE in this comparison
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        D0.f = S0.f
    else
        D0.f = S1.f
    endif
else
    if isNAN(64'F(S1.f)) then
        D0.f = S0.f
    elsif isNAN(64'F(S0.f)) then
        D0.f = S1.f
    elsif GT_NEG_ZERO(S0.f, S1.f) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f = S0.f
    else
        D0.f = S1.f
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MIN_I32 273

Select the minimum of two signed integers and store the selected value into a vector register.

D0.i = S0.i < S1.i ? S0.i : S1.i

V_MAX_I32 274

Select the maximum of two signed integers and store the selected value into a vector register.

D0.i = S0.i >= S1.i ? S0.i : S1.i

V_MIN_U32 275

Select the minimum of two unsigned integers and store the selected value into a vector register.
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D0.u = S0.u < S1.u ? S0.u : S1.u

V_MAX_U32 276

Select the maximum of two unsigned integers and store the selected value into a vector register.

D0.u = S0.u >= S1.u ? S0.u : S1.u

V_LSHLREV_B32 280

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.

D0.u = (S1.u << S0[4 : 0].u)

V_LSHRREV_B32 281

Given a shift count in the first vector input, calculate the logical shift right of the second vector input and store
the result into a vector register.

D0.u = (S1.u >> S0[4 : 0].u)

V_ASHRREV_I32 282

Given a shift count in the first vector input, calculate the arithmetic shift right (preserving sign bit) of the second
vector input and store the result into a vector register.

D0.i = (S1.i >> S0[4 : 0].u)

V_AND_B32 283

Calculate bitwise AND on two vector inputs and store the result into a vector register.

D0.u = (S0.u & S1.u)
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Notes

Input and output modifiers not supported.

V_OR_B32 284

Calculate bitwise OR on two vector inputs and store the result into a vector register.

D0.u = (S0.u | S1.u)

Notes

Input and output modifiers not supported.

V_XOR_B32 285

Calculate bitwise XOR on two vector inputs and store the result into a vector register.

D0.u = (S0.u ^ S1.u)

Notes

Input and output modifiers not supported.

V_XNOR_B32 286

Calculate bitwise XNOR on two vector inputs and store the result into a vector register.

D0.u = ~(S0.u ^ S1.u)

Notes

Input and output modifiers not supported.

V_ADD_CO_CI_U32 288

Add two unsigned inputs and a bit from a carry-in mask, store the result into a vector register and store the
carry-out mask into a scalar register.

tmp = 64'U(S0.u) + 64'U(S1.u) + VCC.u64[laneId].u64;
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VCC.u64[laneId] = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
D0.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_SUB_CO_CI_U32 289

Subtract the second unsigned input from the first input, subtract a bit from the carry-in mask, store the result
into a vector register and store the carry-out mask to a scalar register.

tmp = S0.u - S1.u - VCC.u64[laneId].u;
VCC.u64[laneId] = 64'U(S1.u) + VCC.u64[laneId].u64 > 64'U(S0.u) ? 1'1U : 1'0U;
D0.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_SUBREV_CO_CI_U32 290

Subtract the first unsigned input from the second input, subtract a bit from the carry-in mask, store the result
into a vector register and store the carry-out mask to a scalar register.

tmp = S1.u - S0.u - VCC.u64[laneId].u;
VCC.u64[laneId] = 64'U(S1.u) + VCC.u64[laneId].u64 > 64'U(S0.u) ? 1'1U : 1'0U;
D0.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_ADD_NC_U32 293
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Add two unsigned inputs and store the result into a vector register. No carry-in or carry-out support.

D0.u = S0.u + S1.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_SUB_NC_U32 294

Subtract the second unsigned input from the first input and store the result into a vector register. No carry-in
or carry-out support.

D0.u = S0.u - S1.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_SUBREV_NC_U32 295

Subtract the first unsigned input from the second input and store the result into a vector register. No carry-in or
carry-out support.

D0.u = S1.u - S0.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_FMAC_F32 299

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

D0.f = fma(S0.f, S1.f, D0.f)

V_CVT_PK_RTZ_F16_F32 303
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Convert two single-precision float inputs into a packed FP16 result with round toward zero semantics (ignore
the current rounding mode), and store the result into a vector register.

D0[15 : 0].f16 = f32_to_f16(S0.f);
D0[31 : 16].f16 = f32_to_f16(S1.f);
// Round-toward-zero regardless of current round mode setting in hardware.

Notes

This opcode is intended for use with 16-bit compressed exports. See V_CVT_F16_F32 for a version that respects
the current rounding mode.

V_ADD_F16 306

Add two floating point inputs and store the result into a vector register.

D0.f16 = S0.f16 + S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_SUB_F16 307

Subtract the second floating point input from the first input and store the result into a vector register.

D0.f16 = S0.f16 - S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_SUBREV_F16 308

Subtract the first floating point input from the second input and store the result into a vector register.

D0.f16 = S1.f16 - S0.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.
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V_MUL_F16 309

Multiply two floating point inputs and store the result into a vector register.

D0.f16 = S0.f16 * S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_FMAC_F16 310

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

D0.f16 = fma(S0.f16, S1.f16, D0.f16)

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_MAX_F16 313

Select the maximum of two floating point inputs and store the result into a vector register.

GT_NEG_ZERO = lambda(a, b) (
    ((a > b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(64'F(S0.f16)) then
        D0.f16 = 16'F(cvtToQuietNAN(64'F(S0.f16)))
    elsif isSignalNAN(64'F(S1.f16)) then
        D0.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
    elsif isQuietNAN(64'F(S1.f16)) then
        D0.f16 = S0.f16
    elsif isQuietNAN(64'F(S0.f16)) then
        D0.f16 = S1.f16
    elsif GT_NEG_ZERO(S0.f16, S1.f16) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f16 = S0.f16
    else
        D0.f16 = S1.f16
    endif
else
    if isNAN(64'F(S1.f16)) then
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        D0.f16 = S0.f16
    elsif isNAN(64'F(S0.f16)) then
        D0.f16 = S1.f16
    elsif GT_NEG_ZERO(S0.f16, S1.f16) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f16 = S0.f16
    else
        D0.f16 = S1.f16
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MIN_F16 314

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
    ((a < b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(64'F(S0.f16)) then
        D0.f16 = 16'F(cvtToQuietNAN(64'F(S0.f16)))
    elsif isSignalNAN(64'F(S1.f16)) then
        D0.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
    elsif isQuietNAN(64'F(S1.f16)) then
        D0.f16 = S0.f16
    elsif isQuietNAN(64'F(S0.f16)) then
        D0.f16 = S1.f16
    elsif LT_NEG_ZERO(S0.f16, S1.f16) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f16 = S0.f16
    else
        D0.f16 = S1.f16
    endif
else
    if isNAN(64'F(S1.f16)) then
        D0.f16 = S0.f16
    elsif isNAN(64'F(S0.f16)) then
        D0.f16 = S1.f16
    elsif LT_NEG_ZERO(S0.f16, S1.f16) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f16 = S0.f16
    else
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        D0.f16 = S1.f16
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_LDEXP_F16 315

Multiply the first input, a floating point value, by an integral power of 2 specified in the second input, a signed
integer value, and store the floating point result into a vector register. Compare with the ldexp() function in C.

D0.f16 = S0.f16 * 16'F(2.0F ** 32'I(S1.i16))

V_FMA_DX9_ZERO_F32 521

Multiply and add single-precision values. Follows DX9 rules where 0.0 times anything produces 0.0 (this is not
IEEE compliant).

if ((64'F(S0.f) == 0.0) || (64'F(S1.f) == 0.0)) then
    // DX9 rules, 0.0 * x = 0.0
    D0.f = S2.f
else
    D0.f = fma(S0.f, S1.f, S2.f)
endif

V_MAD_I32_I24 522

Multiply two signed 24-bit integers, add a signed 32-bit integer and store the result as a signed 32-bit integer.

D0.i = 32'I(S0.i24) * 32'I(S1.i24) + S2.i

Notes
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This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier.

V_MAD_U32_U24 523

Multiply two unsigned 24-bit integers, add an unsigned 32-bit integer and store the result as an unsigned 32-bit
integer.

D0.u = 32'U(S0.u24) * 32'U(S1.u24) + S2.u

Notes

This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier.

V_CUBEID_F32 524

Cubemap Face ID determination. Result is a floating point face ID.

// Set D0.f = cubemap face ID ({0.0, 1.0, ..., 5.0}).
// XYZ coordinate is given in (S0.f, S1.f, S2.f).
// S0.f = x
// S1.f = y
// S2.f = z
if ((abs(S2.f) >= abs(S0.f)) && (abs(S2.f) >= abs(S1.f))) then
    if S2.f < 0.0F then
        D0.f = 5.0F
    else
        D0.f = 4.0F
    endif
elsif abs(S1.f) >= abs(S0.f) then
    if S1.f < 0.0F then
        D0.f = 3.0F
    else
        D0.f = 2.0F
    endif
else
    if S0.f < 0.0F then
        D0.f = 1.0F
    else
        D0.f = 0.0F
    endif
endif

V_CUBESC_F32 525
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Cubemap S coordinate.

// D0.f = cubemap S coordinate.
// XYZ coordinate is given in (S0.f, S1.f, S2.f).
// S0.f = x
// S1.f = y
// S2.f = z
if ((abs(S2.f) >= abs(S0.f)) && (abs(S2.f) >= abs(S1.f))) then
    if S2.f < 0.0F then
        D0.f = -S0.f
    else
        D0.f = S0.f
    endif
elsif abs(S1.f) >= abs(S0.f) then
    D0.f = S0.f
else
    if S0.f < 0.0F then
        D0.f = S2.f
    else
        D0.f = -S2.f
    endif
endif

V_CUBETC_F32 526

Cubemap T coordinate.

// D0.f = cubemap T coordinate.
// XYZ coordinate is given in (S0.f, S1.f, S2.f).
// S0.f = x
// S1.f = y
// S2.f = z
if ((abs(S2.f) >= abs(S0.f)) && (abs(S2.f) >= abs(S1.f))) then
    D0.f = -S1.f
elsif abs(S1.f) >= abs(S0.f) then
    if S1.f < 0.0F then
        D0.f = -S2.f
    else
        D0.f = S2.f
    endif
else
    D0.f = -S1.f
endif

V_CUBEMA_F32 527

Determine cubemap major axis.
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// D0.f = 2.0 * cubemap major axis.
// XYZ coordinate is given in (S0.f, S1.f, S2.f).
// S0.f = x
// S1.f = y
// S2.f = z
if ((abs(S2.f) >= abs(S0.f)) && (abs(S2.f) >= abs(S1.f))) then
    D0.f = S2.f * 2.0F
elsif abs(S1.f) >= abs(S0.f) then
    D0.f = S1.f * 2.0F
else
    D0.f = S0.f * 2.0F
endif

V_BFE_U32 528

Bitfield extract. Extract unsigned bitfield from first operand using field offset in second operand and field size
in third operand.

D0.u = ((S0.u >> S1.u[4 : 0].u) & 32'U((1 << S2.u[4 : 0].u) - 1))

V_BFE_I32 529

Bitfield extract. Extract signed bitfield from first operand using field offset in second operand and field size in
third operand.

tmp = ((S0.i >> S1.u[4 : 0].u) & ((1 << S2.u[4 : 0].u) - 1));
D0.i = 32'I(signextFromBit(tmp.i, S2.i[4 : 0].i))

V_BFI_B32 530

Bitfield insert. Using a bitmask from the first operand, merge bitfield in second operand with packed value in
third operand.

D0.u = ((S0.u & S1.u) | (~S0.u & S2.u))

V_FMA_F32 531

Fused single precision multiply add.
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D0.f = fma(S0.f, S1.f, S2.f)

Notes

0.5ULP accuracy, denormals are supported.

V_FMA_F64 532

Fused double precision multiply add.

D0.f64 = fma(S0.f64, S1.f64, S2.f64)

Notes

0.5ULP precision, denormals are supported.

V_LERP_U8 533

Unsigned 8-bit pixel average on packed unsigned bytes (linear interpolation).

Each byte in S2 acts as a round mode; if the LSB is set then 0.5 rounds up, otherwise 0.5 truncates.

D0.u = 32'U((S0.u[31 : 24] + S1.u[31 : 24] + S2.u[24].u8) >> 1U << 24U);
D0.u += 32'U((S0.u[23 : 16] + S1.u[23 : 16] + S2.u[16].u8) >> 1U << 16U);
D0.u += 32'U((S0.u[15 : 8] + S1.u[15 : 8] + S2.u[8].u8) >> 1U << 8U);
D0.u += 32'U((S0.u[7 : 0] + S1.u[7 : 0] + S2.u[0].u8) >> 1U)

V_ALIGNBIT_B32 534

Align a value to the specified bit position.

D0.u = 32'U(({ S0.u, S1.u } >> S2.u[4 : 0].u) & 0xffffffffLL)

Notes

 S0 carries the MSBs and S1 carries the LSBs of the value being aligned.

V_ALIGNBYTE_B32 535
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Align a value to the specified byte position.

D0.u = 32'U(({ S0.u, S1.u } >> (S2.u[1 : 0].u * 8U)) & 0xffffffffLL)

Notes

 S0 carries the MSBs and S1 carries the LSBs of the value being aligned.

V_MULLIT_F32 536

Multiply for lighting. Specific rules apply: 0.0 * x = 0.0; specific INF, NAN, overflow rules.

if ((S1.f == -MAX_FLOAT_F32) || (64'F(S1.f) == -INF) || isNAN(64'F(S1.f)) || (S2.f <= 0.0F) ||
isNAN(64'F(S2.f))) then
    D0.f = -MAX_FLOAT_F32
else
    D0.f = S0.f * S1.f
endif

Notes

V_MIN3_F32 537

Return minimum single-precision value of three inputs.

D0.f = v_min_f32(v_min_f32(S0.f, S1.f), S2.f)

V_MIN3_I32 538

Return minimum signed integer value of three inputs.

D0.i = v_min_i32(v_min_i32(S0.i, S1.i), S2.i)

V_MIN3_U32 539

Return minimum unsigned integer value of three inputs.
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D0.u = v_min_u32(v_min_u32(S0.u, S1.u), S2.u)

V_MAX3_F32 540

Return maximum single precision value of three inputs.

D0.f = v_max_f32(v_max_f32(S0.f, S1.f), S2.f)

V_MAX3_I32 541

Return maximum signed integer value of three inputs.

D0.i = v_max_i32(v_max_i32(S0.i, S1.i), S2.i)

V_MAX3_U32 542

Return maximum unsigned integer value of three inputs.

D0.u = v_max_u32(v_max_u32(S0.u, S1.u), S2.u)

V_MED3_F32 543

Return median single precision value of three inputs.

if (isNAN(64'F(S0.f)) || isNAN(64'F(S1.f)) || isNAN(64'F(S2.f))) then
    D0.f = v_min3_f32(S0.f, S1.f, S2.f)
elsif v_max3_f32(S0.f, S1.f, S2.f) == S0.f then
    D0.f = v_max_f32(S1.f, S2.f)
elsif v_max3_f32(S0.f, S1.f, S2.f) == S1.f then
    D0.f = v_max_f32(S0.f, S2.f)
else
    D0.f = v_max_f32(S0.f, S1.f)
endif

V_MED3_I32 544
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Return median signed integer value of three inputs.

if v_max3_i32(S0.i, S1.i, S2.i) == S0.i then
    D0.i = v_max_i32(S1.i, S2.i)
elsif v_max3_i32(S0.i, S1.i, S2.i) == S1.i then
    D0.i = v_max_i32(S0.i, S2.i)
else
    D0.i = v_max_i32(S0.i, S1.i)
endif

V_MED3_U32 545

Return median unsigned integer value of three inputs.

if v_max3_u32(S0.u, S1.u, S2.u) == S0.u then
    D0.u = v_max_u32(S1.u, S2.u)
elsif v_max3_u32(S0.u, S1.u, S2.u) == S1.u then
    D0.u = v_max_u32(S0.u, S2.u)
else
    D0.u = v_max_u32(S0.u, S1.u)
endif

V_SAD_U8 546

Sum of absolute differences with accumulation, overflow into upper bits is allowed.

ABSDIFF = lambda(x, y) (
    x > y ? x - y : y - x);
// UNSIGNED comparison
D0.u = S2.u;
D0.u += 32'U(ABSDIFF(S0.u[31 : 24], S1.u[31 : 24]));
D0.u += 32'U(ABSDIFF(S0.u[23 : 16], S1.u[23 : 16]));
D0.u += 32'U(ABSDIFF(S0.u[15 : 8], S1.u[15 : 8]));
D0.u += 32'U(ABSDIFF(S0.u[7 : 0], S1.u[7 : 0]))

V_SAD_HI_U8 547

Sum of absolute differences with accumulation, accumulate from the higher-order bits of the third source
operand.

D0.u = (32'U(v_sad_u8(S0, S1, 0U)) << 16U) + S2.u
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V_SAD_U16 548

Short SAD with accumulation.

ABSDIFF = lambda(x, y) (
    x > y ? x - y : y - x);
// UNSIGNED comparison
D0.u = S2.u;
D0.u += ABSDIFF(S0[31 : 16].u16, S1[31 : 16].u16);
D0.u += ABSDIFF(S0[15 : 0].u16, S1[15 : 0].u16)

V_SAD_U32 549

Dword SAD with accumulation.

ABSDIFF = lambda(x, y) (
    x > y ? x - y : y - x);
// UNSIGNED comparison
D0.u = ABSDIFF(S0.u, S1.u) + S2.u

V_CVT_PK_U8_F32 550

Packed float to byte conversion.

Convert floating point value S0 to 8-bit unsigned integer and pack the result into byte S1 of dword S2.

D0.u = (S2.u & 32'U(~(0xff << (S1.u[1 : 0].u * 8U))));
D0.u = (D0.u | ((32'U(f32_to_u8(S0.f)) & 255U) << (S1.u[1 : 0].u * 8U)))

V_DIV_FIXUP_F32 551

Single precision division fixup.

S0 = Quotient, S1 = Denominator, S2 = Numerator.

Given a numerator, denominator, and quotient from a divide, this opcode detects and applies specific case
numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by
zero exceptions caused by the division.

sign_out = (sign(S1.f) ^ sign(S2.f));
if isNAN(64'F(S2.f)) then
    D0.f = 32'F(cvtToQuietNAN(64'F(S2.f)))
elsif isNAN(64'F(S1.f)) then
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    D0.f = 32'F(cvtToQuietNAN(64'F(S1.f)))
elsif ((64'F(S1.f) == 0.0) && (64'F(S2.f) == 0.0)) then
    // 0/0
    D0.f = 32'F(0xffc00000)
elsif ((64'F(abs(S1.f)) == +INF) && (64'F(abs(S2.f)) == +INF)) then
    // inf/inf
    D0.f = 32'F(0xffc00000)
elsif ((64'F(S1.f) == 0.0) || (64'F(abs(S2.f)) == +INF)) then
    // x/0, or inf/y
    D0.f = sign_out ? -INF.f : +INF.f
elsif ((64'F(abs(S1.f)) == +INF) || (64'F(S2.f) == 0.0)) then
    // x/inf, 0/y
    D0.f = sign_out ? -0.0F : 0.0F
elsif exponent(S2.f) - exponent(S1.f) < -150 then
    D0.f = sign_out ? -UNDERFLOW_F32 : UNDERFLOW_F32
elsif exponent(S1.f) == 255 then
    D0.f = sign_out ? -OVERFLOW_F32 : OVERFLOW_F32
else
    D0.f = sign_out ? -abs(S0.f) : abs(S0.f)
endif

V_DIV_FIXUP_F64 552

Double precision division fixup.

S0 = Quotient, S1 = Denominator, S2 = Numerator.

Given a numerator, denominator, and quotient from a divide, this opcode detects and applies specific case
numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by
zero exceptions caused by the division.

sign_out = (sign(S1.f64) ^ sign(S2.f64));
if isNAN(S2.f64) then
    D0.f64 = cvtToQuietNAN(S2.f64)
elsif isNAN(S1.f64) then
    D0.f64 = cvtToQuietNAN(S1.f64)
elsif ((S1.f64 == 0.0) && (S2.f64 == 0.0)) then
    // 0/0
    D0.f64 = 64'F(0xfff8000000000000LL)
elsif ((abs(S1.f64) == +INF) && (abs(S2.f64) == +INF)) then
    // inf/inf
    D0.f64 = 64'F(0xfff8000000000000LL)
elsif ((S1.f64 == 0.0) || (abs(S2.f64) == +INF)) then
    // x/0, or inf/y
    D0.f64 = sign_out ? -INF : +INF
elsif ((abs(S1.f64) == +INF) || (S2.f64 == 0.0)) then
    // x/inf, 0/y
    D0.f64 = sign_out ? -0.0 : 0.0
elsif exponent(S2.f64) - exponent(S1.f64) < -1075 then
    D0.f64 = sign_out ? -UNDERFLOW_F64 : UNDERFLOW_F64
elsif exponent(S1.f64) == 2047 then
    D0.f64 = sign_out ? -OVERFLOW_F64 : OVERFLOW_F64
else
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    D0.f64 = sign_out ? -abs(S0.f64) : abs(S0.f64)
endif

V_DIV_FMAS_F32 567

Single precision FMA with fused scale.

This opcode performs a standard Fused Multiply-Add operation and conditionally scales the resulting exponent
if VCC is set.

if VCC.u64[laneId] then
    D0.f = 2.0F ** 32 * fma(S0.f, S1.f, S2.f)
else
    D0.f = fma(S0.f, S1.f, S2.f)
endif

Notes

Input denormals are not flushed, but output flushing is allowed.

V_DIV_FMAS_F64 568

Double precision FMA with fused scale.

This opcode performs a standard Fused Multiply-Add operation and conditionally scales the resulting exponent
if VCC is set.

if VCC.u64[laneId] then
    D0.f64 = 2.0 ** 64 * fma(S0.f64, S1.f64, S2.f64)
else
    D0.f64 = fma(S0.f64, S1.f64, S2.f64)
endif

Notes

Input denormals are not flushed, but output flushing is allowed.

V_MSAD_U8 569

Masked sum of absolute differences with accumulation, overflow into upper bits is allowed.

Components where the reference value in S1 is zero are not included in the sum.

ABSDIFF = lambda(x, y) (
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    x > y ? x - y : y - x);
// UNSIGNED comparison
D0.u = S2.u;
D0.u += S1.u[31 : 24] == 8'0U ? 0U : 32'U(ABSDIFF(S0.u[31 : 24], S1.u[31 : 24]));
D0.u += S1.u[23 : 16] == 8'0U ? 0U : 32'U(ABSDIFF(S0.u[23 : 16], S1.u[23 : 16]));
D0.u += S1.u[15 : 8] == 8'0U ? 0U : 32'U(ABSDIFF(S0.u[15 : 8], S1.u[15 : 8]));
D0.u += S1.u[7 : 0] == 8'0U ? 0U : 32'U(ABSDIFF(S0.u[7 : 0], S1.u[7 : 0]))

V_QSAD_PK_U16_U8 570

Quad-byte SAD with 16-bit packed accumulation.

D0[63 : 48] = 16'B(v_sad_u8(S0[55 : 24], S1[31 : 0], S2[63 : 48].u));
D0[47 : 32] = 16'B(v_sad_u8(S0[47 : 16], S1[31 : 0], S2[47 : 32].u));
D0[31 : 16] = 16'B(v_sad_u8(S0[39 : 8], S1[31 : 0], S2[31 : 16].u));
D0[15 : 0] = 16'B(v_sad_u8(S0[31 : 0], S1[31 : 0], S2[15 : 0].u))

V_MQSAD_PK_U16_U8 571

Quad-byte masked SAD with 16-bit packed accumulation.

D0[63 : 48] = 16'B(v_msad_u8(S0[55 : 24], S1[31 : 0], S2[63 : 48].u));
D0[47 : 32] = 16'B(v_msad_u8(S0[47 : 16], S1[31 : 0], S2[47 : 32].u));
D0[31 : 16] = 16'B(v_msad_u8(S0[39 : 8], S1[31 : 0], S2[31 : 16].u));
D0[15 : 0] = 16'B(v_msad_u8(S0[31 : 0], S1[31 : 0], S2[15 : 0].u))

V_MQSAD_U32_U8 573

Quad-byte masked SAD with 32-bit packed accumulation.

D0[127 : 96] = 32'B(v_msad_u8(S0[55 : 24], S1[31 : 0], S2[127 : 96].u));
D0[95 : 64] = 32'B(v_msad_u8(S0[47 : 16], S1[31 : 0], S2[95 : 64].u));
D0[63 : 32] = 32'B(v_msad_u8(S0[39 : 8], S1[31 : 0], S2[63 : 32].u));
D0[31 : 0] = 32'B(v_msad_u8(S0[31 : 0], S1[31 : 0], S2[31 : 0].u))

V_XOR3_B32 576

Calculate the bitwise XOR of three vector inputs and store the result into a vector register.

D0.u = (S0.u ^ S1.u ^ S2.u)
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Notes

Input and output modifiers not supported.

V_MAD_U16 577

Multiply and add three unsigned short values.

D0.u16 = S0.u16 * S1.u16 + S2.u16

Notes

Supports saturation (unsigned 16-bit integer domain).

V_PERM_B32 580

Permute a 64-bit value constructed from two vector inputs using a per-lane selector and store the result into a
vector register.

BYTE_PERMUTE = lambda(data, sel) (
    declare in : 8'B[8];
    for i in 0 : 7 do
        in[i] = data[i * 8 + 7 : i * 8].b8
    endfor;
    if sel.u >= 13U then
        return 8'0xff
    elsif sel.u == 12U then
        return 8'0x0
    elsif sel.u == 11U then
        return in[7][7].b8 * 8'0xff
    elsif sel.u == 10U then
        return in[5][7].b8 * 8'0xff
    elsif sel.u == 9U then
        return in[3][7].b8 * 8'0xff
    elsif sel.u == 8U then
        return in[1][7].b8 * 8'0xff
    else
        return in[sel]
    endif);
D0[31 : 24] = BYTE_PERMUTE({ S0.u, S1.u }, S2.u[31 : 24]);
D0[23 : 16] = BYTE_PERMUTE({ S0.u, S1.u }, S2.u[23 : 16]);
D0[15 : 8] = BYTE_PERMUTE({ S0.u, S1.u }, S2.u[15 : 8]);
D0[7 : 0] = BYTE_PERMUTE({ S0.u, S1.u }, S2.u[7 : 0])

Notes

Selects 8 through 11 are useful in modeling sign extension of a smaller-precision signed integer to a larger-
precision result.
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Note the MSBs of the 64-bit value being selected are stored in S0. This is counterintuitive for a little-endian
architecture.

V_XAD_U32 581

Calculate bitwise XOR of the first two vector inputs, then add the third vector input to the intermediate result,
then store the result into a vector register.

D0.u = (S0.u ^ S1.u) + S2.u

Notes

No carryin/carryout and no saturation. This opcode is designed to help accelerate the SHA256 hash algorithm.

V_LSHL_ADD_U32 582

Given a shift count in the second input, calculate the logical shift left of the first input, then add the third input
to the intermediate result, then store the final result into a vector register.

D0.u = (S0.u << S1.u[4 : 0].u) + S2.u

V_ADD_LSHL_U32 583

Add the first two integer inputs, then given a shift count in the third input, calculate the logical shift left of the
intermediate result, then store the final result into a vector register.

D0.u = ((S0.u + S1.u) << S2.u[4 : 0].u)

V_FMA_F16 584

Fused half precision multiply add.

D0.f16 = fma(S0.f16, S1.f16, S2.f16)

Notes

0.5ULP accuracy, denormals are supported.
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V_MIN3_F16 585

Return minimum FP16 value of three inputs.

D0.f16 = v_min_f16(v_min_f16(S0.f16, S1.f16), S2.f16)

V_MIN3_I16 586

Return minimum signed short value of three inputs.

D0.i16 = v_min_i16(v_min_i16(S0.i16, S1.i16), S2.i16)

V_MIN3_U16 587

Return minimum unsigned short value of three inputs.

D0.u16 = v_min_u16(v_min_u16(S0.u16, S1.u16), S2.u16)

V_MAX3_F16 588

Return maximum FP16 value of three inputs.

D0.f16 = v_max_f16(v_max_f16(S0.f16, S1.f16), S2.f16)

V_MAX3_I16 589

Return maximum signed short value of three inputs.

D0.i16 = v_max_i16(v_max_i16(S0.i16, S1.i16), S2.i16)

V_MAX3_U16 590

Return maximum unsigned short value of three inputs.
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D0.u16 = v_max_u16(v_max_u16(S0.u16, S1.u16), S2.u16)

V_MED3_F16 591

Return median FP16 value of three inputs.

if (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)) || isNAN(64'F(S2.f16))) then
    D0.f16 = v_min3_f16(S0.f16, S1.f16, S2.f16)
elsif v_max3_f16(S0.f16, S1.f16, S2.f16) == S0.f16 then
    D0.f16 = v_max_f16(S1.f16, S2.f16)
elsif v_max3_f16(S0.f16, S1.f16, S2.f16) == S1.f16 then
    D0.f16 = v_max_f16(S0.f16, S2.f16)
else
    D0.f16 = v_max_f16(S0.f16, S1.f16)
endif

V_MED3_I16 592

Return median signed short value of three inputs.

if v_max3_i16(S0.i16, S1.i16, S2.i16) == S0.i16 then
    D0.i16 = v_max_i16(S1.i16, S2.i16)
elsif v_max3_i16(S0.i16, S1.i16, S2.i16) == S1.i16 then
    D0.i16 = v_max_i16(S0.i16, S2.i16)
else
    D0.i16 = v_max_i16(S0.i16, S1.i16)
endif

V_MED3_U16 593

Return median unsigned short value of three inputs.

if v_max3_u16(S0.u16, S1.u16, S2.u16) == S0.u16 then
    D0.u16 = v_max_u16(S1.u16, S2.u16)
elsif v_max3_u16(S0.u16, S1.u16, S2.u16) == S1.u16 then
    D0.u16 = v_max_u16(S0.u16, S2.u16)
else
    D0.u16 = v_max_u16(S0.u16, S1.u16)
endif

V_MAD_I16 595
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Multiply and add three signed short values.

D0.i16 = S0.i16 * S1.i16 + S2.i16

Notes

Supports saturation (signed 16-bit integer domain).

V_DIV_FIXUP_F16 596

Half precision division fixup.

S0 = Quotient, S1 = Denominator, S2 = Numerator.

Given a numerator, denominator, and quotient from a divide, this opcode detects and applies specific case
numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by
zero exceptions caused by the division.

sign_out = (sign(S1.f16) ^ sign(S2.f16));
if isNAN(64'F(S2.f16)) then
    D0.f16 = 16'F(cvtToQuietNAN(64'F(S2.f16)))
elsif isNAN(64'F(S1.f16)) then
    D0.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
elsif ((64'F(S1.f16) == 0.0) && (64'F(S2.f16) == 0.0)) then
    // 0/0
    D0.f16 = 16'F(0xfe00)
elsif ((64'F(abs(S1.f16)) == +INF) && (64'F(abs(S2.f16)) == +INF)) then
    // inf/inf
    D0.f16 = 16'F(0xfe00)
elsif ((64'F(S1.f16) == 0.0) || (64'F(abs(S2.f16)) == +INF)) then
    // x/0, or inf/y
    D0.f16 = sign_out ? -INF.f16 : +INF.f16
elsif ((64'F(abs(S1.f16)) == +INF) || (64'F(S2.f16) == 0.0)) then
    // x/inf, 0/y
    D0.f16 = sign_out ? -16'0.0 : 16'0.0
else
    D0.f16 = sign_out ? -abs(S0.f16) : abs(S0.f16)
endif

V_ADD3_U32 597

Add three unsigned integers.

D0.u = S0.u + S1.u + S2.u
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V_LSHL_OR_B32 598

Given a shift count in the second input, calculate the logical shift left of the first input, then calculate the
bitwise OR of the intermediate result and the third input, then store the final result into a vector register.

D0.u = ((S0.u << S1.u[4 : 0].u) | S2.u)

V_AND_OR_B32 599

Calculate bitwise AND on the first two vector inputs, then compute the bitwise OR of the intermediate result
and the third vector input, then store the result into a vector register.

D0.u = ((S0.u & S1.u) | S2.u)

Notes

Input and output modifiers not supported.

V_OR3_B32 600

Calculate the bitwise OR of three vector inputs and store the result into a vector register.

D0.u = (S0.u | S1.u | S2.u)

Notes

Input and output modifiers not supported.

V_MAD_U32_U16 601

Multiply and add unsigned values.

D0.u = 32'U(S0.u16) * 32'U(S1.u16) + S2.u

V_MAD_I32_I16 602

Multiply and add signed values.
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D0.i = 32'I(S0.i16) * 32'I(S1.i16) + S2.i

V_PERMLANE16_B32 603

Perform arbitrary gather-style operation within a row (16 contiguous lanes).

The first source must be a VGPR and the second and third sources must be scalar values; the second and third
source are combined into a single 64-bit value representing lane selects used to swizzle within each row.

OPSEL is not used in its typical manner for this instruction. For this instruction OPSEL[0] is overloaded to
represent the DPP 'FI' (Fetch Inactive) bit and OPSEL[1] is overloaded to represent the DPP 'BOUND_CTRL' bit.
The remaining OPSEL bits are reserved for this instruction.

Compare with V_PERMLANEX16_B32.

declare tmp : 32'B[64];
lanesel = { S2.u, S1.u };
// Concatenate lane select bits
for i in 0 : WAVE32 ? 31 : 63 do
    // Copy original S0 in case D==S0
    tmp[i] = VGPR[i][SRC0.u]
endfor;
for row in 0 : WAVE32 ? 1 : 3 do
    // Implement arbitrary swizzle within each row
    for i in 0 : 15 do
        if EXEC[row * 16 + i].u1 then
            VGPR[row * 16 + i][VDST.u] = tmp[64'B(row * 16) + lanesel[i * 4 + 3 : i * 4]]
        endif
    endfor
endfor

Notes

ABS, NEG and OMOD modifiers should all be zeroed for this instruction.

Example implementing a rotation within each row:

v_mov_b32 s0, 0x87654321;
v_mov_b32 s1, 0x0fedcba9;
v_permlane16_b32 v1, v0, s0, s1;
// ROW 0:
// v1.lane[0] <- v0.lane[1]
// v1.lane[1] <- v0.lane[2]
// ...
// v1.lane[14] <- v0.lane[15]
// v1.lane[15] <- v0.lane[0]
//
// ROW 1:
// v1.lane[16] <- v0.lane[17]
// v1.lane[17] <- v0.lane[18]
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// ...
// v1.lane[30] <- v0.lane[31]
// v1.lane[31] <- v0.lane[16]

V_PERMLANEX16_B32 604

Perform arbitrary gather-style operation across two rows (each row is 16 contiguous lanes).

The first source must be a VGPR and the second and third sources must be scalar values; the second and third
source are combined into a single 64-bit value representing lane selects used to swizzle within each row.

OPSEL is not used in its typical manner for this instruction. For this instruction OPSEL[0] is overloaded to
represent the DPP 'FI' (Fetch Inactive) bit and OPSEL[1] is overloaded to represent the DPP 'BOUND_CTRL' bit.
The remaining OPSEL bits are reserved for this instruction.

Compare with V_PERMLANE16_B32.

declare tmp : 32'B[64];
lanesel = { S2.u, S1.u };
// Concatenate lane select bits
for i in 0 : WAVE32 ? 31 : 63 do
    // Copy original S0 in case D==S0
    tmp[i] = VGPR[i][SRC0.u]
endfor;
for row in 0 : WAVE32 ? 1 : 3 do
    // Implement arbitrary swizzle across two rows
    altrow = { row[1], ~row[0] };
    // 1<->0, 3<->2
    for i in 0 : 15 do
        if EXEC[row * 16 + i].u1 then
            VGPR[row * 16 + i][VDST.u] = tmp[64'B(altrow.i * 16) + lanesel[i * 4 + 3 : i * 4]]
        endif
    endfor
endfor

Notes

ABS, NEG and OMOD modifiers should all be zeroed for this instruction.

Example implementing a rotation across an entire wave32 wavefront:

// Note for this to work, source and destination VGPRs must be different.
// For this rotation, lane 15 gets data from lane 16, lane 31 gets data from lane 0.
// These are the only two lanes that need to use v_permlanex16_b32.

 // Enable only the threads that get data from their own row.
v_mov_b32 exec_lo, 0x7fff7fff; // Lanes getting data from their own row
v_mov_b32 s0, 0x87654321;
v_mov_b32 s1, 0x0fedcba9;
v_permlane16_b32 v1, v0, s0, s1 fi; // FI bit needed for lanes 14 and 30
// ROW 0:
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// v1.lane[0] <- v0.lane[1]
// v1.lane[1] <- v0.lane[2]
// ...
// v1.lane[14] <- v0.lane[15] (needs FI to read)
// v1.lane[15] unset
//
// ROW 1:
// v1.lane[16] <- v0.lane[17]
// v1.lane[17] <- v0.lane[18]
// ...
// v1.lane[30] <- v0.lane[31] (needs FI to read)
// v1.lane[31] unset

// Enable only the threads that get data from the other row.
v_mov_b32 exec_lo, 0x80008000; // Lanes getting data from the other row
v_permlanex16_b32 v1, v0, s0, s1 fi; // FI bit needed for lanes 15 and 31
// v1.lane[15] <- v0.lane[16]
// v1.lane[31] <- v0.lane[0]

V_CNDMASK_B16 605

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

D0.u16 = VCC.u64[laneId] ? S1.u16 : S0.u16

Notes

In VOP3 the VCC source may be a scalar GPR specified in S2.

Floating-point modifiers are valid for this instruction if S0 and S1 are 16-bit floating point values. This
instruction is suitable for negating or taking the absolute value of a floating-point value.

V_MAXMIN_F32 606

Compute maximum of first two operands, followed by minimum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

D0.f = v_min_f32(v_max_f32(S0.f, S1.f), S2.f)

Notes

Support input denorm control, allow output denorm value. Exceptions are supported. Note: +0.0 > -0.0 is true.
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V_MINMAX_F32 607

Compute minimum of first two operands, followed by maximum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's minBound > maxBound.

D0.f = v_max_f32(v_min_f32(S0.f, S1.f), S2.f)

Notes

Support input denorm control, allow output denorm value. Exceptions are supported. Note: +0.0 > -0.0 is true.

V_MAXMIN_F16 608

Compute maximum of first two operands, followed by minimum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

D0.f16 = v_min_f16(v_max_f16(S0.f16, S1.f16), S2.f16)

Notes

Support input denorm control, allow output denorm value. Exceptions are supported. Note: +0.0 > -0.0 is true.

V_MINMAX_F16 609

Compute minimum of first two operands, followed by maximum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

D0.f16 = v_max_f16(v_min_f16(S0.f16, S1.f16), S2.f16)

Notes

Support input denorm control, allow output denorm value. Exceptions are supported. Note: +0.0 > -0.0 is true.

V_MAXMIN_U32 610

Compute maximum of first two operands, followed by minimum of that result and the third operand.
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This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

D0.i = 32'I(v_min_u32(v_max_u32(S0.u, S1.u), S2.u))

V_MINMAX_U32 611

Compute minimum of first two operands, followed by maximum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

D0.i = 32'I(v_max_u32(v_min_u32(S0.u, S1.u), S2.u))

V_MAXMIN_I32 612

Compute maximum of first two operands, followed by minimum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

D0.i = v_min_i32(v_max_i32(S0.i, S1.i), S2.i)

V_MINMAX_I32 613

Compute minimum of first two operands, followed by maximum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

D0.i = v_max_i32(v_min_i32(S0.i, S1.i), S2.i)

V_DOT2_F16_F16 614

Dot product of packed FP16 values.

tmp = S0[15 : 0].f16 * S1[15 : 0].f16;
tmp += S0[31 : 16].f16 * S1[31 : 16].f16;
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tmp += S2.f16;
D0.f16 = tmp

Notes

OPSEL[2] controls which half of S2 is read and OPSEL[3] controls which half of D is written; OPSEL[1:0] are
ignored.

V_DOT2_BF16_BF16 615

Dot product of packed brain-float values.

tmp = S0[15 : 0].bf16 * S1[15 : 0].bf16;
tmp += S0[31 : 16].bf16 * S1[31 : 16].bf16;
tmp += S2.bf16;
D0.bf16 = tmp

Notes

OPSEL[2] controls which half of S2 is read and OPSEL[3] controls which half of D is written; OPSEL[1:0] are
ignored.

V_DIV_SCALE_F32 764

Single precision division pre-scale.

S0 = Input to scale (either denominator or numerator), S1 = Denominator, S2 = Numerator.

Given a numerator and denominator, this opcode appropriately scales inputs for division to avoid subnormal
terms during Newton-Raphson correction method. S0 must be the same value as either S1 or S2.

This opcode produces a VCC flag for post-scaling of the quotient (using V_DIV_FMAS_F32).

VCC = 0x0LL;
if ((64'F(S2.f) == 0.0) || (64'F(S1.f) == 0.0)) then
    D0.f = NAN.f
elsif exponent(S2.f) - exponent(S1.f) >= 96 then
    // N/D near MAX_FLOAT_F32
    VCC = 0x1LL;
    if S0.f == S1.f then
        // Only scale the denominator
        D0.f = ldexp(S0.f, 64)
    endif
elsif S1.f == DENORM.f then
    D0.f = ldexp(S0.f, 64)
elsif ((1.0 / 64'F(S1.f) == DENORM.f64) && (S2.f / S1.f == DENORM.f)) then
    VCC = 0x1LL;
    if S0.f == S1.f then
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        // Only scale the denominator
        D0.f = ldexp(S0.f, 64)
    endif
elsif 1.0 / 64'F(S1.f) == DENORM.f64 then
    D0.f = ldexp(S0.f, -64)
elsif S2.f / S1.f == DENORM.f then
    VCC = 0x1LL;
    if S0.f == S2.f then
        // Only scale the numerator
        D0.f = ldexp(S0.f, 64)
    endif
elsif exponent(S2.f) <= 23 then
    // Numerator is tiny
    D0.f = ldexp(S0.f, 64)
endif

V_DIV_SCALE_F64 765

Double precision division pre-scale.

S0 = Input to scale (either denominator or numerator), S1 = Denominator, S2 = Numerator.

Given a numerator and denominator, this opcode appropriately scales inputs for division to avoid subnormal
terms during Newton-Raphson correction method. S0 must be the same value as either S1 or S2.

This opcode produces a VCC flag for post-scaling of the quotient (using V_DIV_FMAS_F64).

VCC = 0x0LL;
if ((S2.f64 == 0.0) || (S1.f64 == 0.0)) then
    D0.f64 = NAN.f64
elsif exponent(S2.f64) - exponent(S1.f64) >= 768 then
    // N/D near MAX_FLOAT_F64
    VCC = 0x1LL;
    if S0.f64 == S1.f64 then
        // Only scale the denominator
        D0.f64 = ldexp(S0.f64, 128)
    endif
elsif S1.f64 == DENORM.f64 then
    D0.f64 = ldexp(S0.f64, 128)
elsif ((1.0 / S1.f64 == DENORM.f64) && (S2.f64 / S1.f64 == DENORM.f64)) then
    VCC = 0x1LL;
    if S0.f64 == S1.f64 then
        // Only scale the denominator
        D0.f64 = ldexp(S0.f64, 128)
    endif
elsif 1.0 / S1.f64 == DENORM.f64 then
    D0.f64 = ldexp(S0.f64, -128)
elsif S2.f64 / S1.f64 == DENORM.f64 then
    VCC = 0x1LL;
    if S0.f64 == S2.f64 then
        // Only scale the numerator
        D0.f64 = ldexp(S0.f64, 128)
    endif
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elsif exponent(S2.f64) <= 53 then
    // Numerator is tiny
    D0.f64 = ldexp(S0.f64, 128)
endif

V_MAD_U64_U32 766

Multiply two unsigned integer inputs, add a third unsigned integer input, store the result into a 64-bit vector
register and store the overflow/carryout into a scalar mask register.

{ D1.u1, D0.u64 } = 65'B(65'U(S0.u) * 65'U(S1.u) + 65'U(S2.u64))

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair.

V_MAD_I64_I32 767

Multiply two signed integer inputs, add a third signed integer input, store the result into a 64-bit vector register
and store the overflow/carryout into a scalar mask register.

{ D1.i1, D0.i64 } = 65'B(65'I(S0.i) * 65'I(S1.i) + 65'I(S2.i64))

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair.

V_ADD_CO_U32 768

Add two unsigned inputs, store the result into a vector register and store the carry-out mask into a scalar
register.

tmp = 64'U(S0.u) + 64'U(S1.u);
VCC.u64[laneId] = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// VCC is an UNSIGNED overflow/carry-out for V_ADD_CO_CI_U32.
D0.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair.

Supports saturation (unsigned 32-bit integer domain).
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V_SUB_CO_U32 769

Subtract the second unsigned input from the first input, store the result into a vector register and store the
carry-out mask into a scalar register.

tmp = S0.u - S1.u;
VCC.u64[laneId] = S1.u > S0.u ? 1'1U : 1'0U;
// VCC is an UNSIGNED overflow/carry-out for V_SUB_CO_CI_U32.
D0.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair.

Supports saturation (unsigned 32-bit integer domain).

V_SUBREV_CO_U32 770

Subtract the first unsigned input from the second input, store the result into a vector register and store the
carry-out mask into a scalar register.

tmp = S1.u - S0.u;
VCC.u64[laneId] = S0.u > S1.u ? 1'1U : 1'0U;
// VCC is an UNSIGNED overflow/carry-out for V_SUB_CO_CI_U32.
D0.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair.

Supports saturation (unsigned 32-bit integer domain).

V_ADD_NC_U16 771

Add two unsigned inputs and store the result into a vector register. No carry-in or carry-out support.

D0.u16 = S0.u16 + S1.u16

Notes

Supports saturation (unsigned 16-bit integer domain).
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V_SUB_NC_U16 772

Subtract the second unsigned input from the first input and store the result into a vector register. No carry-in
or carry-out support.

D0.u16 = S0.u16 - S1.u16

Notes

Supports saturation (unsigned 16-bit integer domain).

V_MUL_LO_U16 773

Multiply two unsigned inputs and store the low bits of the result into a vector register.

D0.u16 = S0.u16 * S1.u16

Notes

Supports saturation (unsigned 16-bit integer domain).

V_CVT_PK_I16_F32 774

Convert two single-precision floats into a packed value of signed words.

D0[31 : 16] = 16'B(v_cvt_i16_f32(S1.f));
D0[15 : 0] = 16'B(v_cvt_i16_f32(S0.f))

V_CVT_PK_U16_F32 775

Convert two single-precision floats into a packed value of unsigned words.

D0[31 : 16] = 16'B(v_cvt_u16_f32(S1.f));
D0[15 : 0] = 16'B(v_cvt_u16_f32(S0.f))

V_MAX_U16 777

Select the maximum of two unsigned integers and store the selected value into a vector register.
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D0.u16 = S0.u16 >= S1.u16 ? S0.u16 : S1.u16

V_MAX_I16 778

Select the maximum of two signed integers and store the selected value into a vector register.

D0.i16 = S0.i16 >= S1.i16 ? S0.i16 : S1.i16

V_MIN_U16 779

Select the minimum of two unsigned integers and store the selected value into a vector register.

D0.u16 = S0.u16 < S1.u16 ? S0.u16 : S1.u16

V_MIN_I16 780

Select the minimum of two signed integers and store the selected value into a vector register.

D0.i16 = S0.i16 < S1.i16 ? S0.i16 : S1.i16

V_ADD_NC_I16 781

Add two signed inputs and store the result into a vector register. No carry-in or carry-out support.

D0.i16 = S0.i16 + S1.i16

Notes

Supports saturation (signed 16-bit integer domain).

V_SUB_NC_I16 782

Subtract the second signed input from the first input and store the result into a vector register. No carry-in or
carry-out support.
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D0.i16 = S0.i16 - S1.i16

Notes

Supports saturation (signed 16-bit integer domain).

V_PACK_B32_F16 785

Pack two FP16 values together.

D0[31 : 16].f16 = S1.f16;
D0[15 : 0].f16 = S0.f16

V_CVT_PK_NORM_I16_F16 786

Convert two FP16 values into packed signed normalized shorts.

D0[15 : 0].i16 = f16_to_snorm(S0[15 : 0].f16);
D0[31 : 16].i16 = f16_to_snorm(S1[15 : 0].f16)

V_CVT_PK_NORM_U16_F16 787

Convert two FP16 values into packed unsigned normalized shorts.

D0[15 : 0].u16 = f16_to_unorm(S0[15 : 0].f16);
D0[31 : 16].u16 = f16_to_unorm(S1[15 : 0].f16)

V_LDEXP_F32 796

Multiply the first input, a floating point value, by an integral power of 2 specified in the second input, a signed
integer value, and store the floating point result into a vector register. Compare with the ldexp() function in C.

D0.f = S0.f * 2.0F ** S1.i

V_BFM_B32 797
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Bitfield modify.

S0 is the bitfield width and S1 is the bitfield offset.

D0.u = 32'U(((1 << S0[4 : 0].u) - 1) << S1[4 : 0].u)

V_BCNT_U32_B32 798

Count the number of "1" bits in the vector input and store the result into a vector register.

D0.u = S1.u;
for i in 0 : 31 do
    D0.u += S0[i].u;
    // count i'th bit
endfor

V_MBCNT_LO_U32_B32 799

Masked bit count.

laneId is the position of this thread in the wavefront (in 0..63). See also V_MBCNT_HI_U32_B32.

ThreadMask = (1LL << laneId.u) - 1LL;
MaskedValue = (S0.u & ThreadMask[31 : 0].u);
D0.u = S1.u;
for i in 0 : 31 do
    D0.u += MaskedValue[i] == 1'1U ? 1U : 0U
endfor

V_MBCNT_HI_U32_B32 800

Masked bit count, high pass.

laneId is the position of this thread in the wavefront (in 0..63). See also V_MBCNT_LO_U32_B32.

ThreadMask = (1LL << laneId.u) - 1LL;
MaskedValue = (S0.u & ThreadMask[63 : 32].u);
D0.u = S1.u;
for i in 0 : 31 do
    D0.u += MaskedValue[i] == 1'1U ? 1U : 0U
endfor
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Notes

Note that in Wave32 mode ThreadMask[63:32] == 0 and this instruction simply performs a move from S1 to D.

Example to compute each thread's position in 0..63:

    v_mbcnt_lo_u32_b32 v0, -1, 0
    v_mbcnt_hi_u32_b32 v0, -1, v0
    // v0 now contains laneId

V_CVT_PK_NORM_I16_F32 801

Convert two single-precision floats into a packed signed normalized value.

D0[15 : 0].i16 = f32_to_snorm(S0.f);
D0[31 : 16].i16 = f32_to_snorm(S1.f)

V_CVT_PK_NORM_U16_F32 802

Convert two single-precision floats into a packed unsigned normalized value.

D0[15 : 0].u16 = f32_to_unorm(S0.f);
D0[31 : 16].u16 = f32_to_unorm(S1.f)

V_CVT_PK_U16_U32 803

Convert two unsigned integers into a packed unsigned short.

D0[15 : 0].u16 = u32_to_u16(S0.u);
D0[31 : 16].u16 = u32_to_u16(S1.u)

V_CVT_PK_I16_I32 804

Convert two signed integers into a packed signed short.

D0[15 : 0].i16 = i32_to_i16(S0.i);
D0[31 : 16].i16 = i32_to_i16(S1.i)
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V_SUB_NC_I32 805

Subtract the second signed input from the first input and store the result into a vector register. No carry-in or
carry-out support.

D0.i = S0.i - S1.i

Notes

Supports saturation (signed 32-bit integer domain).

V_ADD_NC_I32 806

Add two signed inputs and store the result into a vector register. No carry-in or carry-out support.

D0.i = S0.i + S1.i

Notes

Supports saturation (signed 32-bit integer domain).

V_ADD_F64 807

Add two floating point inputs and store the result into a vector register.

D0.f64 = S0.f64 + S1.f64

Notes

0.5ULP precision, denormals are supported.

V_MUL_F64 808

Multiply two floating point inputs and store the result into a vector register.

D0.f64 = S0.f64 * S1.f64

Notes

0.5ULP precision, denormals are supported.
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V_MIN_F64 809

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
    ((a < b) || ((abs(a) == 0.0) && (abs(b) == 0.0) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(S0.f64) then
        D0.f64 = cvtToQuietNAN(S0.f64)
    elsif isSignalNAN(S1.f64) then
        D0.f64 = cvtToQuietNAN(S1.f64)
    elsif isQuietNAN(S1.f64) then
        D0.f64 = S0.f64
    elsif isQuietNAN(S0.f64) then
        D0.f64 = S1.f64
    elsif LT_NEG_ZERO(S0.f64, S1.f64) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f64 = S0.f64
    else
        D0.f64 = S1.f64
    endif
else
    if isNAN(S1.f64) then
        D0.f64 = S0.f64
    elsif isNAN(S0.f64) then
        D0.f64 = S1.f64
    elsif LT_NEG_ZERO(S0.f64, S1.f64) then
        // NOTE: -0<+0 is TRUE in this comparison
        D0.f64 = S0.f64
    else
        D0.f64 = S1.f64
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MAX_F64 810

Select the maximum of two floating point inputs and store the result into a vector register.
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GT_NEG_ZERO = lambda(a, b) (
    ((a > b) || ((abs(a) == 0.0) && (abs(b) == 0.0) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
    if isSignalNAN(S0.f64) then
        D0.f64 = cvtToQuietNAN(S0.f64)
    elsif isSignalNAN(S1.f64) then
        D0.f64 = cvtToQuietNAN(S1.f64)
    elsif isQuietNAN(S1.f64) then
        D0.f64 = S0.f64
    elsif isQuietNAN(S0.f64) then
        D0.f64 = S1.f64
    elsif GT_NEG_ZERO(S0.f64, S1.f64) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f64 = S0.f64
    else
        D0.f64 = S1.f64
    endif
else
    if isNAN(S1.f64) then
        D0.f64 = S0.f64
    elsif isNAN(S0.f64) then
        D0.f64 = S1.f64
    elsif GT_NEG_ZERO(S0.f64, S1.f64) then
        // NOTE: +0>-0 is TRUE in this comparison
        D0.f64 = S0.f64
    else
        D0.f64 = S1.f64
    endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_LDEXP_F64 811

Multiply the first input, a floating point value, by an integral power of 2 specified in the second input, a signed
integer value, and store the floating point result into a vector register. Compare with the ldexp() function in C.

D0.f64 = S0.f64 * 2.0 ** S1.i
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V_MUL_LO_U32 812

Multiply two unsigned integers.

D0.u = S0.u * S1.u

Notes

To multiply integers with small magnitudes consider V_MUL_U32_U24, which is intended to be a more
efficient implementation.

V_MUL_HI_U32 813

Multiply two unsigned integers and store the high 32 bits of the result.

D0.u = 32'U((64'U(S0.u) * 64'U(S1.u)) >> 32U)

Notes

To multiply integers with small magnitudes consider V_MUL_HI_U32_U24, which is intended to be a more
efficient implementation.

V_MUL_HI_I32 814

Multiply two signed integers and store the high 32 bits of the result.

D0.i = 32'I((64'I(S0.i) * 64'I(S1.i)) >> 32U)

Notes

To multiply integers with small magnitudes consider V_MUL_HI_I32_I24, which is intended to be a more
efficient implementation.

V_TRIG_PREOP_F64 815

Look Up 2/PI (S0.f64) with segment select S1.u[4:0].

This operation returns an aligned, double precision segment of 2/PI needed to do range reduction on S0.f64
(double-precision value). Multiple segments can be specified through S1.u[4:0]. Rounding is round-to-zero.
Large inputs (exp > 1968) are scaled to avoid loss of precision through denormalization.

shift = 32'I(S1[4 : 0].u) * 53;
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if exponent(S0.f64) > 1077 then
    shift += exponent(S0.f64) - 1077
endif;
// (2.0/PI) == 0.{b_1200, b_1199, b_1198, ..., b_1, b_0}
// b_1200 is the MSB of the fractional part of 2.0/PI
// Left shift operation indicates which bits are brought
// into the whole part of the number.
// Only whole part of result is kept.
result = 64'F((1201'B(2.0 / PI)[1200 : 0] << shift.u) & 1201'0x1fffffffffffff);
scale = -53 - shift;
if exponent(S0.f64) >= 1968 then
    scale += 128
endif;
D0.f64 = ldexp(result, scale)

V_LSHLREV_B16 824

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.

D0.u[15 : 0] = (S1.u[15 : 0] << S0[3 : 0].u)

V_LSHRREV_B16 825

Given a shift count in the first vector input, calculate the logical shift right of the second vector input and store
the result into a vector register.

D0.u[15 : 0] = (S1.u[15 : 0] >> S0[3 : 0].u)

V_ASHRREV_I16 826

Given a shift count in the first vector input, calculate the arithmetic shift right (preserving sign bit) of the second
vector input and store the result into a vector register.

D0.i[15 : 0] = (S1.i[15 : 0] >> S0[3 : 0].u)

V_LSHLREV_B64 828

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.
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D0.u64 = (S1.u64 << S0[5 : 0].u)

Notes

Only one scalar broadcast constant is allowed.

V_LSHRREV_B64 829

Given a shift count in the first vector input, calculate the logical shift right of the second vector input and store
the result into a vector register.

D0.u64 = (S1.u64 >> S0[5 : 0].u)

Notes

Only one scalar broadcast constant is allowed.

V_ASHRREV_I64 830

Given a shift count in the first vector input, calculate the arithmetic shift right (preserving sign bit) of the second
vector input and store the result into a vector register.

D0.i64 = (S1.i64 >> S0[5 : 0].u)

Notes

Only one scalar broadcast constant is allowed.

V_READLANE_B32 864

Copy one VGPR value from a single lane to one SGPR.

declare lane : 32'U;
if WAVE32 then
    lane = S1.u[4 : 0].u;
    // Lane select for wave32
else
    lane = S1.u[5 : 0].u;
    // Lane select for wave64
endif;
D0.b = VGPR[lane][SRC0.u]
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Notes

Ignores EXEC mask for the VGPR read. Input and output modifiers not supported; this is an untyped operation.

V_WRITELANE_B32 865

Write scalar value into one VGPR in one lane.

declare lane : 32'U;
if WAVE32 then
    lane = S1.u[4 : 0].u;
    // Lane select for wave32
else
    lane = S1.u[5 : 0].u;
    // Lane select for wave64
endif;
VGPR[lane][VDST.u] = S0.b

Notes

Ignores EXEC mask for the VGPR write. Input and output modifiers not supported; this is an untyped
operation.

V_AND_B16 866

Calculate bitwise AND on two vector inputs and store the result into a vector register.

D0.u16 = (S0.u16 & S1.u16)

Notes

Input and output modifiers not supported.

V_OR_B16 867

Calculate bitwise OR on two vector inputs and store the result into a vector register.

D0.u16 = (S0.u16 | S1.u16)

Notes

Input and output modifiers not supported.
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V_XOR_B16 868

Calculate bitwise XOR on two vector inputs and store the result into a vector register.

D0.u16 = (S0.u16 ^ S1.u16)

Notes

Input and output modifiers not supported.

V_CMP_F_F16 0

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_F16 1

Return 1 iff A less than B.

D0.u64[laneId] = S0.f16 < S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_F16 2

Return 1 iff A equal to B.

D0.u64[laneId] = S0.f16 == S1.f16;
// D0 = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_F16 3

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.f16 <= S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_F16 4

Return 1 iff A greater than B.

D0.u64[laneId] = S0.f16 > S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LG_F16 5

Return 1 iff A less than or greater than B.

D0.u64[laneId] = S0.f16 <> S1.f16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_F16 6

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.f16 >= S1.f16;
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// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_O_F16 7

Return 1 iff A orderable with B.

D0.u64[laneId] = (!isNAN(64'F(S0.f16)) && !isNAN(64'F(S1.f16)));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_U_F16 8

Return 1 iff A not orderable with B.

D0.u64[laneId] = (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGE_F16 9

Return 1 iff A not greater than or equal to B.

D0.u64[laneId] = !(S0.f16 >= S1.f16);
// With NAN inputs this is not the same operation as <
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_NLG_F16 10

Return 1 iff A not less than or greater than B.

D0.u64[laneId] = !(S0.f16 <> S1.f16);
// With NAN inputs this is not the same operation as ==
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGT_F16 11

Return 1 iff A not greater than B.

D0.u64[laneId] = !(S0.f16 > S1.f16);
// With NAN inputs this is not the same operation as <=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLE_F16 12

Return 1 iff A not less than or equal to B.

D0.u64[laneId] = !(S0.f16 <= S1.f16);
// With NAN inputs this is not the same operation as >
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NEQ_F16 13

Return 1 iff A not equal to B.

D0.u64[laneId] = !(S0.f16 == S1.f16);
// With NAN inputs this is not the same operation as !=
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// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLT_F16 14

Return 1 iff A not less than B.

D0.u64[laneId] = !(S0.f16 < S1.f16);
// With NAN inputs this is not the same operation as >=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_F16 15

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_F32 16

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_LT_F32 17

Return 1 iff A less than B.

D0.u64[laneId] = S0.f < S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_F32 18

Return 1 iff A equal to B.

D0.u64[laneId] = S0.f == S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_F32 19

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.f <= S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_F32 20

Return 1 iff A greater than B.

D0.u64[laneId] = S0.f > S1.f;
// D0 = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LG_F32 21

Return 1 iff A less than or greater than B.

D0.u64[laneId] = S0.f <> S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_F32 22

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.f >= S1.f;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_O_F32 23

Return 1 iff A orderable with B.

D0.u64[laneId] = (!isNAN(64'F(S0.f)) && !isNAN(64'F(S1.f)));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_U_F32 24

Return 1 iff A not orderable with B.

D0.u64[laneId] = (isNAN(64'F(S0.f)) || isNAN(64'F(S1.f)));

"RDNA3" Instruction Set Architecture

16.12. VOP3 & VOP3SD Instructions 450 of 600



// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGE_F32 25

Return 1 iff A not greater than or equal to B.

D0.u64[laneId] = !(S0.f >= S1.f);
// With NAN inputs this is not the same operation as <
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLG_F32 26

Return 1 iff A not less than or greater than B.

D0.u64[laneId] = !(S0.f <> S1.f);
// With NAN inputs this is not the same operation as ==
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGT_F32 27

Return 1 iff A not greater than B.

D0.u64[laneId] = !(S0.f > S1.f);
// With NAN inputs this is not the same operation as <=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_NLE_F32 28

Return 1 iff A not less than or equal to B.

D0.u64[laneId] = !(S0.f <= S1.f);
// With NAN inputs this is not the same operation as >
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NEQ_F32 29

Return 1 iff A not equal to B.

D0.u64[laneId] = !(S0.f == S1.f);
// With NAN inputs this is not the same operation as !=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLT_F32 30

Return 1 iff A not less than B.

D0.u64[laneId] = !(S0.f < S1.f);
// With NAN inputs this is not the same operation as >=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_F32 31

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_F64 32

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_F64 33

Return 1 iff A less than B.

D0.u64[laneId] = S0.f64 < S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_F64 34

Return 1 iff A equal to B.

D0.u64[laneId] = S0.f64 == S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_F64 35

Return 1 iff A less than or equal to B.
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D0.u64[laneId] = S0.f64 <= S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_F64 36

Return 1 iff A greater than B.

D0.u64[laneId] = S0.f64 > S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LG_F64 37

Return 1 iff A less than or greater than B.

D0.u64[laneId] = S0.f64 <> S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_F64 38

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.f64 >= S1.f64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_O_F64 39

Return 1 iff A orderable with B.

D0.u64[laneId] = (!isNAN(S0.f64) && !isNAN(S1.f64));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_U_F64 40

Return 1 iff A not orderable with B.

D0.u64[laneId] = (isNAN(S0.f64) || isNAN(S1.f64));
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGE_F64 41

Return 1 iff A not greater than or equal to B.

D0.u64[laneId] = !(S0.f64 >= S1.f64);
// With NAN inputs this is not the same operation as <
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLG_F64 42

Return 1 iff A not less than or greater than B.

D0.u64[laneId] = !(S0.f64 <> S1.f64);
// With NAN inputs this is not the same operation as ==
// D0 = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NGT_F64 43

Return 1 iff A not greater than B.

D0.u64[laneId] = !(S0.f64 > S1.f64);
// With NAN inputs this is not the same operation as <=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLE_F64 44

Return 1 iff A not less than or equal to B.

D0.u64[laneId] = !(S0.f64 <= S1.f64);
// With NAN inputs this is not the same operation as >
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NEQ_F64 45

Return 1 iff A not equal to B.

D0.u64[laneId] = !(S0.f64 == S1.f64);
// With NAN inputs this is not the same operation as !=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NLT_F64 46

"RDNA3" Instruction Set Architecture

16.12. VOP3 & VOP3SD Instructions 456 of 600



Return 1 iff A not less than B.

D0.u64[laneId] = !(S0.f64 < S1.f64);
// With NAN inputs this is not the same operation as >=
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_F64 47

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_I16 49

Return 1 iff A less than B.

D0.u64[laneId] = S0.i16 < S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_I16 50

Return 1 iff A equal to B.

D0.u64[laneId] = S0.i16 == S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_LE_I16 51

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.i16 <= S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_I16 52

Return 1 iff A greater than B.

D0.u64[laneId] = S0.i16 > S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_I16 53

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.i16 <> S1.i16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_I16 54

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.i16 >= S1.i16;
// D0 = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_U16 57

Return 1 iff A less than B.

D0.u64[laneId] = S0.u16 < S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_U16 58

Return 1 iff A equal to B.

D0.u64[laneId] = S0.u16 == S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_U16 59

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.u16 <= S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_U16 60

Return 1 iff A greater than B.
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D0.u64[laneId] = S0.u16 > S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_U16 61

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.u16 <> S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_U16 62

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.u16 >= S1.u16;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_I32 64

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_LT_I32 65

Return 1 iff A less than B.

D0.u64[laneId] = S0.i < S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_I32 66

Return 1 iff A equal to B.

D0.u64[laneId] = S0.i == S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_I32 67

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.i <= S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_I32 68

Return 1 iff A greater than B.

D0.u64[laneId] = S0.i > S1.i;
// D0 = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_I32 69

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.i <> S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_I32 70

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.i >= S1.i;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_I32 71

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_U32 72

Return 0.

D0.u64[laneId] = 1'0U;
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// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_U32 73

Return 1 iff A less than B.

D0.u64[laneId] = S0.u < S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_U32 74

Return 1 iff A equal to B.

D0.u64[laneId] = S0.u == S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_U32 75

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.u <= S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_U32 76
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Return 1 iff A greater than B.

D0.u64[laneId] = S0.u > S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_U32 77

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.u <> S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_U32 78

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.u >= S1.u;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_U32 79

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_F_I64 80

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_I64 81

Return 1 iff A less than B.

D0.u64[laneId] = S0.i64 < S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_I64 82

Return 1 iff A equal to B.

D0.u64[laneId] = S0.i64 == S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LE_I64 83

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.i64 <= S1.i64;
// D0 = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_I64 84

Return 1 iff A greater than B.

D0.u64[laneId] = S0.i64 > S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_I64 85

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.i64 <> S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_I64 86

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.i64 >= S1.i64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_I64 87

Return 1.
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D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_F_U64 88

Return 0.

D0.u64[laneId] = 1'0U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_LT_U64 89

Return 1 iff A less than B.

D0.u64[laneId] = S0.u64 < S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_EQ_U64 90

Return 1 iff A equal to B.

D0.u64[laneId] = S0.u64 == S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

"RDNA3" Instruction Set Architecture

16.12. VOP3 & VOP3SD Instructions 467 of 600



V_CMP_LE_U64 91

Return 1 iff A less than or equal to B.

D0.u64[laneId] = S0.u64 <= S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GT_U64 92

Return 1 iff A greater than B.

D0.u64[laneId] = S0.u64 > S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_NE_U64 93

Return 1 iff A not equal to B.

D0.u64[laneId] = S0.u64 <> S1.u64;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_GE_U64 94

Return 1 iff A greater than or equal to B.

D0.u64[laneId] = S0.u64 >= S1.u64;
// D0 = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_T_U64 95

Return 1.

D0.u64[laneId] = 1'1U;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_CLASS_F16 125

IEEE numeric class function specified in S1.u, performed on S0.f16.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S0.f16)) then
    result = S1.u[0]
elsif isQuietNAN(64'F(S0.f16)) then
    result = S1.u[1]
elsif exponent(S0.f16) == 31 then
    // +-INF
    result = S1.u[sign(S0.f16) ? 2 : 9]
elsif exponent(S0.f16) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f16) ? 3 : 8]
elsif 64'F(abs(S0.f16)) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f16) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f16) ? 5 : 6]
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endif;
D0.u64[laneId] = result;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMP_CLASS_F32 126

IEEE numeric class function specified in S1.u, performed on S0.f.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S0.f)) then
    result = S1.u[0]
elsif isQuietNAN(64'F(S0.f)) then
    result = S1.u[1]
elsif exponent(S0.f) == 255 then
    // +-INF
    result = S1.u[sign(S0.f) ? 2 : 9]
elsif exponent(S0.f) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f) ? 3 : 8]
elsif 64'F(abs(S0.f)) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f) ? 5 : 6]
endif;
D0.u64[laneId] = result;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMP_CLASS_F64 127

IEEE numeric class function specified in S1.u, performed on S0.f64.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(S0.f64) then
    result = S1.u[0]
elsif isQuietNAN(S0.f64) then
    result = S1.u[1]
elsif exponent(S0.f64) == 1023 then
    // +-INF
    result = S1.u[sign(S0.f64) ? 2 : 9]
elsif exponent(S0.f64) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f64) ? 3 : 8]
elsif abs(S0.f64) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f64) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f64) ? 5 : 6]
endif;
D0.u64[laneId] = result;
// D0 = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F16 128

Return 0.
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EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F16 129

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.f16 < S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_F16 130

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.f16 == S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_F16 131

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.f16 <= S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F16 132

Return 1 iff A greater than B.

"RDNA3" Instruction Set Architecture

16.12. VOP3 & VOP3SD Instructions 472 of 600



EXEC.u64[laneId] = S0.f16 > S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F16 133

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f16 <> S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_F16 134

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f16 >= S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_O_F16 135

Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(64'F(S0.f16)) && !isNAN(64'F(S1.f16)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_F16 136

Return 1 iff A not orderable with B.
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EXEC.u64[laneId] = (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F16 137

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S0.f16 >= S1.f16);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F16 138

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S0.f16 <> S1.f16);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGT_F16 139

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S0.f16 > S1.f16);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMPX_NLE_F16 140

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S0.f16 <= S1.f16);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NEQ_F16 141

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S0.f16 == S1.f16);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLT_F16 142

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S0.f16 < S1.f16);
// With NAN inputs this is not the same operation as >=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_F16 143

Return 1.

EXEC.u64[laneId] = 1'1U

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F32 144

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F32 145

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.f < S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_F32 146

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.f == S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_F32 147

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.f <= S1.f

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F32 148

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.f > S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F32 149

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f <> S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_F32 150

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f >= S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_O_F32 151

Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(64'F(S0.f)) && !isNAN(64'F(S1.f)))

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_F32 152

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(64'F(S0.f)) || isNAN(64'F(S1.f)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F32 153

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S0.f >= S1.f);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F32 154

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S0.f <> S1.f);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGT_F32 155

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S0.f > S1.f);
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// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLE_F32 156

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S0.f <= S1.f);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NEQ_F32 157

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S0.f == S1.f);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLT_F32 158

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S0.f < S1.f);
// With NAN inputs this is not the same operation as >=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_F32 159
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Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F64 160

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F64 161

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.f64 < S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_F64 162

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.f64 == S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_F64 163
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Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.f64 <= S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F64 164

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.f64 > S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F64 165

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f64 <> S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_F64 166

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f64 >= S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_O_F64 167
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Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(S0.f64) && !isNAN(S1.f64))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_F64 168

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(S0.f64) || isNAN(S1.f64))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F64 169

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S0.f64 >= S1.f64);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F64 170

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S0.f64 <> S1.f64);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMPX_NGT_F64 171

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S0.f64 > S1.f64);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLE_F64 172

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S0.f64 <= S1.f64);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NEQ_F64 173

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S0.f64 == S1.f64);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLT_F64 174

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S0.f64 < S1.f64);
// With NAN inputs this is not the same operation as >=

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_F64 175

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_I16 177

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.i16 < S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_I16 178

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.i16 == S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I16 179

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.i16 <= S1.i16

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I16 180

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.i16 > S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_I16 181

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i16 <> S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_I16 182

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i16 >= S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_U16 185

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.u16 < S1.u16

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_U16 186

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.u16 == S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U16 187

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.u16 <= S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_U16 188

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.u16 > S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_U16 189

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.u16 <> S1.u16

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_U16 190

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.u16 >= S1.u16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_I32 192

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_I32 193

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.i < S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_I32 194

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.i == S1.i

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I32 195

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.i <= S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I32 196

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.i > S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_I32 197

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i <> S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_I32 198

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i >= S1.i

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_I32 199

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_U32 200

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_U32 201

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.u < S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_U32 202

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.u == S1.u

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U32 203

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.u <= S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_U32 204

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.u > S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_U32 205

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.u <> S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_U32 206

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.u >= S1.u

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_U32 207

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_I64 208

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_I64 209

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.i64 < S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_I64 210

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.i64 == S1.i64

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I64 211

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.i64 <= S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I64 212

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.i64 > S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_I64 213

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i64 <> S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_I64 214

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i64 >= S1.i64

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_I64 215

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_U64 216

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_U64 217

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.u64 < S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_U64 218

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.u64 == S1.u64

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U64 219

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.u64 <= S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_U64 220

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.u64 > S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_U64 221

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.u64 <> S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_U64 222

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.u64 >= S1.u64

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_U64 223

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_CLASS_F16 253

IEEE numeric class function specified in S1.u, performed on S0.f16.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S0.f16)) then
    result = S1.u[0]
elsif isQuietNAN(64'F(S0.f16)) then
    result = S1.u[1]
elsif exponent(S0.f16) == 31 then
    // +-INF
    result = S1.u[sign(S0.f16) ? 2 : 9]
elsif exponent(S0.f16) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f16) ? 3 : 8]
elsif 64'F(abs(S0.f16)) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f16) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f16) ? 5 : 6]
endif;
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EXEC.u64[laneId] = result

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_CLASS_F32 254

IEEE numeric class function specified in S1.u, performed on S0.f.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S0.f)) then
    result = S1.u[0]
elsif isQuietNAN(64'F(S0.f)) then
    result = S1.u[1]
elsif exponent(S0.f) == 255 then
    // +-INF
    result = S1.u[sign(S0.f) ? 2 : 9]
elsif exponent(S0.f) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f) ? 3 : 8]
elsif 64'F(abs(S0.f)) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f) ? 5 : 6]
endif;
EXEC.u64[laneId] = result

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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V_CMPX_CLASS_F64 255

IEEE numeric class function specified in S1.u, performed on S0.f64.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(S0.f64) then
    result = S1.u[0]
elsif isQuietNAN(S0.f64) then
    result = S1.u[1]
elsif exponent(S0.f64) == 1023 then
    // +-INF
    result = S1.u[sign(S0.f64) ? 2 : 9]
elsif exponent(S0.f64) > 0 then
    // +-normal value
    result = S1.u[sign(S0.f64) ? 3 : 8]
elsif abs(S0.f64) > 0.0 then
    // +-denormal value
    result = S1.u[sign(S0.f64) ? 4 : 7]
else
    // +-0.0
    result = S1.u[sign(S0.f64) ? 5 : 6]
endif;
EXEC.u64[laneId] = result

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.
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16.13. VINTERP Instructions
Parameter interpolation VALU instructions.

V_INTERP_P10_F32 0

Parameter interpolation, first pass.

D0.f = S0[lane.i % 4 + 1].f * S1.f + S2[lane.i % 4].f

Notes

Performs a V_FMA_F32 operation using fixed DPP8 settings. S0 and S2 refer to a VGPR previously loaded with
LDS_PARAM_LOAD that contains packed interpolation data. S1 is the I/J coordinate.

S0 uses a fixed DPP8 lane select of {1,1,1,1,5,5,5,5}.

S2 uses a fixed DPP8 lane select of {0,0,0,0,4,4,4,4}.

Example usage:

s_mov_b32 m0, s0            // assume s0 contains newprim mask
lds_param_load v0, attr0    // v0 is a temporary register
v_interp_p10_f32 v3, v0, v1, v0 // v1 contains i coordinate
v_interp_p2_f32 v3, v0, v2, v3  // v2 contains j coordinate

V_INTERP_P2_F32 1

Parameter interpolation, second pass.

D0.f = fma(S0[lane.i % 4 + 2].f, S1.f, S2.f)

Notes

Performs a V_FMA_F32 operation using fixed DPP8 settings. S0 refers to a VGPR previously loaded with
LDS_PARAM_LOAD that contains packed interpolation data. S1 is the I/J coordinate. S2 is the result of a
previous V_INTERP_P10_F32 instruction.

S0 uses a fixed DPP8 lane select of {2,2,2,2,6,6,6,6}.
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V_INTERP_P10_F16_F32 2

Parameter interpolation, first pass.

D0.f = 32'F(S0[lane.i % 4 + 1].f16) * S1.f + 32'F(S2[lane.i % 4].f16)

Notes

Performs a hybrid 16/32-bit multiply-add operation using fixed DPP8 settings. S0 and S2 refer to a VGPR
previously loaded with LDS_PARAM_LOAD that contains packed interpolation data. S1 is the I/J coordinate.

S0 uses a fixed DPP8 lane select of {1,1,1,1,5,5,5,5}.

S2 uses a fixed DPP8 lane select of {0,0,0,0,4,4,4,4}.

OPSEL is allowed for S0 and S2 to specify which half of the register to read from.

Note that the I/J coordinate is 32-bit and the destination is also 32-bit.

V_INTERP_P2_F16_F32 3

Parameter interpolation, second pass.

D0.f16 = 16'F(32'F(S0[lane.i % 4 + 2].f16) * S1.f + S2.f)

Notes

Performs a hybrid 16/32-bit multiply-add operation using fixed DPP8 settings. S0 refers to a VGPR previously
loaded with LDS_PARAM_LOAD that contains packed interpolation data. S1 is the I/J coordinate. S2 is the
result of a previous V_INTERP_P10_F16_F32 instruction.

S0 uses a fixed DPP8 lane select of {2,2,2,2,6,6,6,6}.

OPSEL is allowed for D and S0 to specify which half of the register to write to/read from.

Note that the I/J coordinate is 32-bit and the accumulator input is also 32-bit.

V_INTERP_P10_RTZ_F16_F32 4

Same as V_INTERP_P10_F16_F32 except rounding mode is overridden to round toward zero.

V_INTERP_P2_RTZ_F16_F32 5

Same as V_INTERP_P2_F16_F32 except rounding mode is overridden to round toward zero.
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16.14. Parameter and Direct Load from LDS Instructions
These instructions load data from LDS into a VGPR where the LDS address is derived from wave state and the
M0 register.

LDS_PARAM_LOAD 0

Transfer parameter data from LDS to VGPRs and expand data in LDS using the NewPrimMask (provided in M0)
to place per-quad data into lanes 0-3 of each quad as follows:

{P0, P10, P20, 0.0}

This data may be extracted using DPP8 for interpolation operations. The V_INTERP_* instructions unpack data
automatically.

When loading FP16 parameters, two attributes are loaded into a single VGPR: Attribute 2*ATTR is loaded into
the low 16 bits and attribute 2*ATTR+1 is loaded into the high 16 bits.

This instruction runs in whole quad mode: if any pixel of a quad is active then all 4 pixels of that quad are
written. This is required for interpolation instructions to have all the parameter information available for the
quad.

LDS_DIRECT_LOAD 1

Read a single 32-bit value from LDS to all lanes. A single DWORD is read from LDS memory at ADDR[M0[15:0]],
where M0[15:0] is a byte address and is dword-aligned. M0[18:16] specify the data type for the read and may be
0=UBYTE, 1=USHORT, 2=DWORD, 4=SBYTE, 5=SSHORT.


This instruction runs in whole quad mode: if any pixel of a quad is active then all 4 pixels of
that quad are written.
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16.15. LDS & GDS Instructions
This suite of instructions operates on data stored within the data share memory. The instructions transfer data
between VGPRs and data share memory.
The bitfield map for the LDS/GDS is:

OFFSET0  = Unsigned byte offset added to the address from the ADDR VGPR.
OFFSET1  = Unsigned byte offset added to the address from the ADDR VGPR.
GDS      = Set if GDS, cleared if LDS.
OP       = DS instruction opcode
ADDR     = Source LDS address VGPR 0 - 255.
DATA0    = Source data0 VGPR 0 - 255.
DATA1    = Source data1 VGPR 0 - 255.
VDST     = Destination VGPR 0- 255.


All instructions with RTN in the name return the value that was in memory before the
operation was performed.

DS_ADD_U32 0

Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u += DATA.u;
RETURN_DATA.u = tmp

DS_SUB_U32 1

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u -= DATA.u;
RETURN_DATA.u = tmp

DS_RSUB_U32 2

Subtraction with reversed operands.
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tmp = MEM[ADDR].b;
MEM[ADDR] = DATA.b - MEM[ADDR].b;
RETURN_DATA = tmp

DS_INC_U32 3

Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = tmp >= src ? 0U : tmp + 1U;
RETURN_DATA.u = tmp

DS_DEC_U32 4

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = ((tmp == 0U) || (tmp > src)) ? src : tmp - 1U;
RETURN_DATA.u = tmp

DS_MIN_I32 5

Minimum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src < tmp ? src : tmp;
RETURN_DATA.i = tmp

DS_MAX_I32 6

Maximum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src > tmp ? src : tmp;
RETURN_DATA.i = tmp
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DS_MIN_U32 7

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

DS_MAX_U32 8

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

DS_AND_B32 9

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

DS_OR_B32 10

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

DS_XOR_B32 11

Bitwise XOR of register value and memory value.

"RDNA3" Instruction Set Architecture

16.15. LDS & GDS Instructions 504 of 600



tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp ^ DATA.b);
RETURN_DATA.b = tmp

DS_MSKOR_B32 12

Masked dword OR, D0 contains the mask and D1 contains the new value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = ((tmp & ~DATA.b) | DATA2.b);
RETURN_DATA.b = tmp

DS_STORE_B32 13

Store 32-bit data from a vector register into a given memory location.

MEM[ADDR] = DATA.b

DS_STORE_2ADDR_B32 14

Write 2 dwords.

MEM[ADDR_BASE.u + OFFSET0.u * 4U] = DATA.b;
MEM[ADDR_BASE.u + OFFSET1.u * 4U] = DATA2.b

DS_STORE_2ADDR_STRIDE64_B32 15

Write 2 dwords with larger stride.

MEM[ADDR_BASE.u + OFFSET0.u * 4U * 64U] = DATA.b;
MEM[ADDR_BASE.u + OFFSET1.u * 4U * 64U] = DATA2.b

DS_CMPSTORE_B32 16

Compare and store.
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tmp = MEM[ADDR].b;
src = DATA.b;
cmp = DATA2.b;
MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_CMPSTORE_F32 17

Floating point compare and store that handles NAN/INF/denormal values.

tmp = MEM[ADDR].f;
src = DATA.f;
cmp = DATA2.f;
MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_MIN_F32 18

Minimum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_MAX_F32 19

Maximum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
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MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_NOP 20

Do nothing.

DS_ADD_F32 21

Add data register to floating-point memory value.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.

DS_STORE_B8 30

Byte write.

MEM[ADDR].b8 = DATA[7 : 0].b8

DS_STORE_B16 31

Short write.

MEM[ADDR].b16 = DATA[15 : 0].b16

DS_ADD_RTN_U32 32
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Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u += DATA.u;
RETURN_DATA.u = tmp

DS_SUB_RTN_U32 33

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u -= DATA.u;
RETURN_DATA.u = tmp

DS_RSUB_RTN_U32 34

Subtraction with reversed operands.

tmp = MEM[ADDR].b;
MEM[ADDR] = DATA.b - MEM[ADDR].b;
RETURN_DATA = tmp

DS_INC_RTN_U32 35

Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = tmp >= src ? 0U : tmp + 1U;
RETURN_DATA.u = tmp

DS_DEC_RTN_U32 36

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = ((tmp == 0U) || (tmp > src)) ? src : tmp - 1U;
RETURN_DATA.u = tmp
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DS_MIN_RTN_I32 37

Minimum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src < tmp ? src : tmp;
RETURN_DATA.i = tmp

DS_MAX_RTN_I32 38

Maximum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src > tmp ? src : tmp;
RETURN_DATA.i = tmp

DS_MIN_RTN_U32 39

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

DS_MAX_RTN_U32 40

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

DS_AND_RTN_B32 41
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Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

DS_OR_RTN_B32 42

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

DS_XOR_RTN_B32 43

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp ^ DATA.b);
RETURN_DATA.b = tmp

DS_MSKOR_RTN_B32 44

Masked dword OR, D0 contains the mask and D1 contains the new value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = ((tmp & ~DATA.b) | DATA2.b);
RETURN_DATA.b = tmp

DS_STOREXCHG_RTN_B32 45

Write-exchange operation.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp
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DS_STOREXCHG_2ADDR_RTN_B32 46

Write-exchange 2 separate dwords.

addr1 = ADDR_BASE.u + OFFSET0.u * 4U;
addr2 = ADDR_BASE.u + OFFSET1.u * 4U;
tmp1 = MEM[addr1].b;
tmp2 = MEM[addr2].b;
MEM[addr1].b = DATA.b;
MEM[addr2].b = DATA2.b;
// Note DATA2 can be any other register
RETURN_DATA[31 : 0] = tmp1;
RETURN_DATA[63 : 32] = tmp2

DS_STOREXCHG_2ADDR_STRIDE64_RTN_B32 47

Write-exchange 2 separate dwords with a stride of 64 dwords.

addr1 = ADDR_BASE.u + OFFSET0.u * 4U * 64U;
addr2 = ADDR_BASE.u + OFFSET1.u * 4U * 64U;
tmp1 = MEM[addr1].b;
tmp2 = MEM[addr2].b;
MEM[addr1].b = DATA.b;
MEM[addr2].b = DATA2.b;
// Note DATA2 can be any other register
RETURN_DATA[31 : 0] = tmp1;
RETURN_DATA[63 : 32] = tmp2

DS_CMPSTORE_RTN_B32 48

Compare and store.

tmp = MEM[ADDR].b;
src = DATA.b;
cmp = DATA2.b;
MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_CMPSTORE_RTN_F32 49
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Floating point compare and store that handles NAN/INF/denormal values.

tmp = MEM[ADDR].f;
src = DATA.f;
cmp = DATA2.f;
MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_MIN_RTN_F32 50

Minimum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_MAX_RTN_F32 51

Maximum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_WRAP_RTN_B32 52

Wrap calculation. Intended for use in ring buffer management.

tmp = MEM[ADDR].u;
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MEM[ADDR].u = tmp >= DATA.u ? tmp - DATA.u : tmp + DATA2.u;
RETURN_DATA = tmp

DS_SWIZZLE_B32 53

Dword swizzle, no data is written to LDS memory.

Swizzles input thread data based on offset mask and returns; note does not read or write the DS memory banks.

Note that reading from an invalid thread results in 0x0.

This opcode supports two specific modes, FFT and rotate, plus two basic modes which swizzle in groups of 4 or
32 consecutive threads.

The FFT mode (offset >= 0xe000) swizzles the input based on offset[4:0] to support FFT calculation. Example
swizzles using input {1, 2, … 20} are:

Offset[4:0]: Swizzle
0x00: {1,11,9,19,5,15,d,1d,3,13,b,1b,7,17,f,1f,2,12,a,1a,6,16,e,1e,4,14,c,1c,8,18,10,20}
0x10: {1,9,5,d,3,b,7,f,2,a,6,e,4,c,8,10,11,19,15,1d,13,1b,17,1f,12,1a,16,1e,14,1c,18,20}
0x1f: No swizzle

The rotate mode (offset >= 0xc000 and offset < 0xe000) rotates the input either left (offset[10] == 0) or right
(offset[10] == 1) a number of threads equal to offset[9:5]. The rotate mode also uses a mask value which can
alter the rotate result. For example, mask == 1 swaps the odd threads across every other even thread (rotate
left), or even threads across every other odd thread (rotate right).

Offset[9:5]: Swizzle
0x01, mask=0, rotate left: {2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,11,12,13,14,15,16,17,18,19,1a,1b,1c,1d,1e,1f,20,1}
0x01, mask=0, rotate right: {20,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,11,12,13,14,15,16,17,18,19,1a,1b,1c,1d,1e,1f}
0x01, mask=1, rotate left: {2,1,4,7,6,5,8,b,a,9,c,f,e,d,10,13,12,11,14,17,16,15,18,1b,1a,19,1c,1f,1e,1d,20,3}
0x01, mask=1, rotate right: {1e,1,4,3,2,5,8,7,6,9,c,b,a,d,10,f,e,11,14,13,12,15,18,17,16,19,1c,1b,1a,1d,20,1f}

If offset < 0xc000, one of the basic swizzle modes is used based on offset[15]. If offset[15] == 1, groups of 4
consecutive threads are swizzled together. If offset[15] == 0, all 32 threads are swizzled together.

The first basic swizzle mode (when offset[15] == 1) allows full data sharing between a group of 4 consecutive
threads. Any thread within the group of 4 can get data from any other thread within the group of 4, specified by
the corresponding offset bits --- [1:0] for the first thread, [3:2] for the second thread, [5:4] for the third thread,
[7:6] for the fourth thread. Note that the offset bits apply to all groups of 4 within a wavefront; thus if offset[1:0]
== 1, then thread0 grabs thread1, thread4 grabs thread5, etc.

The second basic swizzle mode (when offset[15] == 0) allows limited data sharing between 32 consecutive
threads. In this case, the offset is used to specify a 5-bit xor-mask, 5-bit or-mask, and 5-bit and-mask used to
generate a thread mapping. Note that the offset bits apply to each group of 32 within a wavefront. The details of
the thread mapping are listed below. Some example usages:

SWAPX16 : xor_mask = 0x10, or_mask = 0x00, and_mask = 0x1f

SWAPX8 : xor_mask = 0x08, or_mask = 0x00, and_mask = 0x1f
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SWAPX4 : xor_mask = 0x04, or_mask = 0x00, and_mask = 0x1f

SWAPX2 : xor_mask = 0x02, or_mask = 0x00, and_mask = 0x1f

SWAPX1 : xor_mask = 0x01, or_mask = 0x00, and_mask = 0x1f

REVERSEX32 : xor_mask = 0x1f, or_mask = 0x00, and_mask = 0x1f

REVERSEX16 : xor_mask = 0x0f, or_mask = 0x00, and_mask = 0x1f

REVERSEX8 : xor_mask = 0x07, or_mask = 0x00, and_mask = 0x1f

REVERSEX4 : xor_mask = 0x03, or_mask = 0x00, and_mask = 0x1f

REVERSEX2 : xor_mask = 0x01 or_mask = 0x00, and_mask = 0x1f

BCASTX32: xor_mask = 0x00, or_mask = thread, and_mask = 0x00

BCASTX16: xor_mask = 0x00, or_mask = thread, and_mask = 0x10

BCASTX8: xor_mask = 0x00, or_mask = thread, and_mask = 0x18

BCASTX4: xor_mask = 0x00, or_mask = thread, and_mask = 0x1c

BCASTX2: xor_mask = 0x00, or_mask = thread, and_mask = 0x1e

Pseudocode follows:

offset = offset1:offset0;

if (offset >= 0xe000) {
    // FFT decomposition
    mask = offset[4:0];
    for (i = 0; i < 64; i++) {
        j = reverse_bits(i & 0x1f);
        j = (j >> count_ones(mask));
        j |= (i & mask);
        j |= i & 0x20;
        thread_out[i] = thread_valid[j] ? thread_in[j] : 0;
    }

} elsif (offset >= 0xc000) {
    // rotate
    rotate = offset[9:5];
    mask = offset[4:0];
    if (offset[10]) {
        rotate = -rotate;
    }
    for (i = 0; i < 64; i++) {
        j = (i & mask) | ((i + rotate) & ~mask);
        j |= i & 0x20;
        thread_out[i] = thread_valid[j] ? thread_in[j] : 0;

"RDNA3" Instruction Set Architecture

16.15. LDS & GDS Instructions 514 of 600



    }

} elsif (offset[15]) {
    // full data sharing within 4 consecutive threads
    for (i = 0; i < 64; i+=4) {
        thread_out[i+0] = thread_valid[i+offset[1:0]]?thread_in[i+offset[1:0]]:0;
        thread_out[i+1] = thread_valid[i+offset[3:2]]?thread_in[i+offset[3:2]]:0;
        thread_out[i+2] = thread_valid[i+offset[5:4]]?thread_in[i+offset[5:4]]:0;
        thread_out[i+3] = thread_valid[i+offset[7:6]]?thread_in[i+offset[7:6]]:0;
    }

} else { // offset[15] == 0
    // limited data sharing within 32 consecutive threads
    xor_mask = offset[14:10];
    or_mask = offset[9:5];
    and_mask = offset[4:0];
    for (i = 0; i < 64; i++) {
        j = (((i & 0x1f) & and_mask) | or_mask) ^ xor_mask;
        j |= (i & 0x20); // which group of 32
        thread_out[i] = thread_valid[j] ? thread_in[j] : 0;
    }
}

DS_LOAD_B32 54

Load 32-bit data from a given memory location into a vector register.

RETURN_DATA = MEM[ADDR].b

DS_LOAD_2ADDR_B32 55

Read 2 dwords.

RETURN_DATA[31 : 0] = MEM[ADDR_BASE.u + OFFSET0.u * 4U].b;
RETURN_DATA[63 : 32] = MEM[ADDR_BASE.u + OFFSET1.u * 4U].b

DS_LOAD_2ADDR_STRIDE64_B32 56

Read 2 dwords with a larger stride.

RETURN_DATA[31 : 0] = MEM[ADDR_BASE.u + OFFSET0.u * 4U * 64U].b;
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RETURN_DATA[63 : 32] = MEM[ADDR_BASE.u + OFFSET1.u * 4U * 64U].b

DS_LOAD_I8 57

Signed byte read.

RETURN_DATA.i = 32'I(signext(MEM[ADDR][7 : 0].i8))

DS_LOAD_U8 58

Unsigned byte read.

RETURN_DATA.u = 32'U({ 24'0, MEM[ADDR][7 : 0].u8 })

DS_LOAD_I16 59

Signed short read.

RETURN_DATA.i = 32'I(signext(MEM[ADDR][15 : 0].i16))

DS_LOAD_U16 60

Unsigned short read.

RETURN_DATA.u = 32'U({ 16'0, MEM[ADDR][15 : 0].u16 })

DS_CONSUME 61

LDS & GDS. Subtract (count_bits(exec_mask)) from the value stored in DS memory at (M0.base + instr_offset).
Return the pre-operation value to VGPRs.

The DS subtracts count_bits(vector valid mask) from the value stored at address M0.base + instruction based
offset and returns the pre-op value to all valid lanes. This op can be used in both the LDS and GDS. In the LDS
this address is an offset to HWBASE and clamped by M0.size, but in the GDS the M0.base constant has the
physical GDS address and the compiler must force offset to zero. In GDS it is for the traditional append buffer
operations. In LDS it is for local thread group appends and can be used to regroup divergent threads. The use
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of the M0 register enables the compiler to do indexing of UAV append/consume counters.

For GDS (system wide) consume, the compiler must use a zero for {offset1,offset0}, for LDS the compiler uses
{offset1,offset0} to provide the relative address to the append counter in the LDS for runtime index offset or
index.

Inside DS, do one atomic add for first valid lane and broadcast result to all valid lanes. Offset = 0ffset1:offset0;
Interpreted as byte offset. Only aligned atomics are supported, so 2 lsbs of offset must be set to zero.

addr = M0.base + offset; // offset by LDS HWBASE, limit to M.size
rtnval =  LDS(addr);
LDS(addr) = LDS(addr) - countbits(valid mask);
GPR[VDST] = rtnval; // return to all valid threads

DS_APPEND 62

LDS & GDS. Add (count_bits(exec_mask)) to the value stored in DS memory at (M0.base + instr_offset). Return
the pre-operation value to VGPRs.

The DS adds count_bits(vector valid mask) from the value stored at address M0.base + instruction based offset
and return the pre-op value to all valid lanes. This op can be used in both the LDS and GDS. In the LDS this
address is an offset to HWBASE and clamped by M0.size, but in the GDS the M0.base constant has the physical
GDS address and the compiler must set offset to zero. In GDS it is for the traditional append buffer operations.
In LDS it is for local thread group appends and can be used to regroup divergent threads. The use of the M0
register enables the compiler to do indexing of UAV append/consume counters.

For GDS (system wide) consume, the compiler must use a zero for {offset1,offset0}, for LDS the compiler uses
{offset1,offset0} to provide the relative address to the append counter in the LDS for runtime index offset or
index.

Inside DS, do one atomic add for first valid lane and broadcast result to all valid lanes. Offset = 0ffset1:offset0;
Interpreted as byte offset. Only aligned atomics are supported, so 2 lsbs of offset must be set to zero.

addr = M0.base + offset; // offset by LDS HWBASE, limit to M.size
rtnval =  LDS(addr);
LDS(addr) = LDS(addr) + countbits(valid mask);
GPR[VDST] = rtnval; // return to all valid threads

DS_ORDERED_COUNT 63

GDS-only: Intercepted by GDS and processed by ordered append module. The ordered append module queues
request until this request wave is the oldest in the queue at which time the oldest wave request is dispatched to
the DS with an atomic opcode indicated by OFFSET1[5:4].

Unlike append/consume this operation is sent even if there are no valid lanes when it is issued. The GDS adds
zero and advances the tracking walker that needs to match up with the dispatch counter.
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The following attributes are encoded in the instruction:

• OFFSET0[7:2] contains the ordered_count_index (in dwords).
• OFFSET1[0] contains the wave_release flag.
• OFFSET1[1] contains the wave_done flag.
• OFFSET1[5:4] contains the ord_idx_opcode: 2'b00 = DS_ADD_RTN_U32, 2'b01 = DS_STOREXCHG_RTN_B32,

2'b11 = DS_WRAP_RTN_B32.
• VGPR_DST is the VGPR the result is written to.
• VGPR_ADDR specifies the increment in the first valid lane. If no lanes are valid (EXEC = 0) then the

increment is zero.
• M0 normally carries {16'gds_base, 16'gds_size} for GDS usage. gds_base[15:2] is ordered_count_base[13:0]

(in dwords) and gds_size is used to hold the logical_wave_id, the width is based on total number of waves
in the chip.

The wave type is determined automatically based on the ME_ID and QUEUE_ID of the wavefront.

DS_ADD_U64 64

Add data register to 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 += DATA.u64;
RETURN_DATA.u64 = tmp

DS_SUB_U64 65

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

DS_RSUB_U64 66

Subtraction with reversed operands.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = DATA.b64 - tmp;
RETURN_DATA.b64 = tmp
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DS_INC_U64 67

Increment 64-bit memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = tmp >= src ? 0ULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp

DS_DEC_U64 68

Decrement 64-bit memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = ((tmp == 0ULL) || (tmp > src)) ? src : tmp - 1ULL;
RETURN_DATA.u64 = tmp

DS_MIN_I64 69

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.i64 = tmp

DS_MAX_I64 70

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.i64 = tmp

DS_MIN_U64 71

Minimum of two unsigned 64-bit integer values.
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tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

DS_MAX_U64 72

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp

DS_AND_B64 73

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

DS_OR_B64 74

Bitwise OR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp

DS_XOR_B64 75

Bitwise XOR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp ^ DATA.b64);
RETURN_DATA.b64 = tmp
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DS_MSKOR_B64 76

Masked dword OR, D0 contains the mask and D1 contains the new value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = ((tmp & ~DATA.b64) | DATA2.b64);
RETURN_DATA.b64 = tmp

DS_STORE_B64 77

Write qword.

MEM[ADDR].b64 = DATA.b64

DS_STORE_2ADDR_B64 78

Write 2 qwords.

MEM[ADDR_BASE.u + OFFSET0.u * 8U].b64 = DATA.b64;
MEM[ADDR_BASE.u + OFFSET1.u * 8U].b64 = DATA2.b64

DS_STORE_2ADDR_STRIDE64_B64 79

Write 2 qwords with a larger stride.

MEM[ADDR_BASE.u + OFFSET0.u * 8U * 64U].b64 = DATA.b64;
MEM[ADDR_BASE.u + OFFSET1.u * 8U * 64U].b64 = DATA2.b64

DS_CMPSTORE_B64 80

Compare and store.

tmp = MEM[ADDR].b64;
src = DATA.b64;
cmp = DATA2.b64;
MEM[ADDR].b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp
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Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_CMPSTORE_F64 81

Floating point compare and store that handles NAN/INF/denormal values.

tmp = MEM[ADDR].f64;
src = DATA.f64;
cmp = DATA2.f64;
MEM[ADDR].f64 = tmp == cmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_MIN_F64 82

Minimum of two floating-point values.

tmp = MEM[ADDR].f64;
src = DATA.f64;
MEM[ADDR].f64 = src < tmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_MAX_F64 83

Maximum of two floating-point values.

tmp = MEM[ADDR].f64;
src = DATA.f64;
MEM[ADDR].f64 = src > tmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

Floating-point compare handles NAN/INF/denorm.
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DS_ADD_RTN_U64 96

Add data register to 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 += DATA.u64;
RETURN_DATA.u64 = tmp

DS_SUB_RTN_U64 97

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

DS_RSUB_RTN_U64 98

Subtraction with reversed operands.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = DATA.b64 - tmp;
RETURN_DATA.b64 = tmp

DS_INC_RTN_U64 99

Increment 64-bit memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = tmp >= src ? 0ULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp

DS_DEC_RTN_U64 100

Decrement 64-bit memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u64;
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src = DATA.u64;
MEM[ADDR].u64 = ((tmp == 0ULL) || (tmp > src)) ? src : tmp - 1ULL;
RETURN_DATA.u64 = tmp

DS_MIN_RTN_I64 101

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.i64 = tmp

DS_MAX_RTN_I64 102

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.i64 = tmp

DS_MIN_RTN_U64 103

Minimum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

DS_MAX_RTN_U64 104

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp
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DS_AND_RTN_B64 105

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

DS_OR_RTN_B64 106

Bitwise OR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp

DS_XOR_RTN_B64 107

Bitwise XOR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp ^ DATA.b64);
RETURN_DATA.b64 = tmp

DS_MSKOR_RTN_B64 108

Masked dword OR, D0 contains the mask and D1 contains the new value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = ((tmp & ~DATA.b64) | DATA2.b64);
RETURN_DATA.b64 = tmp

DS_STOREXCHG_RTN_B64 109

Write-exchange operation.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = DATA.b64;
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RETURN_DATA.b64 = tmp

DS_STOREXCHG_2ADDR_RTN_B64 110

Write-exchange 2 separate qwords.

addr1 = ADDR_BASE.u + OFFSET0.u * 8U;
addr2 = ADDR_BASE.u + OFFSET1.u * 8U;
tmp1 = MEM[addr1].b64;
tmp2 = MEM[addr2].b64;
MEM[addr1].b64 = DATA.b64;
MEM[addr2].b64 = DATA2.b64;
// Note DATA2 can be any other register
RETURN_DATA[63 : 0] = tmp1;
RETURN_DATA[127 : 64] = tmp2

DS_STOREXCHG_2ADDR_STRIDE64_RTN_B64 111

Write-exchange 2 qwords with a stride of 64 qwords.

addr1 = ADDR_BASE.u + OFFSET0.u * 8U * 64U;
addr2 = ADDR_BASE.u + OFFSET1.u * 8U * 64U;
tmp1 = MEM[addr1].b64;
tmp2 = MEM[addr2].b64;
MEM[addr1].b64 = DATA.b64;
MEM[addr2].b64 = DATA2.b64;
// Note DATA2 can be any other register
RETURN_DATA[63 : 0] = tmp1;
RETURN_DATA[127 : 64] = tmp2

DS_CMPSTORE_RTN_B64 112

Compare and store.

tmp = MEM[ADDR].b64;
src = DATA.b64;
cmp = DATA2.b64;
MEM[ADDR].b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.
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DS_CMPSTORE_RTN_F64 113

Floating point compare and store that handles NAN/INF/denormal values.

tmp = MEM[ADDR].f64;
src = DATA.f64;
cmp = DATA2.f64;
MEM[ADDR].f64 = tmp == cmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_MIN_RTN_F64 114

Minimum of two floating-point values.

tmp = MEM[ADDR].f64;
src = DATA.f64;
MEM[ADDR].f64 = src < tmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_MAX_RTN_F64 115

Maximum of two floating-point values.

tmp = MEM[ADDR].f64;
src = DATA.f64;
MEM[ADDR].f64 = src > tmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_LOAD_B64 118
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Read 1 qword.

RETURN_DATA = MEM[ADDR].b64

DS_LOAD_2ADDR_B64 119

Read 2 qwords.

RETURN_DATA[63 : 0] = MEM[ADDR_BASE.u + OFFSET0.u * 8U].b64;
RETURN_DATA[127 : 64] = MEM[ADDR_BASE.u + OFFSET1.u * 8U].b64

DS_LOAD_2ADDR_STRIDE64_B64 120

Read 2 qwords with a larger stride.

RETURN_DATA[63 : 0] = MEM[ADDR_BASE.u + OFFSET0.u * 8U * 64U].b64;
RETURN_DATA[127 : 64] = MEM[ADDR_BASE.u + OFFSET1.u * 8U * 64U].b64

DS_ADD_RTN_F32 121

Add data register to floating-point memory value.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.

DS_ADD_GS_REG_RTN 122

Perform an atomic add to data in specific registers embedded in GDS rather than operating on GDS memory
directly. This instruction returns the pre-op value. This instruction is only used by the GS stage and is used to
facilitate streamout.

The return value may be 32 bits or 64 bits depending on the GS register accessed. The data value is 32 bits.
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if OFFSET0[5:2] > 7
    // 64-bit GS register access
    addr = (OFFSET0[5:2] - 8) * 2 + 8;
    VDST[0] = GS_REGS(addr + 0);
    VDST[1] = GS_REGS(addr + 1);
    {GS_REGS(addr + 1), GS_REGS(addr)} += DATA0[0]; // source is 32 bit
else
    addr = OFFSET0[5:2];
    VDST[0] = GS_REGS(addr);
    GS_REGS(addr) += DATA0[0];
endif.

32-bit GS registers:

offset[5:2] Register
0 GDS_STRMOUT_BUFFER_FILLED_SIZE_0
1 GDS_STRMOUT_BUFFER_FILLED_SIZE_1
2 GDS_STRMOUT_BUFFER_FILLED_SIZE_2
3 GDS_STRMOUT_BUFFER_FILLED_SIZE_3
4 GDS_GS_0
5 GDS_GS_1
6 GDS_GS_2
7 GDS_GS_3

64-bit GS registers:

offset[5:2] Register
8 GDS_STRMOUT_PRIMS_NEEDED_0
9 GDS_STRMOUT_PRIMS_WRITTEN_0
10 GDS_STRMOUT_PRIMS_NEEDED_1
11 GDS_STRMOUT_PRIMS_WRITTEN_1
12 GDS_STRMOUT_PRIMS_NEEDED_2
13 GDS_STRMOUT_PRIMS_WRITTEN_2
14 GDS_STRMOUT_PRIMS_NEEDED_3
15 GDS_STRMOUT_PRIMS_WRITTEN_3

DS_SUB_GS_REG_RTN 123

Perform an atomic subtraction from data in specific registers embedded in GDS rather than operating on GDS
memory directly. This instruction returns the pre-op value. This instruction is only used by the GS stage and is
used to facilitate streamout.

The return value may be 32 bits or 64 bits depending on the GS register accessed. The data value is 32 bits.

if OFFSET0[5:2] > 7
    // 64-bit GS register access
    addr = (OFFSET0[5:2] - 8) * 2 + 8;
    VDST[0] = GS_REGS(addr + 0);
    VDST[1] = GS_REGS(addr + 1);
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    {GS_REGS(addr + 1), GS_REGS(addr)} -= DATA0[0]; // source is 32 bit
else
    addr = OFFSET0[5:2];
    VDST[0] = GS_REGS(addr);
    GS_REGS(addr) -= DATA0[0];
endif.

32-bit GS registers:

offset[5:2] Register
0 GDS_STRMOUT_BUFFER_FILLED_SIZE_0
1 GDS_STRMOUT_BUFFER_FILLED_SIZE_1
2 GDS_STRMOUT_BUFFER_FILLED_SIZE_2
3 GDS_STRMOUT_BUFFER_FILLED_SIZE_3
4 GDS_GS_0
5 GDS_GS_1
6 GDS_GS_2
7 GDS_GS_3

64-bit GS registers:

offset[5:2] Register
8 GDS_STRMOUT_PRIMS_NEEDED_0
9 GDS_STRMOUT_PRIMS_WRITTEN_0
10 GDS_STRMOUT_PRIMS_NEEDED_1
11 GDS_STRMOUT_PRIMS_WRITTEN_1
12 GDS_STRMOUT_PRIMS_NEEDED_2
13 GDS_STRMOUT_PRIMS_WRITTEN_2
14 GDS_STRMOUT_PRIMS_NEEDED_3
15 GDS_STRMOUT_PRIMS_WRITTEN_3

DS_CONDXCHG32_RTN_B64 126

Conditional write exchange.

declare OFFSET0 : 8'U;
declare OFFSET1 : 8'U;
declare RETURN_DATA : 32'U[2];
ADDR = S0.u;
DATA = S1.u64;
offset = { OFFSET1, OFFSET0 };
ADDR0 = ((ADDR + offset.u) & 0xfff8U);
ADDR1 = ADDR0 + 4U;
RETURN_DATA[0] = LDS[ADDR0].u;
if DATA[31] then
    LDS[ADDR0] = { 1'0, DATA[30 : 0] }
endif;
RETURN_DATA[1] = LDS[ADDR1].u;
if DATA[63] then
    LDS[ADDR1] = { 1'0, DATA[62 : 32] }
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endif

DS_STORE_B8_D16_HI 160

Byte write in to high word.

MEM[ADDR].b8 = DATA[23 : 16].b8

DS_STORE_B16_D16_HI 161

Short write in to high word.

MEM[ADDR].b16 = DATA[31 : 16].b16

DS_LOAD_U8_D16 162

Unsigned byte read with masked return to lower word.

RETURN_DATA[15 : 0].u16 = 16'U({ 8'0U, MEM[ADDR][7 : 0].u8 })

DS_LOAD_U8_D16_HI 163

Unsigned byte read with masked return to upper word.

RETURN_DATA[31 : 16].u16 = 16'U({ 8'0U, MEM[ADDR][7 : 0].u8 })

DS_LOAD_I8_D16 164

Signed byte read with masked return to lower word.

RETURN_DATA[15 : 0].i16 = 16'I(signext(MEM[ADDR][7 : 0].i8))

DS_LOAD_I8_D16_HI 165
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Signed byte read with masked return to upper word.

RETURN_DATA[31 : 16].i16 = 16'I(signext(MEM[ADDR][7 : 0].i8))

DS_LOAD_U16_D16 166

Unsigned short read with masked return to lower word.

RETURN_DATA[15 : 0].u16 = MEM[ADDR][15 : 0].u16

DS_LOAD_U16_D16_HI 167

Unsigned short read with masked return to upper word.

RETURN_DATA[31 : 16].u16 = MEM[ADDR][15 : 0].u16

DS_BVH_STACK_RTN_B32 173

Ray tracing involves traversing a BVH which is a kind of tree where nodes have up to 4 children. Each shader
thread processes one child at a time, and overflow nodes are stored temporarily in LDS using a stack. This
instruction supports pushing/popping the stack to reduce the number of VALU instructions required per
traversal and reduce VMEM bandwidth requirements.

The LDS stack address is computed using values packed into ADDR and part of OFFSET1. ADDR carries the
stack address for the lane. OFFSET1[5:4] contains stack_size[1:0] -- this value is constant for all lanes and is
patched into the shader by software. Valid stack sizes are {8, 16, 32, 64}.

A new stack address is returned to ADDR --- note that this VGPR is an in-out operand.

DATA0 contains the last node pointer for BVH.

DATA1 contains up to 4 valid data DWORDs for each thread. At a high level the first 3 DWORDs (DATA1[0:2]) is
pushed to the stack if they are valid, and the last DWORD (DATA1[3]) is returned. If the last DWORD is invalid
then pop the stack and return the value from memory.

In general this instruction performs the following :

    (stack_base, stack_index) = DECODE_ADDR(ADDR, OFFSET1);
    last_node_ptr = DATA0;
    // First 3 passes: push data onto stack
    for i = 0..2 do
        if DATA_VALID(DATA1[i])
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            MEM[stack_base + stack_index] = DATA1[i];
            Increment stack_index
        elsif DATA1[i] == last_node_ptr
            // Treat all further data as invalid as well.
            break
        endif
    endfor
    // Fourth pass: return data or pop
    if DATA_VALID(DATA1[3])
        VGPR_RTN = DATA1[3]
    else
        VGPR_RTN = MEM[stack_base + stack_index];
        MEM[stack_base + stack_index] = INVALID_NODE;
        Decrement stack_index
    endif
    ADDR = ENCODE_ADDR(stack_base, stack_index).

function DATA_VALID(data):
    if data == INVALID_NODE
        return false
    elsif last_node_ptr != INVALID_NODE && data == last_node_ptr
        // Match last_node_ptr
        return false
    else
        return true
    endif
endfunction.

DS_STORE_ADDTID_B32 176

Write dword with thread ID offset.

declare OFFSET0 : 8'U;
declare OFFSET1 : 8'U;
MEM[32'I({ OFFSET1, OFFSET0 } + M0[15 : 0]) + laneID.i * 4].u = DATA0.u

DS_LOAD_ADDTID_B32 177

Read dword with thread ID offset.

declare OFFSET0 : 8'U;
declare OFFSET1 : 8'U;
RETURN_DATA.u = MEM[32'I({ OFFSET1, OFFSET0 } + M0[15 : 0]) + laneID.i * 4].u

DS_PERMUTE_B32 178
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Forward permute. This does not access LDS memory and may be called even if no LDS memory is allocated to
the wave. It uses LDS to implement an arbitrary swizzle across threads in a wavefront.

Note the address passed in is the thread ID multiplied by 4.

If multiple sources map to the same destination lane, it is not deterministic which source lane writes to the
destination lane.

See also DS_BPERMUTE_B32.

// VGPR[laneId][index] is the VGPR RAM
// VDST, ADDR and DATA0 are from the microcode DS encoding
declare tmp : 32'B[64];
declare OFFSET : 16'U;
declare DATA0 : 32'U;
declare VDST : 32'U;
for i in 0 : WAVE64 ? 63 : 31 do
    tmp[i] = 0x0
endfor;
for i in 0 : WAVE64 ? 63 : 31 do
    // If a source thread is disabled, it does not propagate data.
    if EXEC[i].u1 then
        // ADDR needs to be divided by 4.
        // High-order bits are ignored.
        // NOTE: destination lane is MOD 32 regardless of wave size.
        dst_lane = 32'I(VGPR[i][ADDR] + OFFSET.b) / 4 % 32;
        tmp[dst_lane] = VGPR[i][DATA0]
    endif
endfor;
// Copy data into destination VGPRs. If multiple sources
// select the same destination thread, the highest-numbered
// source thread wins.
for i in 0 : WAVE64 ? 63 : 31 do
    if EXEC[i].u1 then
        VGPR[i][VDST] = tmp[i]
    endif
endfor

Notes

Examples (simplified 4-thread wavefronts):

    VGPR[SRC0] = { A, B, C, D }
    VGPR[ADDR] = { 0, 0, 12, 4 }
    EXEC = 0xF, OFFSET = 0
    VGPR[VDST] = { B, D, 0, C }

    VGPR[SRC0] = { A, B, C, D }
    VGPR[ADDR] = { 0, 0, 12, 4 }
    EXEC = 0xA, OFFSET = 0
    VGPR[VDST] = { -, D, -, 0 }
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DS_BPERMUTE_B32 179

Backward permute. This does not access LDS memory and may be called even if no LDS memory is allocated to
the wave. It uses LDS hardware to implement an arbitrary swizzle across threads in a wavefront.

Note the address passed in is the thread ID multiplied by 4.

Note that EXEC mask is applied to both VGPR read and write. If src_lane selects a disabled thread then zero is
returned.

See also DS_PERMUTE_B32.

// VGPR[laneId][index] is the VGPR RAM
// VDST, ADDR and DATA0 are from the microcode DS encoding
declare tmp : 32'B[64];
declare OFFSET : 16'U;
declare DATA0 : 32'U;
declare VDST : 32'U;
for i in 0 : WAVE64 ? 63 : 31 do
    tmp[i] = 0x0
endfor;
for i in 0 : WAVE64 ? 63 : 31 do
    // ADDR needs to be divided by 4.
    // High-order bits are ignored.
    // NOTE: destination lane is MOD 32 regardless of wave size.
    src_lane = 32'I(VGPR[i][ADDR] + OFFSET.b) / 4 % 32;
    // EXEC is applied to the source VGPR reads.
    if EXEC[src_lane].u1 then
        tmp[i] = VGPR[src_lane][DATA0]
    endif
endfor;
// Copy data into destination VGPRs. Some source
// data may be broadcast to multiple lanes.
for i in 0 : WAVE64 ? 63 : 31 do
    if EXEC[i].u1 then
        VGPR[i][VDST] = tmp[i]
    endif
endfor

Notes

Examples (simplified 4-thread wavefronts):

    VGPR[SRC0] = { A, B, C, D }
    VGPR[ADDR] = { 0, 0, 12, 4 }
    EXEC = 0xF, OFFSET = 0
    VGPR[VDST] = { A, A, D, B }

    VGPR[SRC0] = { A, B, C, D }
    VGPR[ADDR] = { 0, 0, 12, 4 }
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    EXEC = 0xA, OFFSET = 0
    VGPR[VDST] = { -, 0, -, B }

DS_STORE_B96 222

Tri-dword write.

MEM[ADDR + 0U].b = DATA[31 : 0];
MEM[ADDR + 4U].b = DATA[63 : 32];
MEM[ADDR + 8U].b = DATA[95 : 64]

DS_STORE_B128 223

Quad-dword write.

MEM[ADDR + 0U].b = DATA[31 : 0];
MEM[ADDR + 4U].b = DATA[63 : 32];
MEM[ADDR + 8U].b = DATA[95 : 64];
MEM[ADDR + 12U].b = DATA[127 : 96]

DS_LOAD_B96 254

Tri-dword read.

RETURN_DATA[31 : 0] = MEM[ADDR + 0U].b;
RETURN_DATA[63 : 32] = MEM[ADDR + 4U].b;
RETURN_DATA[95 : 64] = MEM[ADDR + 8U].b

DS_LOAD_B128 255

Quad-dword read.

RETURN_DATA[31 : 0] = MEM[ADDR + 0U].b;
RETURN_DATA[63 : 32] = MEM[ADDR + 4U].b;
RETURN_DATA[95 : 64] = MEM[ADDR + 8U].b;
RETURN_DATA[127 : 96] = MEM[ADDR + 12U].b
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16.15.1. LDS Instruction Limitations

Some of the DS instructions are available only to GDS, not LDS. These are:

• DS_GWS_SEMA_RELEASE_ALL
• DS_GWS_INIT
• DS_GWS_SEMA_V
• DS_GWS_SEMA_BR
• DS_GWS_SEMA_P
• DS_GWS_BARRIER
• DS_ORDERED_COUNT
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16.16. MUBUF Instructions
The bitfield map of the MUBUF format is:

BUFFER_LOAD_FORMAT_X 0

Untyped buffer load 1 component with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format

BUFFER_LOAD_FORMAT_XY 1

Untyped buffer load 2 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format
VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y])

BUFFER_LOAD_FORMAT_XYZ 2

Untyped buffer load 3 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format
VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y]);
VDATA[95 : 64].b = ConvertFromFormat(MEM[TADDR.Z])

BUFFER_LOAD_FORMAT_XYZW 3

Untyped buffer load 4 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format
VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y]);
VDATA[95 : 64].b = ConvertFromFormat(MEM[TADDR.Z]);
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VDATA[127 : 96].b = ConvertFromFormat(MEM[TADDR.W])

BUFFER_STORE_FORMAT_X 4

Untyped buffer store 1 component with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 0].b);
// Mem access size depends on format

BUFFER_STORE_FORMAT_XY 5

Untyped buffer store 2 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 0].b);
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b)

BUFFER_STORE_FORMAT_XYZ 6

Untyped buffer store 3 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 0].b);
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b);
MEM[TADDR.Z] = ConvertToFormat(VDATA[95 : 64].b)

BUFFER_STORE_FORMAT_XYZW 7

Untyped buffer store 4 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 0].b);
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b);
MEM[TADDR.Z] = ConvertToFormat(VDATA[95 : 64].b);
MEM[TADDR.W] = ConvertToFormat(VDATA[127 : 96].b)

BUFFER_LOAD_D16_FORMAT_X 8

"RDNA3" Instruction Set Architecture

16.16. MUBUF Instructions 539 of 600



Untyped buffer load 1 component with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
// VDATA[31:16].b16 is preserved.

BUFFER_LOAD_D16_FORMAT_XY 9

Untyped buffer load 2 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]))

BUFFER_LOAD_D16_FORMAT_XYZ 10

Untyped buffer load 3 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]));
VDATA[47 : 32].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Z]));
// VDATA[63:48].b16 is preserved.

BUFFER_LOAD_D16_FORMAT_XYZW 11

Untyped buffer load 4 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]));
VDATA[47 : 32].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Z]));
VDATA[63 : 48].b16 = 16'B(ConvertFromFormat(MEM[TADDR.W]))

BUFFER_STORE_D16_FORMAT_X 12

Untyped buffer store 1 component with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : 0].b16));
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// Mem access size depends on format

BUFFER_STORE_D16_FORMAT_XY 13

Untyped buffer store 2 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : 0].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16))

BUFFER_STORE_D16_FORMAT_XYZ 14

Untyped buffer store 3 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : 0].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
MEM[TADDR.Z] = ConvertToFormat(32'B(VDATA[47 : 32].b16))

BUFFER_STORE_D16_FORMAT_XYZW 15

Untyped buffer store 4 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : 0].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
MEM[TADDR.Z] = ConvertToFormat(32'B(VDATA[47 : 32].b16));
MEM[TADDR.W] = ConvertToFormat(32'B(VDATA[63 : 48].b16))

BUFFER_LOAD_U8 16

Untyped buffer load unsigned byte, zero extend in data register.

VDATA.u = 32'U({ 24'0, MEM[ADDR].u8 })

BUFFER_LOAD_I8 17
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Untyped buffer load signed byte, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i8))

BUFFER_LOAD_U16 18

Untyped buffer load unsigned short, zero extend in data register.

VDATA.u = 32'U({ 16'0, MEM[ADDR].u16 })

BUFFER_LOAD_I16 19

Untyped buffer load signed short, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i16))

BUFFER_LOAD_B32 20

Untyped buffer load dword.

VDATA.b = MEM[ADDR].b

BUFFER_LOAD_B64 21

Untyped buffer load 2 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b

BUFFER_LOAD_B96 22

Untyped buffer load 3 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
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VDATA[95 : 64] = MEM[ADDR + 8U].b

BUFFER_LOAD_B128 23

Untyped buffer load 4 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b;
VDATA[127 : 96] = MEM[ADDR + 12U].b

BUFFER_STORE_B8 24

Untyped buffer store byte.

MEM[ADDR].b8 = VDATA[7 : 0]

BUFFER_STORE_B16 25

Untyped buffer store short.

MEM[ADDR].b16 = VDATA[15 : 0]

BUFFER_STORE_B32 26

Untyped buffer store dword.

MEM[ADDR].b = VDATA[31 : 0]

BUFFER_STORE_B64 27

Untyped buffer store 2 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32]
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BUFFER_STORE_B96 28

Untyped buffer store 3 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64]

BUFFER_STORE_B128 29

Untyped buffer store 4 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64];
MEM[ADDR + 12U].b = VDATA[127 : 96]

BUFFER_LOAD_D16_U8 30

Untyped buffer load unsigned byte, use low 16 bits of data register.

VDATA[15 : 0].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[31:16] is preserved.

BUFFER_LOAD_D16_I8 31

Untyped buffer load signed byte, use low 16 bits of data register.

VDATA[15 : 0].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[31:16] is preserved.

BUFFER_LOAD_D16_B16 32

Untyped buffer load short, use low 16 bits of data register.

VDATA[15 : 0].b16 = MEM[ADDR].b16;
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// VDATA[31:16] is preserved.

BUFFER_LOAD_D16_HI_U8 33

Untyped buffer load unsigned byte, use high 16 bits of data register.

VDATA[31 : 16].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[15:0] is preserved.

BUFFER_LOAD_D16_HI_I8 34

Untyped buffer load signed byte, use high 16 bits of data register.

VDATA[31 : 16].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[15:0] is preserved.

BUFFER_LOAD_D16_HI_B16 35

Untyped buffer load short, use high 16 bits of data register.

VDATA[31 : 16].b16 = MEM[ADDR].b16;
// VDATA[15:0] is preserved.

BUFFER_STORE_D16_HI_B8 36

Untyped buffer store byte, use high 16 bits of data register.

MEM[ADDR].b8 = VDATA[23 : 16].b8

BUFFER_STORE_D16_HI_B16 37

Untyped buffer store short, use high 16 bits of data register.

MEM[ADDR].b16 = VDATA[31 : 16].b16
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BUFFER_LOAD_D16_HI_FORMAT_X 38

Untyped buffer load 1 dword with format conversion, use high 16 bits of data register.

VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
// VDATA[15:0].b16 is preserved.

BUFFER_STORE_D16_HI_FORMAT_X 39

Untyped buffer store 1 dword with format conversion, use high 16 bits of data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
// Mem access size depends on format

BUFFER_GL0_INV 43

Write back and invalidate the shader L0. Returns ACK to shader.

BUFFER_GL1_INV 44

Invalidate the GL1 cache only. Returns ACK to shader.

BUFFER_ATOMIC_SWAP_B32 51

Swap values in data register and memory.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp

BUFFER_ATOMIC_CMPSWAP_B32 52

Compare and swap with memory value.

tmp = MEM[ADDR].b;
src = DATA[31 : 0].b;
cmp = DATA[63 : 32].b;
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MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

BUFFER_ATOMIC_ADD_U32 53

Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u += DATA.u;
RETURN_DATA.u = tmp

BUFFER_ATOMIC_SUB_U32 54

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u -= DATA.u;
RETURN_DATA.u = tmp

BUFFER_ATOMIC_CSUB_U32 55

Subtract data register from memory value, clamp to zero.

declare new_value : 32'U;
old_value = MEM[ADDR].u;
if old_value < DATA.u then
    new_value = 0U
else
    new_value = old_value - DATA.u
endif;
MEM[ADDR].u = new_value;
RETURN_DATA.u = old_value

BUFFER_ATOMIC_MIN_I32 56

Minimum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src < tmp ? src : tmp;
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RETURN_DATA.i = tmp

BUFFER_ATOMIC_MIN_U32 57

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

BUFFER_ATOMIC_MAX_I32 58

Maximum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src > tmp ? src : tmp;
RETURN_DATA.i = tmp

BUFFER_ATOMIC_MAX_U32 59

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

BUFFER_ATOMIC_AND_B32 60

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp
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BUFFER_ATOMIC_OR_B32 61

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

BUFFER_ATOMIC_XOR_B32 62

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp ^ DATA.b);
RETURN_DATA.b = tmp

BUFFER_ATOMIC_INC_U32 63

Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = tmp >= src ? 0U : tmp + 1U;
RETURN_DATA.u = tmp

BUFFER_ATOMIC_DEC_U32 64

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = ((tmp == 0U) || (tmp > src)) ? src : tmp - 1U;
RETURN_DATA.u = tmp

BUFFER_ATOMIC_SWAP_B64 65

Swap 64-bit values in data register and memory.

tmp = MEM[ADDR].b64;
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MEM[ADDR].b64 = DATA.b64;
RETURN_DATA.b64 = tmp

BUFFER_ATOMIC_CMPSWAP_B64 66

Compare and swap with 64-bit memory value.

tmp = MEM[ADDR].b64;
src = DATA[63 : 0].b64;
cmp = DATA[127 : 64].b64;
MEM[ADDR].b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp

BUFFER_ATOMIC_ADD_U64 67

Add data register to 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 += DATA.u64;
RETURN_DATA.u64 = tmp

BUFFER_ATOMIC_SUB_U64 68

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

BUFFER_ATOMIC_MIN_I64 69

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.i64 = tmp
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BUFFER_ATOMIC_MIN_U64 70

Minimum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

BUFFER_ATOMIC_MAX_I64 71

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.i64 = tmp

BUFFER_ATOMIC_MAX_U64 72

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp

BUFFER_ATOMIC_AND_B64 73

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

BUFFER_ATOMIC_OR_B64 74

Bitwise OR of register value and 64-bit memory value.
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tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp

BUFFER_ATOMIC_XOR_B64 75

Bitwise XOR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp ^ DATA.b64);
RETURN_DATA.b64 = tmp

BUFFER_ATOMIC_INC_U64 76

Increment 64-bit memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = tmp >= src ? 0ULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp

BUFFER_ATOMIC_DEC_U64 77

Decrement 64-bit memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = ((tmp == 0ULL) || (tmp > src)) ? src : tmp - 1ULL;
RETURN_DATA.u64 = tmp

BUFFER_ATOMIC_CMPSWAP_F32 80

Compare and swap with floating-point memory value.

tmp = MEM[ADDR].f;
src = DATA[31 : 0].f;
cmp = DATA[63 : 32].f;
MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp
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Notes

Floating-point compare handles NAN/INF/denorm.

BUFFER_ATOMIC_MIN_F32 81

Minimum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

BUFFER_ATOMIC_MAX_F32 82

Maximum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

BUFFER_ATOMIC_ADD_F32 86

Add data register to floating-point memory value.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.
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16.17. MTBUF Instructions
The bitfield map of the MTBUF format is:

TBUFFER_LOAD_FORMAT_X 0

Typed buffer load 1 component with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format

TBUFFER_LOAD_FORMAT_XY 1

Typed buffer load 2 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format
VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y])

TBUFFER_LOAD_FORMAT_XYZ 2

Typed buffer load 3 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format
VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y]);
VDATA[95 : 64].b = ConvertFromFormat(MEM[TADDR.Z])

TBUFFER_LOAD_FORMAT_XYZW 3

Typed buffer load 4 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format
VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y]);
VDATA[95 : 64].b = ConvertFromFormat(MEM[TADDR.Z]);
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VDATA[127 : 96].b = ConvertFromFormat(MEM[TADDR.W])

TBUFFER_STORE_FORMAT_X 4

Typed buffer store 1 component with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 0].b);
// Mem access size depends on format

TBUFFER_STORE_FORMAT_XY 5

Typed buffer store 2 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 0].b);
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b)

TBUFFER_STORE_FORMAT_XYZ 6

Typed buffer store 3 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 0].b);
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b);
MEM[TADDR.Z] = ConvertToFormat(VDATA[95 : 64].b)

TBUFFER_STORE_FORMAT_XYZW 7

Typed buffer store 4 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 0].b);
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b);
MEM[TADDR.Z] = ConvertToFormat(VDATA[95 : 64].b);
MEM[TADDR.W] = ConvertToFormat(VDATA[127 : 96].b)

TBUFFER_LOAD_D16_FORMAT_X 8
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Typed buffer load 1 component with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
// VDATA[31:16].b16 is preserved.

TBUFFER_LOAD_D16_FORMAT_XY 9

Typed buffer load 2 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]))

TBUFFER_LOAD_D16_FORMAT_XYZ 10

Typed buffer load 3 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]));
VDATA[47 : 32].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Z]));
// VDATA[63:48].b16 is preserved.

TBUFFER_LOAD_D16_FORMAT_XYZW 11

Typed buffer load 4 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]));
VDATA[47 : 32].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Z]));
VDATA[63 : 48].b16 = 16'B(ConvertFromFormat(MEM[TADDR.W]))

TBUFFER_STORE_D16_FORMAT_X 12

Typed buffer store 1 component with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : 0].b16));
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// Mem access size depends on format

TBUFFER_STORE_D16_FORMAT_XY 13

Typed buffer store 2 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : 0].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16))

TBUFFER_STORE_D16_FORMAT_XYZ 14

Typed buffer store 3 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : 0].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
MEM[TADDR.Z] = ConvertToFormat(32'B(VDATA[47 : 32].b16))

TBUFFER_STORE_D16_FORMAT_XYZW 15

Typed buffer store 4 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : 0].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
MEM[TADDR.Z] = ConvertToFormat(32'B(VDATA[47 : 32].b16));
MEM[TADDR.W] = ConvertToFormat(32'B(VDATA[63 : 48].b16))

"RDNA3" Instruction Set Architecture

16.17. MTBUF Instructions 557 of 600



16.18. MIMG Instructions
The bitfield map of the MIMG format is:

IMAGE_LOAD 0

Load element from largest miplevel in resource view, with format conversion specified in the resource
constant. No sampler.

IMAGE_LOAD_MIP 1

Load element from user-specified miplevel in resource view, with format conversion specified in the resource
constant. No sampler.

IMAGE_LOAD_PCK 2

Load element from largest miplevel in resource view, without format conversion. 8- and 16-bit elements are
not sign-extended. No sampler.

IMAGE_LOAD_PCK_SGN 3

Load element from largest miplevel in resource view, without format conversion. 8- and 16-bit elements are
sign-extended. No sampler.

IMAGE_LOAD_MIP_PCK 4

Load element from user-supplied miplevel in resource view, without format conversion. 8- and 16-bit elements
are not sign-extended. No sampler.

IMAGE_LOAD_MIP_PCK_SGN 5

Load element from user-supplied miplevel in resource view, without format conversion. 8- and 16-bit elements
are sign-extended. No sampler.

"RDNA3" Instruction Set Architecture

16.18. MIMG Instructions 558 of 600



IMAGE_STORE 6

Store element to largest miplevel in resource view, with format conversion specified in resource constant. No
sampler.

IMAGE_STORE_MIP 7

Store element to user-specified miplevel in resource view, with format conversion specified in resource
constant. No sampler.

IMAGE_STORE_PCK 8

Store element to largest miplevel in resource view, without format conversion. No sampler.

IMAGE_STORE_MIP_PCK 9

Store element to user-specified miplevel in resource view, without format conversion. No sampler.

IMAGE_ATOMIC_SWAP 10

Swap values in data register and memory.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp

IMAGE_ATOMIC_CMPSWAP 11

Compare and swap with memory value.

tmp = MEM[ADDR].b;
src = DATA[31 : 0].b;
cmp = DATA[63 : 32].b;
MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

IMAGE_ATOMIC_ADD 12
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Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u += DATA.u;
RETURN_DATA.u = tmp

IMAGE_ATOMIC_SUB 13

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u -= DATA.u;
RETURN_DATA.u = tmp

IMAGE_ATOMIC_SMIN 14

Minimum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src < tmp ? src : tmp;
RETURN_DATA.i = tmp

IMAGE_ATOMIC_UMIN 15

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

IMAGE_ATOMIC_SMAX 16

Maximum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src > tmp ? src : tmp;
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RETURN_DATA.i = tmp

IMAGE_ATOMIC_UMAX 17

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

IMAGE_ATOMIC_AND 18

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

IMAGE_ATOMIC_OR 19

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

IMAGE_ATOMIC_XOR 20

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp ^ DATA.b);
RETURN_DATA.b = tmp

IMAGE_ATOMIC_INC 21
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Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = tmp >= src ? 0U : tmp + 1U;
RETURN_DATA.u = tmp

IMAGE_ATOMIC_DEC 22

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = ((tmp == 0U) || (tmp > src)) ? src : tmp - 1U;
RETURN_DATA.u = tmp

IMAGE_GET_RESINFO 23

Return resource info for a given mip level specified in the address vgpr. No sampler. Returns 4 integer values
into VGPRs 3-0: {num_mip_levels, depth, height, width}.

IMAGE_MSAA_LOAD 24

Load up to 4 samples of 1 component from an MSAA resource with a user-specified fragment ID. No sampler.

IMAGE_BVH_INTERSECT_RAY 25

Intersection test on bound volume hierarchy nodes for ray tracing acceleration. 32-bit node pointer. No
sampler.

DATA:

The destination VGPRs contain the results of intersection testing. The values returned here are different
depending on the type of BVH node that was fetched.

For box nodes the results contain the 4 pointers of the children boxes in intersection time sorted order.

For triangle BVH nodes the results contain the intersection time and triangle ID of the triangle tested.

The address GPR packing varies based on addressing mode (A16) and NSA mode.

ADDR (A16 = 0):
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11 address VGPRs contain the ray data and BVH node pointer for the intersection test. The data is laid out as
follows (dependent on NSA mode):

• NSA=0  NSA=1  Value
VADDR[0] VADDR[0] = node_pointer (uint32)
VADDR[1] VADDRA[0] = ray_extent (float32)
VADDR[2] VADDRB[0] = ray_origin.x (float32)
VADDR[3] VADDRB[1] = ray_origin.y (float32)
VADDR[4] VADDRB[2] = ray_origin.z (float32)
VADDR[5] VADDRC[0] = ray_dir.x (float32)
VADDR[6] VADDRC[1] = ray_dir.y (float32)
VADDR[7] VADDRC[2] = ray_dir.z (float32)
VADDR[8] VADDRD[0] = ray_inv_dir.x (float32)
VADDR[9] VADDRD[1] = ray_inv_dir.y (float32)
VADDR[10] VADDRD[2] = ray_inv_dir.z (float32)

ADDR (A16 = 1):

For performance and power optimization, the instruction can be encoded to use 16 bit floats for ray_dir and
ray_inv_dir by setting A16 to 1. When the instruction is encoded with 16 bit addresses only 8 address VGPRs are
used as follows (dependent on NSA mode):

• NSA=0  NSA=1  Value
VADDR[0] VADDR[0] = node_pointer (uint32)
VADDR[1] VADDRA[0] = ray_extent (float32)
VADDR[2] VADDRB[0] = ray_origin.x (float32)
VADDR[3] VADDRB[1] = ray_origin.y (float32)
VADDR[4] VADDRB[2] = ray_origin.z (float32)
VADDR[5] VADDRC[0] = {ray_inv_dir.x, ray_dir.x} (2x float16)
VADDR[6] VADDRC[1] = {ray_inv_dir.y, ray_dir.y} (2x float16)
VADDR[7] VADDRC[2] = {ray_inv_dir.z, ray_dir.z} (2x float16)

RSRC:

The resource is the texture descriptor for the operation. The instruction must be encoded with r128=1.

RESTRICTIONS:

The image_bvh_intersect_ray and image_bvh64_intersect_ray opcode do not support all of the features of a
standard MIMG instruction. This puts some restrictions on how the instruction is encoded:

• DMASK must be set to 0xf (instruction returns all four DWORDs)
• D16 must be set to 0 (16 bit return data is not supported)
• R128 must be set to 1 (256 bit T#s are not supported)
• UNRM must be set to 1 (only unnormalized coordinates are supported)
• DIM must be set to 0 (BVH textures are 1D)
• LWE must be set to 0 (LOD warn is not supported)
• TFE must be set to 0 (no support for writing out the extra DWORD for the PRT hit status)

These restrictions must be respected by the SW/compiler, and are not enforced by HW. HW is allowed to
assume that these values are encoded according to the above restrictions, and ignore improper values, or do
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any other undefined behavior, if the above fields do not match their specified values for these instructions.

The HW also has some additional restrictions on the BVH instructions when they are issued:

• The HW ignores the return order settings of the BVH ops and schedules them in the in order read return
queue when fetching data from the texture pipe.

IMAGE_BVH64_INTERSECT_RAY 26

Intersection test on bound volume hierarchy nodes for ray tracing acceleration. 64-bit node pointer. No
sampler.

This instruction allows support for very large BVHs (larger than 32 GBs) that may occur in workstation
workloads. See IMAGE_BVH_INTERSECT_RAY for basic information including restrictions. Only differences
are described here.

ADDR (A16 = 0):

12 address VGPRs contain the ray data and BVH node pointer for the intersection test. The data is laid out as
follows (dependent on NSA mode):

• NSA=0  NSA=1  Value
VADDR[0] VADDR[0] = node_pointer[31:0] (uint32)
VADDR[1] VADDR[1] = node_pointer[63:32] (uint32)
VADDR[2] VADDRA[0] = ray_extent (float32)
VADDR[3] VADDRB[0] = ray_origin.x (float32)
VADDR[4] VADDRB[1] = ray_origin.y (float32)
VADDR[5] VADDRB[2] = ray_origin.z (float32)
VADDR[6] VADDRC[0] = ray_dir.x (float32)
VADDR[7] VADDRC[1] = ray_dir.y (float32)
VADDR[8] VADDRC[2] = ray_dir.z (float32)
VADDR[9] VADDRD[0] = ray_inv_dir.x (float32)
VADDR[10] VADDRD[1] = ray_inv_dir.y (float32)
VADDR[11] VADDRD[2] = ray_inv_dir.z (float32)

ADDR (A16 = 1):

When the instruction is encoded with 16 bit addresses only 9 address VGPRs are used as follows (dependent on
NSA mode):

• NSA=0  NSA=1  Value
VADDR[0] VADDR[0] = node_pointer[31:0] (uint32)
VADDR[1] VADDR[1] = node_pointer[63:32] (uint32)
VADDR[2] VADDRA[0] = ray_extent (float32)
VADDR[3] VADDRB[0] = ray_origin.x (float32)
VADDR[4] VADDRB[1] = ray_origin.y (float32)
VADDR[5] VADDRB[2] = ray_origin.z (float32)
VADDR[6] VADDRC[0] = {ray_inv_dir.x, ray_dir.x} (2x float16)
VADDR[7] VADDRC[1] = {ray_inv_dir.y, ray_dir.y} (2x float16)
VADDR[8] VADDRC[2] = {ray_inv_dir.z, ray_dir.z} (2x float16)
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IMAGE_SAMPLE 27

Sample texture map.

IMAGE_SAMPLE_D 28

Sample texture map, with user derivatives.

IMAGE_SAMPLE_L 29

Sample texture map, with user LOD.

IMAGE_SAMPLE_B 30

Sample texture map, with lod bias.

IMAGE_SAMPLE_LZ 31

Sample texture map, from level 0.

IMAGE_SAMPLE_C 32

Sample texture map, with PCF.

IMAGE_SAMPLE_C_D 33

SAMPLE_C, with user derivatives.

IMAGE_SAMPLE_C_L 34

SAMPLE_C, with user LOD.

IMAGE_SAMPLE_C_B 35

SAMPLE_C, with lod bias.
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IMAGE_SAMPLE_C_LZ 36

SAMPLE_C, from level 0.

IMAGE_SAMPLE_O 37

Sample texture map, with user offsets.

IMAGE_SAMPLE_D_O 38

SAMPLE_O, with user derivatives.

IMAGE_SAMPLE_L_O 39

SAMPLE_O, with user LOD.

IMAGE_SAMPLE_B_O 40

SAMPLE_O, with lod bias.

IMAGE_SAMPLE_LZ_O 41

SAMPLE_O, from level 0.

IMAGE_SAMPLE_C_O 42

SAMPLE_C with user specified offsets.

IMAGE_SAMPLE_C_D_O 43

SAMPLE_C_O, with user derivatives.

IMAGE_SAMPLE_C_L_O 44

SAMPLE_C_O, with user LOD.
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IMAGE_SAMPLE_C_B_O 45

SAMPLE_C_O, with lod bias.

IMAGE_SAMPLE_C_LZ_O 46

SAMPLE_C_O, from level 0.

IMAGE_GATHER4 47

Gather 4 single component elements (2x2).

IMAGE_GATHER4_L 48

Gather 4 single component elements (2x2) with user LOD.

IMAGE_GATHER4_B 49

Gather 4 single component elements (2x2) with user bias.

IMAGE_GATHER4_LZ 50

Gather 4 single component elements (2x2) at level 0.

IMAGE_GATHER4_C 51

Gather 4 single component elements (2x2) with PCF.

IMAGE_GATHER4_C_LZ 52

Gather 4 single component elements (2x2) at level 0, with PCF.

IMAGE_GATHER4_O 53

GATHER4, with user offsets.
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IMAGE_GATHER4_LZ_O 54

GATHER4_LZ, with user offsets.

IMAGE_GATHER4_C_LZ_O 55

GATHER4_C_LZ, with user offsets.

IMAGE_GET_LOD 56

Return calculated LOD as two 32-bit floating point values.

VDATA[0] = clampedLOD;
VDATA[1] = rawLOD.

IMAGE_SAMPLE_D_G16 57

SAMPLE_D with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_C_D_G16 58

SAMPLE_C_D with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_D_O_G16 59

SAMPLE_D_O with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_C_D_O_G16 60

SAMPLE_C_D_O with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_CL 64

Sample texture map, with LOD clamp specified in shader.
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IMAGE_SAMPLE_D_CL 65

Sample texture map, with LOD clamp specified in shader, with user derivatives.

IMAGE_SAMPLE_B_CL 66

Sample texture map, with LOD clamp specified in shader, with lod bias.

IMAGE_SAMPLE_C_CL 67

SAMPLE_C, with LOD clamp specified in shader.

IMAGE_SAMPLE_C_D_CL 68

SAMPLE_C, with LOD clamp specified in shader, with user derivatives.

IMAGE_SAMPLE_C_B_CL 69

SAMPLE_C, with LOD clamp specified in shader, with lod bias.

IMAGE_SAMPLE_CL_O 70

SAMPLE_O with LOD clamp specified in shader.

IMAGE_SAMPLE_D_CL_O 71

SAMPLE_O, with LOD clamp specified in shader, with user derivatives.

IMAGE_SAMPLE_B_CL_O 72

SAMPLE_O, with LOD clamp specified in shader, with lod bias.

IMAGE_SAMPLE_C_CL_O 73

SAMPLE_C_O, with LOD clamp specified in shader.

"RDNA3" Instruction Set Architecture

16.18. MIMG Instructions 569 of 600



IMAGE_SAMPLE_C_D_CL_O 74

SAMPLE_C_O, with LOD clamp specified in shader, with user derivatives.

IMAGE_SAMPLE_C_B_CL_O 75

SAMPLE_C_O, with LOD clamp specified in shader, with lod bias.

IMAGE_SAMPLE_C_D_CL_G16 84

SAMPLE_C_D_CL with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_D_CL_O_G16 85

SAMPLE_D_CL_O with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_C_D_CL_O_G16 86

SAMPLE_C_D_CL_O with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_D_CL_G16 95

SAMPLE_D_CL with 16-bit floating point derivatives (gradients).

IMAGE_GATHER4_CL 96

Gather 4 single component elements (2x2) with user LOD clamp.

IMAGE_GATHER4_B_CL 97

Gather 4 single component elements (2x2) with user bias and clamp.

IMAGE_GATHER4_C_CL 98

Gather 4 single component elements (2x2) with user LOD clamp and PCF.
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IMAGE_GATHER4_C_L 99

Gather 4 single component elements (2x2) with user LOD and PCF.

IMAGE_GATHER4_C_B 100

Gather 4 single component elements (2x2) with user bias and PCF.

IMAGE_GATHER4_C_B_CL 101

Gather 4 single component elements (2x2) with user bias, clamp and PCF.

IMAGE_GATHER4H 144

Fetch 1 component per texel from 4x1 texels. DMASK selects which component to read (R,G,B,A) and must
have only one bit set to 1.
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16.19. EXPORT Instructions
Transfer vertex position, vertex parameter, pixel color, or pixel depth information to the output buffer. Every
pixel shader must do at least one export to a color, depth or NULL target with the VM bit set to 1. This
communicates the pixel-valid mask to the color and depth buffers. Every pixel does only one of the above
export types with the DONE bit set to 1. Vertex shaders must do one or more position exports, and at least one
parameter export. The final position export must have the DONE bit set to 1.
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16.20. FLAT, Scratch and Global Instructions
The bitfield map of the FLAT format is:

16.20.1. Flat Instructions

Flat instructions look at the per work-item address and determine for each work-item if the target memory
address is in global, private or scratch memory.

FLAT_LOAD_U8 16

Untyped buffer load unsigned byte, zero extend in data register.

VDATA.u = 32'U({ 24'0, MEM[ADDR].u8 })

FLAT_LOAD_I8 17

Untyped buffer load signed byte, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i8))

FLAT_LOAD_U16 18

Untyped buffer load unsigned short, zero extend in data register.

VDATA.u = 32'U({ 16'0, MEM[ADDR].u16 })

FLAT_LOAD_I16 19

Untyped buffer load signed short, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i16))
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FLAT_LOAD_B32 20

Untyped buffer load dword.

VDATA.b = MEM[ADDR].b

FLAT_LOAD_B64 21

Untyped buffer load 2 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b

FLAT_LOAD_B96 22

Untyped buffer load 3 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b

FLAT_LOAD_B128 23

Untyped buffer load 4 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b;
VDATA[127 : 96] = MEM[ADDR + 12U].b

FLAT_STORE_B8 24

Untyped buffer store byte.

MEM[ADDR].b8 = VDATA[7 : 0]
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FLAT_STORE_B16 25

Untyped buffer store short.

MEM[ADDR].b16 = VDATA[15 : 0]

FLAT_STORE_B32 26

Untyped buffer store dword.

MEM[ADDR].b = VDATA[31 : 0]

FLAT_STORE_B64 27

Untyped buffer store 2 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32]

FLAT_STORE_B96 28

Untyped buffer store 3 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64]

FLAT_STORE_B128 29

Untyped buffer store 4 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64];
MEM[ADDR + 12U].b = VDATA[127 : 96]
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FLAT_LOAD_D16_U8 30

Untyped buffer load unsigned byte, use low 16 bits of data register.

VDATA[15 : 0].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[31:16] is preserved.

FLAT_LOAD_D16_I8 31

Untyped buffer load signed byte, use low 16 bits of data register.

VDATA[15 : 0].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[31:16] is preserved.

FLAT_LOAD_D16_B16 32

Untyped buffer load short, use low 16 bits of data register.

VDATA[15 : 0].b16 = MEM[ADDR].b16;
// VDATA[31:16] is preserved.

FLAT_LOAD_D16_HI_U8 33

Untyped buffer load unsigned byte, use high 16 bits of data register.

VDATA[31 : 16].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[15:0] is preserved.

FLAT_LOAD_D16_HI_I8 34

Untyped buffer load signed byte, use high 16 bits of data register.

VDATA[31 : 16].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[15:0] is preserved.

FLAT_LOAD_D16_HI_B16 35
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Untyped buffer load short, use high 16 bits of data register.

VDATA[31 : 16].b16 = MEM[ADDR].b16;
// VDATA[15:0] is preserved.

FLAT_STORE_D16_HI_B8 36

Untyped buffer store byte, use high 16 bits of data register.

MEM[ADDR].b8 = VDATA[23 : 16].b8

FLAT_STORE_D16_HI_B16 37

Untyped buffer store short, use high 16 bits of data register.

MEM[ADDR].b16 = VDATA[31 : 16].b16

FLAT_ATOMIC_SWAP_B32 51

Swap values in data register and memory.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp

FLAT_ATOMIC_CMPSWAP_B32 52

Compare and swap with memory value.

tmp = MEM[ADDR].b;
src = DATA[31 : 0].b;
cmp = DATA[63 : 32].b;
MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

FLAT_ATOMIC_ADD_U32 53
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Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u += DATA.u;
RETURN_DATA.u = tmp

FLAT_ATOMIC_SUB_U32 54

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u -= DATA.u;
RETURN_DATA.u = tmp

FLAT_ATOMIC_MIN_I32 56

Minimum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src < tmp ? src : tmp;
RETURN_DATA.i = tmp

FLAT_ATOMIC_MIN_U32 57

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

FLAT_ATOMIC_MAX_I32 58

Maximum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src > tmp ? src : tmp;
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RETURN_DATA.i = tmp

FLAT_ATOMIC_MAX_U32 59

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

FLAT_ATOMIC_AND_B32 60

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

FLAT_ATOMIC_OR_B32 61

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

FLAT_ATOMIC_XOR_B32 62

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp ^ DATA.b);
RETURN_DATA.b = tmp

FLAT_ATOMIC_INC_U32 63
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Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = tmp >= src ? 0U : tmp + 1U;
RETURN_DATA.u = tmp

FLAT_ATOMIC_DEC_U32 64

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = ((tmp == 0U) || (tmp > src)) ? src : tmp - 1U;
RETURN_DATA.u = tmp

FLAT_ATOMIC_SWAP_B64 65

Swap 64-bit values in data register and memory.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = DATA.b64;
RETURN_DATA.b64 = tmp

FLAT_ATOMIC_CMPSWAP_B64 66

Compare and swap with 64-bit memory value.

NOTE: RETURN_DATA[2:3] is not modified.

tmp = MEM[ADDR].b64;
src = DATA[63 : 0].b64;
cmp = DATA[127 : 64].b64;
MEM[ADDR].b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp

FLAT_ATOMIC_ADD_U64 67

Add data register to 64-bit memory value.
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tmp = MEM[ADDR].u64;
MEM[ADDR].u64 += DATA.u64;
RETURN_DATA.u64 = tmp

FLAT_ATOMIC_SUB_U64 68

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

FLAT_ATOMIC_MIN_I64 69

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.i64 = tmp

FLAT_ATOMIC_MIN_U64 70

Minimum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

FLAT_ATOMIC_MAX_I64 71

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.i64 = tmp
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FLAT_ATOMIC_MAX_U64 72

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp

FLAT_ATOMIC_AND_B64 73

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

FLAT_ATOMIC_OR_B64 74

Bitwise OR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp

FLAT_ATOMIC_XOR_B64 75

Bitwise XOR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp ^ DATA.b64);
RETURN_DATA.b64 = tmp

FLAT_ATOMIC_INC_U64 76

Increment 64-bit memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u64;
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src = DATA.u64;
MEM[ADDR].u64 = tmp >= src ? 0ULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp

FLAT_ATOMIC_DEC_U64 77

Decrement 64-bit memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = ((tmp == 0ULL) || (tmp > src)) ? src : tmp - 1ULL;
RETURN_DATA.u64 = tmp

FLAT_ATOMIC_CMPSWAP_F32 80

Compare and swap with floating-point memory value.

tmp = MEM[ADDR].f;
src = DATA[31 : 0].f;
cmp = DATA[63 : 32].f;
MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

FLAT_ATOMIC_MIN_F32 81

Minimum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

FLAT_ATOMIC_MAX_F32 82
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Maximum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

FLAT_ATOMIC_ADD_F32 86

Add data register to floating-point memory value.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.

16.20.2. Scratch Instructions

Scratch instructions are like Flat, but assume all work-item addresses fall in scratch (private) space.

SCRATCH_LOAD_U8 16

Untyped buffer load unsigned byte, zero extend in data register.

VDATA.u = 32'U({ 24'0, MEM[ADDR].u8 })

SCRATCH_LOAD_I8 17

Untyped buffer load signed byte, sign extend in data register.
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VDATA.i = 32'I(signext(MEM[ADDR].i8))

SCRATCH_LOAD_U16 18

Untyped buffer load unsigned short, zero extend in data register.

VDATA.u = 32'U({ 16'0, MEM[ADDR].u16 })

SCRATCH_LOAD_I16 19

Untyped buffer load signed short, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i16))

SCRATCH_LOAD_B32 20

Untyped buffer load dword.

VDATA.b = MEM[ADDR].b

SCRATCH_LOAD_B64 21

Untyped buffer load 2 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b

SCRATCH_LOAD_B96 22

Untyped buffer load 3 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b
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SCRATCH_LOAD_B128 23

Untyped buffer load 4 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b;
VDATA[127 : 96] = MEM[ADDR + 12U].b

SCRATCH_STORE_B8 24

Untyped buffer store byte.

MEM[ADDR].b8 = VDATA[7 : 0]

SCRATCH_STORE_B16 25

Untyped buffer store short.

MEM[ADDR].b16 = VDATA[15 : 0]

SCRATCH_STORE_B32 26

Untyped buffer store dword.

MEM[ADDR].b = VDATA[31 : 0]

SCRATCH_STORE_B64 27

Untyped buffer store 2 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32]
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SCRATCH_STORE_B96 28

Untyped buffer store 3 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64]

SCRATCH_STORE_B128 29

Untyped buffer store 4 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64];
MEM[ADDR + 12U].b = VDATA[127 : 96]

SCRATCH_LOAD_D16_U8 30

Untyped buffer load unsigned byte, use low 16 bits of data register.

VDATA[15 : 0].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[31:16] is preserved.

SCRATCH_LOAD_D16_I8 31

Untyped buffer load signed byte, use low 16 bits of data register.

VDATA[15 : 0].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[31:16] is preserved.

SCRATCH_LOAD_D16_B16 32

Untyped buffer load short, use low 16 bits of data register.

VDATA[15 : 0].b16 = MEM[ADDR].b16;
// VDATA[31:16] is preserved.
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SCRATCH_LOAD_D16_HI_U8 33

Untyped buffer load unsigned byte, use high 16 bits of data register.

VDATA[31 : 16].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[15:0] is preserved.

SCRATCH_LOAD_D16_HI_I8 34

Untyped buffer load signed byte, use high 16 bits of data register.

VDATA[31 : 16].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[15:0] is preserved.

SCRATCH_LOAD_D16_HI_B16 35

Untyped buffer load short, use high 16 bits of data register.

VDATA[31 : 16].b16 = MEM[ADDR].b16;
// VDATA[15:0] is preserved.

SCRATCH_STORE_D16_HI_B8 36

Untyped buffer store byte, use high 16 bits of data register.

MEM[ADDR].b8 = VDATA[23 : 16].b8

SCRATCH_STORE_D16_HI_B16 37

Untyped buffer store short, use high 16 bits of data register.

MEM[ADDR].b16 = VDATA[31 : 16].b16
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16.20.3. Global Instructions

Global instructions are like Flat, but assume all work-item addresses fall in global memory space.

GLOBAL_LOAD_U8 16

Untyped buffer load unsigned byte, zero extend in data register.

VDATA.u = 32'U({ 24'0, MEM[ADDR].u8 })

GLOBAL_LOAD_I8 17

Untyped buffer load signed byte, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i8))

GLOBAL_LOAD_U16 18

Untyped buffer load unsigned short, zero extend in data register.

VDATA.u = 32'U({ 16'0, MEM[ADDR].u16 })

GLOBAL_LOAD_I16 19

Untyped buffer load signed short, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i16))

GLOBAL_LOAD_B32 20

Untyped buffer load dword.

VDATA.b = MEM[ADDR].b
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GLOBAL_LOAD_B64 21

Untyped buffer load 2 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b

GLOBAL_LOAD_B96 22

Untyped buffer load 3 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b

GLOBAL_LOAD_B128 23

Untyped buffer load 4 dwords.

VDATA[31 : 0] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b;
VDATA[127 : 96] = MEM[ADDR + 12U].b

GLOBAL_STORE_B8 24

Untyped buffer store byte.

MEM[ADDR].b8 = VDATA[7 : 0]

GLOBAL_STORE_B16 25

Untyped buffer store short.

MEM[ADDR].b16 = VDATA[15 : 0]
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GLOBAL_STORE_B32 26

Untyped buffer store dword.

MEM[ADDR].b = VDATA[31 : 0]

GLOBAL_STORE_B64 27

Untyped buffer store 2 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32]

GLOBAL_STORE_B96 28

Untyped buffer store 3 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64]

GLOBAL_STORE_B128 29

Untyped buffer store 4 dwords.

MEM[ADDR + 0U].b = VDATA[31 : 0];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64];
MEM[ADDR + 12U].b = VDATA[127 : 96]

GLOBAL_LOAD_D16_U8 30

Untyped buffer load unsigned byte, use low 16 bits of data register.

VDATA[15 : 0].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[31:16] is preserved.
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GLOBAL_LOAD_D16_I8 31

Untyped buffer load signed byte, use low 16 bits of data register.

VDATA[15 : 0].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[31:16] is preserved.

GLOBAL_LOAD_D16_B16 32

Untyped buffer load short, use low 16 bits of data register.

VDATA[15 : 0].b16 = MEM[ADDR].b16;
// VDATA[31:16] is preserved.

GLOBAL_LOAD_D16_HI_U8 33

Untyped buffer load unsigned byte, use high 16 bits of data register.

VDATA[31 : 16].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[15:0] is preserved.

GLOBAL_LOAD_D16_HI_I8 34

Untyped buffer load signed byte, use high 16 bits of data register.

VDATA[31 : 16].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[15:0] is preserved.

GLOBAL_LOAD_D16_HI_B16 35

Untyped buffer load short, use high 16 bits of data register.

VDATA[31 : 16].b16 = MEM[ADDR].b16;
// VDATA[15:0] is preserved.

GLOBAL_STORE_D16_HI_B8 36
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Untyped buffer store byte, use high 16 bits of data register.

MEM[ADDR].b8 = VDATA[23 : 16].b8

GLOBAL_STORE_D16_HI_B16 37

Untyped buffer store short, use high 16 bits of data register.

MEM[ADDR].b16 = VDATA[31 : 16].b16

GLOBAL_LOAD_ADDTID_B32 40

Untyped buffer load dword. No VGPR address is supplied in this instruction. TID is added to the address as
shown below:

memory_Addr = sgpr_addr(64) + inst_offset(12) + tid*4

GLOBAL_STORE_ADDTID_B32 41

Untyped buffer store dword. No VGPR address is supplied in this instruction. TID is added to the address as
shown below:

memory_Addr = sgpr_addr(64) + inst_offset(12) + tid*4

GLOBAL_ATOMIC_SWAP_B32 51

Swap values in data register and memory.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp

GLOBAL_ATOMIC_CMPSWAP_B32 52

Compare and swap with memory value.

tmp = MEM[ADDR].b;
src = DATA[31 : 0].b;
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cmp = DATA[63 : 32].b;
MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

GLOBAL_ATOMIC_ADD_U32 53

Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u += DATA.u;
RETURN_DATA.u = tmp

GLOBAL_ATOMIC_SUB_U32 54

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR].u -= DATA.u;
RETURN_DATA.u = tmp

GLOBAL_ATOMIC_CSUB_U32 55

Subtract data register from memory value, clamp to zero.

declare new_value : 32'U;
old_value = MEM[ADDR].u;
if old_value < DATA.u then
    new_value = 0U
else
    new_value = old_value - DATA.u
endif;
MEM[ADDR].u = new_value;
RETURN_DATA.u = old_value

GLOBAL_ATOMIC_MIN_I32 56

Minimum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src < tmp ? src : tmp;
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RETURN_DATA.i = tmp

GLOBAL_ATOMIC_MIN_U32 57

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

GLOBAL_ATOMIC_MAX_I32 58

Maximum of two signed integer values.

tmp = MEM[ADDR].i;
src = DATA.i;
MEM[ADDR].i = src > tmp ? src : tmp;
RETURN_DATA.i = tmp

GLOBAL_ATOMIC_MAX_U32 59

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

GLOBAL_ATOMIC_AND_B32 60

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp
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GLOBAL_ATOMIC_OR_B32 61

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

GLOBAL_ATOMIC_XOR_B32 62

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp ^ DATA.b);
RETURN_DATA.b = tmp

GLOBAL_ATOMIC_INC_U32 63

Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = tmp >= src ? 0U : tmp + 1U;
RETURN_DATA.u = tmp

GLOBAL_ATOMIC_DEC_U32 64

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;
MEM[ADDR].u = ((tmp == 0U) || (tmp > src)) ? src : tmp - 1U;
RETURN_DATA.u = tmp

GLOBAL_ATOMIC_SWAP_B64 65

Swap 64-bit values in data register and memory.

tmp = MEM[ADDR].b64;
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MEM[ADDR].b64 = DATA.b64;
RETURN_DATA.b64 = tmp

GLOBAL_ATOMIC_CMPSWAP_B64 66

Compare and swap with 64-bit memory value.

tmp = MEM[ADDR].b64;
src = DATA[63 : 0].b64;
cmp = DATA[127 : 64].b64;
MEM[ADDR].b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp

GLOBAL_ATOMIC_ADD_U64 67

Add data register to 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 += DATA.u64;
RETURN_DATA.u64 = tmp

GLOBAL_ATOMIC_SUB_U64 68

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

GLOBAL_ATOMIC_MIN_I64 69

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.i64 = tmp
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GLOBAL_ATOMIC_MIN_U64 70

Minimum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

GLOBAL_ATOMIC_MAX_I64 71

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;
src = DATA.i64;
MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.i64 = tmp

GLOBAL_ATOMIC_MAX_U64 72

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp

GLOBAL_ATOMIC_AND_B64 73

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

GLOBAL_ATOMIC_OR_B64 74

Bitwise OR of register value and 64-bit memory value.
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tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp

GLOBAL_ATOMIC_XOR_B64 75

Bitwise XOR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp ^ DATA.b64);
RETURN_DATA.b64 = tmp

GLOBAL_ATOMIC_INC_U64 76

Increment 64-bit memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = tmp >= src ? 0ULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp

GLOBAL_ATOMIC_DEC_U64 77

Decrement 64-bit memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = ((tmp == 0ULL) || (tmp > src)) ? src : tmp - 1ULL;
RETURN_DATA.u64 = tmp

GLOBAL_ATOMIC_CMPSWAP_F32 80

Compare and swap with floating-point memory value.

tmp = MEM[ADDR].f;
src = DATA[31 : 0].f;
cmp = DATA[63 : 32].f;
MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp
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Notes

Floating-point compare handles NAN/INF/denorm.

GLOBAL_ATOMIC_MIN_F32 81

Minimum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

GLOBAL_ATOMIC_MAX_F32 82

Maximum of two floating-point values.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

GLOBAL_ATOMIC_ADD_F32 86

Add data register to floating-point memory value.

tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.

"RDNA3" Instruction Set Architecture

16.20. FLAT, Scratch and Global Instructions 600 of 600


	"RDNA3" Instruction Set Architecture: Reference Guide
	Contents
	Preface
	About This Document
	Audience
	Organization
	Related Documents
	Additional Information

	Chapter 1. Introduction
	1.1. Terminology
	1.2. Hardware Overview
	1.2.1. Work-group Processor (WGP)
	1.2.2. Data Sharing
	1.2.3. Device Memory


	Chapter 2. Shader Concepts
	2.1. Wave32 and Wave64
	2.2. Shader Types
	2.2.1. Compute Shaders
	2.2.2. Graphics Shaders

	2.3. Work-groups
	2.4. Shader Padding Requirement

	Chapter 3. Wave State
	3.1. State Overview
	3.2. Control State: PC and EXEC
	3.2.1. Program Counter (PC)
	3.2.2. EXECute Mask
	3.2.3. Instruction Skipping: EXEC==0

	3.3. Storage State: SGPR, VGPR, LDS
	3.3.1. SGPRs
	3.3.2. VGPRs
	3.3.3. Memory Alignment and Out-of-Range Behavior
	3.3.4. LDS

	3.4. Wave State Registers
	3.4.1. Status register
	3.4.2. Mode register
	3.4.3. M0 : Miscellaneous Register
	3.4.4. NULL
	3.4.5. SCC: Scalar Condition Code
	3.4.6. Vector Compares: VCC and VCCZ
	3.4.7. FLAT_SCRATCH
	3.4.8. Hardware Internal Registers
	3.4.9. Trap and Exception registers
	3.4.10. Time

	3.5. Initial Wave State
	3.5.1. EXEC initialization
	3.5.2. FLAT_SCRATCH Initialization
	3.5.3. SGPR Initialization
	3.5.4. Which VGPRs Get Initialized
	3.5.5. LDS Initialization


	Chapter 4. Shader Instruction Set
	4.1. Common Instruction Fields
	4.1.1. Cache Controls: SLC, GLC and DLC


	Chapter 5. Program Flow Control
	5.1. Program Control
	5.2. Instruction Clauses
	5.2.1. Clause Breaks

	5.3. Send Message Types
	5.4. Branching
	5.5. Work-groups and Barriers
	5.6. Data Dependency Resolution
	5.7. ALU Instruction Software Scheduling

	Chapter 6. Scalar ALU Operations
	6.1. SALU Instruction Formats
	6.2. Scalar ALU Operands
	6.3. Scalar Condition Code (SCC)
	6.4. Integer Arithmetic Instructions
	6.5. Conditional Move Instructions
	6.6. Comparison Instructions
	6.7. Bit-Wise Instructions
	6.8. Access Instructions
	6.9. Memory Aperture Query

	Chapter 7. Vector ALU Operations
	7.1. Microcode Encodings
	7.2. Operands
	7.2.1. Non-Standard Uses of Operand Fields
	7.2.2. Inputs Operands
	7.2.3. Output Operands
	7.2.4. Denormalized and Rounding Modes
	7.2.5. Instructions using SGPRs as Mask or Carry
	7.2.6. Wave64 use of SGPRs
	7.2.7. Out-of-Range GPRs
	7.2.8. PERMLANE Specific Rules

	7.3. Instructions
	7.4. 16-bit Math and VGPRs
	7.5. Packed Math
	7.5.1. Inline Constants with Packed Math

	7.6. Dual Issue VALU
	7.7. Data Parallel Processing (DPP)
	7.7.1. DPP16
	7.7.2. DPP8

	7.8. VGPR Indexing
	7.9. Wave Matrix Multiply Accumulate (WMMA)

	Chapter 8. Scalar Memory Operations
	8.1. Microcode Encoding
	8.1.1. Scalar Memory Addressing
	8.1.2. Loads using Buffer Constant
	8.1.3. S_DCACHE_INV and S_GL1_INV

	8.2. Dependency Checking
	8.3. Scalar Memory Clauses and Groups
	8.4. Alignment and Bounds Checking
	8.4.1. Address and GPR Range Checking


	Chapter 9. Vector Memory Buffer Instructions
	9.1. Buffer Instructions
	9.2. VGPR Usage
	9.3. Buffer Data
	9.3.1. D16 Instructions
	9.3.2. LOAD/STORE_FORMAT and DATA-FORMAT mismatches

	9.4. Buffer Addressing
	9.4.1. Range Checking
	9.4.2. Swizzled Buffer Addressing

	9.5. Alignment
	9.6. Buffer Resource

	Chapter 10. Vector Memory Image Instructions
	10.1. Image Instructions
	10.1.1. Texture Fault Enable (TFE) and LOD Warning Enable (LWE)
	10.1.2. D16 Instructions
	10.1.3. A16 Instructions
	10.1.4. G16 Instructions
	10.1.5. Image Non-Sequential Address (NSA)

	10.2. Image Opcodes with No Sampler
	10.3. Image Opcodes with a Sampler
	10.4. VGPR Usage
	10.4.1. Data format in VGPRs

	10.5. Image Resource
	10.6. Image Sampler
	10.7. Data Formats
	10.8. Vector Memory Instruction Data Dependencies
	10.9. Ray Tracing
	10.9.1. Instruction definition and fields
	10.9.2. Using BVH with NSA
	10.9.3. Texture Resource Definition

	10.10. Partially Resident Textures

	Chapter 11. Global, Scratch and Flat Address Space
	11.1. Instructions
	11.1.1. FLAT
	11.1.2. Global
	11.1.3. Scratch

	11.2. Addressing
	11.3. Memory Error Checking
	11.4. Data

	Chapter 12. Data Share Operations
	12.1. Overview
	12.1.1. Dataflow in Memory Hierarchy
	12.1.2. LDS Modes and Allocation: CU vs. WGP Mode
	12.1.3. LDS Access Methods

	12.2. Pixel Parameter Interpolation
	12.2.1. LDS Parameter Loads

	12.3. VALU Parameter Interpolation
	12.3.1. 16-bit Parameter Interpolation

	12.4. LDS Direct Load
	12.5. Data Share Indexed and Atomic Access
	12.5.1. LDS Atomic Ops
	12.5.2. LDS Lane-permute Ops
	12.5.3. DS Stack Operations for Ray Tracing

	12.6. Global Data Share
	12.6.1. GS NGG Streamout Instructions

	12.7. Alignment and Errors

	Chapter 13. Float Memory Atomics
	13.1. Rounding
	13.2. Denormals
	13.3. NaN Handling
	13.4. Global Wave Sync & Atomic Ordered Count
	13.4.1. GWS and Ordered Count Programming Rule
	13.4.2. EXEC Handling
	13.4.3. Ordered Count
	13.4.4. Global Wave Sync


	Chapter 14. Export: Position, Color/MRT
	14.1. Pixel Shader Exports
	14.2. Primitive Shader Exports (From GS shader stage)
	14.3. Dependency Checking

	Chapter 15. Microcode Formats
	15.1. Scalar ALU and Control Formats
	15.1.1. SOP2
	15.1.2. SOPK
	15.1.3. SOP1
	15.1.4. SOPC
	15.1.5. SOPP

	15.2. Scalar Memory Format
	15.2.1. SMEM

	15.3. Vector ALU Formats
	15.3.1. VOP2
	15.3.2. VOP1
	15.3.3. VOPC
	15.3.4. VOP3
	15.3.5. VOP3SD
	15.3.6. VOP3P
	15.3.7. VOPD
	15.3.8. DPP16
	15.3.9. DPP8

	15.4. Vector Parameter Interpolation Format
	15.4.1. VINTERP

	15.5. Parameter and Direct Load from LDS
	15.5.1. LDSDIR

	15.6. LDS and GDS Format
	15.6.1. DS

	15.7. Vector Memory Buffer Formats
	15.7.1. MTBUF
	15.7.2. MUBUF

	15.8. Vector Memory Image Format
	15.8.1. MIMG

	15.9. Flat Formats
	15.9.1. FLAT
	15.9.2. GLOBAL
	15.9.3. SCRATCH

	15.10. Export Format
	15.10.1. EXP


	Chapter 16. Instructions
	16.1. SOP2 Instructions
	16.2. SOPK Instructions
	16.3. SOP1 Instructions
	16.4. SOPC Instructions
	16.5. SOPP Instructions
	16.6. SMEM Instructions
	16.7. VOP2 Instructions
	16.7.1. VOP2 using VOP3 or VOP3SD encoding

	16.8. VOP1 Instructions
	16.8.1. VOP1 using VOP3 encoding

	16.9. VOPC Instructions
	16.9.1. VOPC using VOP3 encoding

	16.10. VOP3P Instructions
	16.11. VOPD Instructions
	16.11.1. VOPD X-Instructions
	16.11.2. VOPD Y-Instructions

	16.12. VOP3 & VOP3SD Instructions
	16.13. VINTERP Instructions
	16.14. Parameter and Direct Load from LDS Instructions
	16.15. LDS & GDS Instructions
	16.15.1. LDS Instruction Limitations

	16.16. MUBUF Instructions
	16.17. MTBUF Instructions
	16.18. MIMG Instructions
	16.19. EXPORT Instructions
	16.20. FLAT, Scratch and Global Instructions
	16.20.1. Flat Instructions
	16.20.2. Scratch Instructions
	16.20.3. Global Instructions



