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1. Introduction

Numerical data suggest the following patterns for prime numbers p:

−1 ≡ � mod p ⇐⇒ p = 2 or p ≡ 1 mod 4,

2 ≡ � mod p ⇐⇒ p = 2 or p ≡ 1, 7 mod 8,

−2 ≡ � mod p ⇐⇒ p = 2 or p ≡ 1, 3 mod 8,

3 ≡ � mod p ⇐⇒ p = 2, 3 or p ≡ 1, 11 mod 12,

−3 ≡ � mod p ⇐⇒ p = 2, 3 or p ≡ 1 mod 3,

5 ≡ � mod p ⇐⇒ p = 2, 5 or p ≡ 1, 4 mod 5.

As an application of such equivalences, we will use them to prove there are infinitely
many primes in certain arithmetic progressions by adapting a proof going back to Euclid
that there are infinitely many primes.

2. Euclid’s proof of the infinitude of the primes

Euclid’s Elements, which is famous mostly for its rigorous development of the theorems
of plane geometry from five axioms, contains a fair bit of number theory: the Euclidean
algorithm gets its name from its appearance in this work, and the existence of prime fac-
torization is proved here as well. Proposition 20 of Book IX of the Elements proves the
infinitude of the set of prime numbers. Here is that argument, in modern language.

Theorem 2.1 (Euclid). There are infinitely many prime numbers.

Proof. We know some primes already, such as 2. (We could list some more, but we just
need one of them.) Suppose p1, . . . , pr are all prime. We want to show there is another
prime off this list. The key idea is to consider the number

N = p1 · · · pr + 1.

That is the product of all the primes in the list, plus one. The number N is not divisible
by any of p1, . . . , pr since N has remainder 1 when divided by each pi. Since N > 1, N has
a prime factor, say p. This prime is different from p1, . . . , pr since N is divisible by p but
not by any pi.

If there were finitely many primes, then running through the above argument with
p1, . . . , pr being the complete list of primes shows there is another prime, which is a contra-
diction. Therefore there are infinitely many primes. �

A common misunderstanding of this proof is that it is saying if p1, . . . , pr are all prime then
p1 · · · pr+1 is prime. This need not be true. For example, 2·3·5·7·11·13+1 = 30031 = 59·509.
What the proof says is that if p1, . . . , pr are all prime then any prime factor of p1 · · · pr + 1
will be a prime other than one of the pi’s, but not that p1 · · · pr + 1 is itself prime.

1



2 KEITH CONRAD

Remark 2.2. Here is a recursive way to find new primes, motivated by Euclid’s proof:
set p1 = 2, and if we have primes p1, . . . , pr then let pr+1 be the smallest prime factor of
p1p2 · · · pr + 1. For instance, p1 + 1 = 3 is prime, so p2 = 3, and p1p2 + 1 = 7 is prime, so
p3 = 7. This list of primes falls out in the following order:

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, . . .

This process of building prime numbers appeared in a paper of Mullin [2] and the resulting
list is called the Euclid–Mullin sequence. See https://oeis.org/A000945 for the first 43
terms. Does this list eventually include all primes? Nobody knows.

3. Extending Euclid’s proof to primes in arithmetic progression

An arithmetic progression is a sequence with a common difference between successive
terms. It has the form a, a+m, a+2m, a+3m, a+4m, . . . . For example, the (positive) odd
numbers are an arithmetic progression with a = 1 and m = 2. We will focus on arithmetic
progressions where 0 < a < m. In the language of congruences, an arithmetic progression
is the set of (positive) integers n satisfying a congruence condition n ≡ a mod m.

If (a,m) > 1 then the arithmetic progression a, a+m, a+2m, a+3m, a+4m, . . . contains
at most one prime number since every term in this arithmetic progression is a multiple
of (a,m). For example, there is only one prime p ≡ 2 mod 4 and there are no primes
p ≡ 6 mod 8. If (a,m) = 1, on the other hand, there is no obvious reason there couldn’t be
infinitely many primes p ≡ a mod m, and Dirichlet proved there really are infinitely many
such primes.

Theorem 3.1 (Dirichlet, 1837). If (a,m) = 1 then there are infinitely many prime numbers
p ≡ a mod m.

The proof of Dirichlet’s theorem in general is hard, but special cases are accessible to
the strategy of Euclid’s proof that there are infinitely many primes. We will show for the a
and m in the table below that there are infinitely many primes p ≡ a mod m. Most of the
proofs in Section 3 will use the square patterns in the introduction.

a mod m Theorem
1 mod 3 3.2
2 mod 3 3.3
1 mod 4 3.4
3 mod 4 3.5
4 mod 5 3.6
3 mod 8 3.7
5 mod 8 3.8
7 mod 8 3.9
5 mod 12 3.10
7 mod 12 3.11
11 mod 12 3.12

Theorem 3.2. There are infinitely many primes p ≡ 1 mod 3.

Proof. One such prime is 7. If p1, . . . , pr are primes ≡ 1 mod 3, let

N = (2p1p2 · · · pr)2 + 3.

Then N is not divisible by 2, 3, or by any of p1, . . . , pr (why?). Since N > 1, N has a
prime factor, say p. Writing the condition N ≡ 0 mod p as (2p1 · · · pr)2 + 3 ≡ 0 mod p, we

https://oeis.org/A000945
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have −3 ≡ (2p1 · · · pr)2 mod p, so −3 ≡ � mod p. Therefore, since p 6= 2 or 3, the pattern
for −3 ≡ � mod p tells us p ≡ 1 mod 3. This prime is different from p1, . . . , pr, since
N ≡ 3 6≡ 0 mod pi while N ≡ 0 mod p, so there are infinitely many primes ≡ 1 mod 3. �

Theorem 3.3. There are infinitely many primes p ≡ 2 mod 3.

Proof. One such prime is 2. If p1, . . . , pr are primes ≡ 2 mod 3, let

N = 3p1p2 · · · pr − 1.

Then N is not divisible by 3 or by any of p1, . . . , pr. Since N > 1, N has a prime factor.
Since N ≡ −1 ≡ 2 mod 3, the prime factors of N are not all 1 mod 3; otherwise N ≡
1 mod 3, because an integer greater than 1 is the product of its primes factors to some
powers. Therefore N has a prime factor p that is ≡ 2 mod 3. This prime is different from
p1, . . . , pr, since N ≡ −1 6≡ 0 mod pi while N ≡ 0 mod p, so there are infinitely many primes
≡ 2 mod 3. �

Theorem 3.4. There are infinitely many primes p ≡ 1 mod 4.

Proof. One such prime is 5. If p1, . . . , pr are primes ≡ 1 mod 4, let

N = (2p1p2 · · · pr)2 + 1.

Then N is not divisible by 2 or by any of p1, . . . , pr. Since N > 1, N has a prime factor,
say p. Then the condition N ≡ 0 mod p implies −1 ≡ � mod p (why?). Since p 6= 2, the
pattern for −1 ≡ � mod p tells us p ≡ 1 mod 4. This prime is different from p1, . . . , pr, since
N ≡ 1 6≡ 0 mod pi while N ≡ 0 mod p, so there are infinitely many primes ≡ 1 mod 4. �

Theorem 3.5. There are infinitely many primes p ≡ 3 mod 4.

Proof. One such prime is 3. If p1, . . . , pr are primes ≡ 3 mod 4, let

N = 4p1p2 · · · pr − 1 > 1.

Then N is not divisible by 2 or by any of p1, . . . , pr. Since N ≡ −1 ≡ 3 mod 4, the prime
factors of N are not all 1 mod 4 (otherwise N ≡ 1 mod 4). Therefore N has a prime factor
p that is 3 mod 4. This prime is different from p1, . . . , pr, since N ≡ −1 6≡ 0 mod pi while
N ≡ 0 mod p, so there are infinitely many primes ≡ 3 mod 4. �

The proofs of Theorems 3.3 and 3.5 did not use square patterns, but they relied on there
being just two possible remainders for primes modulo 3 other than 3 and primes modulo
4 other than 4: 1 and another choice. If we try to extend the proofs of those cases to
other moduli we quickly run into problems.1 For example, if we want to show there are
infinitely many primes p ≡ 4 mod 5 then we could observe there are such primes, like 19,
and if p1, . . . , pr are all ≡ 4 mod 5 then the product N = 5p1 · · · pr − 1 satisfies N > 1 and
N ≡ −1 ≡ 4 6≡ 1 mod 5, so N has a prime factor p that is not ≡ 1 mod 5, but this doesn’t
mean p ≡ 4 mod 5. For example, 5 · 19− 1 = 94 = 2 · 47 has both prime factors ≡ 2 mod 5.

To extend Euclid’s proof of the infinitude of primes in arithmetic progressions to moduli
besides 3 and 4 we will use quadratic expressions to define N in the proof (by comparison,
the formula for N in Theorems 3.3 and 3.5 is linear in the product p1 · · · pr). This was
already seen in Theorems 3.2 and 3.4.

1For modulus 6 there is not a problem: the same ideas show there are infinitely many primes p ≡ 5 mod 6.
But this is not interesting since for odd p the condition p ≡ 5 mod 6 is the same as the condition p ≡ 2 mod 3,
and we already handled this in Theorem 3.3.
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Theorem 3.6. There are infinitely many primes p ≡ 4 mod 5.

Proof. One such prime is 19. If p1, . . . , pr are primes ≡ 4 mod 5, let

N = (2p1p2 · · · pr)2 − 5 > 1.

Then N is not divisible by 2, 5, or p1, . . . , pr. Let p be any prime factor of N , so 5 ≡ � mod p
(why?). Therefore, since p 6= 2 or 5, the pattern for 5 ≡ � mod p tells us p ≡ 1 or 4 mod 5:
all prime factors of N are 1 mod 5 or 4 mod 5. To show N has a prime factor that is 4 mod 5
we argue by contradiction. If every prime factor of N is 1 mod 5, then N ≡ 1 mod 5, but in
fact N ≡ 4 mod 5 since p2i ≡ 1 mod 5 for all i. (Here we use pi ≡ 4 mod 5.) Therefore some
prime factor of N is not 1 mod 5. The only option left is that this prime factor is 4 mod 5.
This prime is different from p1, . . . , pr, since N ≡ −5 6≡ 0 mod pi while N ≡ 0 mod p, so
there are infinitely many primes ≡ 4 mod 5. �

Theorem 3.7. There are infinitely many primes p ≡ 3 mod 8.

Proof. One such prime is 3. If p1, . . . , pr are primes ≡ 3 mod 8, let

N = (p1p2 · · · pr)2 + 2 > 1.

Then N is not divisible by 2 or by any of p1, . . . , pr. Let p be any prime factor of N , so −2 ≡
� mod p. Therefore, since p 6= 2, the pattern for −2 ≡ � mod p says p ≡ 1 or 3 mod 8. We
want to show N has a prime factor that is 3 mod 8, and will show this by contradiction. If
every prime factor of N is ≡ 1 mod 8, then N ≡ 1 mod 8, but in fact N ≡ 3 mod 8 since
p2i ≡ 1 mod 8 for all i. Therefore some prime factor p of N is not 1 mod 8, so p ≡ 3 mod 8.
This prime is different from p1, . . . , pr, since N ≡ 2 6≡ 0 mod pi while N ≡ 0 mod p, so there
are infinitely many primes ≡ 3 mod 8. �

Theorem 3.8. There are infinitely many primes p ≡ 5 mod 8.

Proof. One such prime is 5. If p1, . . . , pr are primes ≡ 5 mod 8, let

N = (2p1p2 · · · pr)2 + 1 > 1.

Then N is not divisible by 2 or by any of p1, . . . , pr. Let p be any prime factor of N ,
so −1 ≡ � mod p. Therefore, since p 6= 2, we have p ≡ 1 mod 4, which is the same as
p ≡ 1 or 5 mod 8. If every prime factor of N is 1 mod 8, then N ≡ 1 mod 8, but in fact
N ≡ 5 mod 8 since p2i ≡ 1 mod 8 for all i. Therefore some prime factor p of N is not
1 mod 8, so p ≡ 5 mod 8. This prime is different from p1, . . . , pr, since N ≡ 1 6≡ 0 mod pi
while N ≡ 0 mod p, so there are infinitely many primes ≡ 5 mod 8. �

Theorem 3.9. There are infinitely many primes p ≡ 7 mod 8.

Proof. One such prime is 7. If p1, . . . , pr are primes ≡ 7 mod 8, let

N = (p1p2 · · · pr)2 − 2 > 1.

Then N is not divisible by 2 or by any of p1, . . . , pr. Let p be a prime factor of N , so
2 ≡ � mod p. Therefore, since p 6= 2, the pattern for 2 ≡ � mod p implies p ≡ 1 or 7 mod 8.
If every prime factor of N is 1 mod 8, then N ≡ 1 mod 8, but in fact N ≡ −1 mod 8 since
p2i ≡ 1 mod 8. Therefore some prime factor p of N is not 1 mod 8, so p ≡ 7 mod 8. This
prime is different from p1, . . . , pr, since N ≡ −2 6≡ 0 mod pi while N ≡ 0 mod p, so there
are infinitely many primes ≡ 7 mod 8. �

Theorem 3.10. There are infinitely many primes p ≡ 5 mod 12.
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Proof. One such prime is 5. If p1, . . . , pr are primes ≡ 5 mod 12, let

N = (2p1p2 · · · pr)2 + 1 > 1.

Then N is not divisible by 2 or by any of p1, . . . , pr. Let p be any prime factor of N ,
so −1 ≡ � mod p. Therefore, since p 6= 2, we have p ≡ 1 mod 4, which is the same as
p ≡ 1 or 5 mod 12. (The choice p ≡ 9 mod 12 is satisfied by no prime.) If every prime
factor of N is 1 mod 12, then N ≡ 1 mod 12, but in fact N ≡ 5 mod 12 since p2i ≡ 1 mod 12
for all i. Therefore some prime factor p of N is not 1 mod 12, p ≡ 5 mod 12. This prime is
different from p1, . . . , pr, since N ≡ 1 6≡ 0 mod pi while N ≡ 0 mod p, so there are infinitely
many primes ≡ 5 mod 12. �

Theorem 3.11. There are infinitely many primes p ≡ 7 mod 12.

Proof. One such prime is 7. If p1, . . . , pr are primes ≡ 7 mod 12, let

N = (2p1 · · · pr)2 + 3.

Then N is not divisible by 2 or by any of p1, . . . , pr. Let p be any prime factor of N , so
−3 ≡ � mod p. Therefore, since p is not 2 or 3, the pattern for −3 ≡ � mod p implies
p ≡ 1 mod 3. Lifting this mod 3 congruence to modulus 12 tells us p ≡ 1, 4, 7 or 10 mod 12.
No primes are 4 mod 12 or 10 mod 12, so p ≡ 1 or 7 mod 12. If every prime factor of N is
≡ 1 mod 12, then N ≡ 1 mod 12, but in fact N ≡ 7 mod 12 since p2i ≡ 1 mod 12 for all i (so
N ≡ 4 + 3 mod 12). Therefore some prime factor p of N is not 1 mod 12, so p ≡ 7 mod 12.
This prime is different from p1, . . . , pr, since N ≡ 3 6≡ 0 mod pi while N ≡ 0 mod p, so there
are infinitely many primes ≡ 7 mod 12. �

Theorem 3.12. There are infinitely many primes p ≡ 11 mod 12.

Proof. One such prime is 11. If p1, . . . , pr are primes ≡ 11 mod 12, let

N = 3(p1p2 · · · pr)2 − 4 > 1.

Then N is not divisible by 2, 3, or any of p1, . . . , pr. Let p be a prime factor of N , so
3 ≡ � mod p (why?). Therefore, since p 6= 2 or 3, the pattern for 3 ≡ � mod p implies
p ≡ 1 or 11 mod 12. If every prime factor of N is 1 mod 12, then N ≡ 1 mod 12, but in
fact N ≡ −1 mod 12 since p2i ≡ 1 mod 12 for all i. Therefore some prime factor p of N is
not 1 mod 12, so p ≡ 11 mod 12. This prime is different from p1, . . . , pr, since N ≡ −4 6≡
0 mod pi while N ≡ 0 mod p, so there are infinitely many primes ≡ 11 mod 12. �

Remark 3.13. The proofs above go back to Lebesgue [1] in 1856 for modulus 4 and Serret
[3] in 1852 for moduli 5, 8, and 12. Even though these proofs are much simpler than
Dirichlet’s proof of the general case (Theorem 3.1) in 1837, it appears that such special
cases were only proved in the literature after Dirichlet’s work appeared.

In all these proofs, we used a polynomial whose values on integers have special congruence
conditions on their prime factors, e.g., to show p ≡ 4 mod 5 infinitely often we relied on the
fact that any integer of the form n2 − 5 with n even and n 6≡ 0 mod 5 is only divisible by
primes p ≡ 1, 4 mod 5: if p | (n2− 5) then 5 mod p is a square, so p ≡ 1, 4 mod 5 if p 6= 2, 5.
Thus the proof of Theorem 3.6 relies on a feature of the polynomial T 2 − 5. The table
below is a summary of the polynomial and the square condition used for each congruence
condition above. Euclid’s proof of the infinitude of the primes is associated to the linear
polynomial T + 1. (Recall the role of p1 · · · pr + 1 in that proof.) The proofs using square
patterns all involve a quadratic polynomial.
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Congruence Polynomial Square condition
1 mod 3 T 2 + 3 −3 ≡ � mod p
2 mod 3 T − 1 None
1 mod 4 T 2 + 1 −1 ≡ � mod p
3 mod 4 T − 1 None
4 mod 5 T 2 − 5 5 ≡ � mod p
3 mod 8 T 2 + 2 −2 ≡ � mod p
5 mod 8 T 2 + 1 −1 ≡ � mod p
7 mod 8 T 2 − 2 2 ≡ � mod p
5 mod 12 T 2 + 1 −1 ≡ � mod p
7 mod 12 T 2 + 3 −3 ≡ � mod p
11 mod 12 3T 2 − 4 3 ≡ � mod p

We have proved Dirichlet’s theorem (Theorem 3.1) for all cases where m = 3, 4, 5, 8, and
12 except for 1, 2, 3 mod 5, 1 mod 8, and 1 mod 12. These remaining cases for m = 5, 8,
and 12 can be handled by elementary techniques in the style we used above, but we have
to replace quadratic polynomials with higher degree polynomials. We do not discuss this
further here.
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