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Introduction

In this article, we compare the historical notes and ref-
erences in well-known texts with what would seem to
be the reality as exhibited by the original sources, in the
case of Farey series, Pick’s area theorem, and the con-
nection between them. Although one might suppose that
we have chosen a particularly “unfortunate” example,
in which the historical notes and texts are almost totally
misleading, it is our experience in preparing historical
activities for the classroom that, more often than not, the
information readily available to nonprofessional histori-
ans is unreliable. There are signs that history is playing
a greater role in the mathematics classroom, and there is
a need for readily available reliable historical informa-
tion relevant to the school curriculum. Errors in printed
histories are relatively costly to correct, and the signifi-
cance of the error relative to the whole justifies neither
the expense nor the effort, and, thus, the errors achieve
more or less permanent status. Perhaps in these days of
flexible electronic data handling and storage, some histo-
rians will devise an electronic historical retrieval system,
to which corrections and additions can be made as they
are discovered — a sort of electronic Tropfke [1].

The “Textbook” Farey

The sequence of all non-negative reduced proper frac-
tions with denominator not exceeding n, arranged in
increasing order, is called the Farey sequence of order
n, f,- To understand the discussion one needs to know
two fundamental properties of f:

I If a/b and ¢/d are two adjacent terms of f,, then
bc—ad =1.

IL. If a/b, e/ f, and c/d are three adjacent terms of f,,
thene/f = (a+c)/(b+ d).

Our interest in Farey series' began as a result of some
work for students on Egyptian unit fractions. In Beck,
Bleicher, and Crowe [2], pp. 416 ff. we found that Farey
series could be used to express any fraction between 0
and 1 as the sum of distinct unit fractions. So we began
reading.

! Farey series are not really series but sequences, but everyone (includ-
ing Beck, et al.) calls them Farey series.

In 1816 a minerologist [sic] named Farey published a math-
ematical paper in which he discussed the properties of ...
[what] have since been called the Farey sequences of order n,
although he was not the first to consider them. . ..

For further information on this last point the authors refer
to the book by Dickson [3]. Why should a mineralogist be
interested in fractions? Sufficiently interested to publish
“a mathematical paper”?

Before we referred to Dickson, we turned to another of
the books immediately at hand —by Hardy and Wright
[4], pp. 36 -37.
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The history of ‘Farey series’ is very curious. Theorems 28
and 29 [properties I and II above] seem to have been stated
and proved first by Haros in 1802: see Dickson, History, i,
156. Farey did not publish anything on the subject until 1816,
when he stated Theorem 29 in a note in the Philosophical Mag-
azine. He gave no proof, and it is unlikely that he had found
one, since he seems to have been at the best an indifferent
mathematician.

Assuming the statement about Haros to be true, we note
again an oft-recurring phenomenon, which can be de-
scribed in the spirit of May [5] as follows:

If Theorem X bears the name of Y, then it was probably first
stated and/or proved by Z.

We were also left wondering whether Farey had claimed
to have a proof.
To return to Hardy and Wright:

Cauchy, however, saw Farey’s statement, and supphed the
proof (Exercices de mathématiques, i, 114-16).> Mathemati-
cians generally have followed Cauchy’s example in attribut-
ing the results to Farey, and the series will no doubt continue
to bear his name.

Farey has a notice of twenty lines in the chtzonary of na-
tional biography, where he is described as a geologist.® As a
geologist he is forgotten, and his biographer does not men-
tion the one thing in his life which survives.

But if Farey was an “indifferent mathematician,” then
why should he get a mention in the Dictionary of national
biography (DNB), just because Cauchy attached his name
to a result which he did not prove and which he was not
the first to notice?*

Our two “sources” so far agree on one thing — that one
should refer to Dickson. He says,

C. Haros proved the results rediscovered by Farey and
Cauchy.

Then follows a description of what Farey stated, which is
essentially property II stated above. Dickson continues,

Henry Goodwyn mentioned this property on page 5 of the
introduction to his “tabular series of decimal quotients” of
1818, published in 1816 for private circulation..., and is
apparently to be credited with the theorem.

2 The date of this reference is 1826 and it is a reprint of the original pub-
lished in 1816 (immediately after the appearance of a French translation
of Farey's letter) in the Bulletin des Sciences par la Société Philomatique de
Paris 3 (1816), 133-135.

3 Apparently Farey as a mineralogist and geologist is not completely
forgotten, as we are informed by Dr. Hugh Torrens of Keele University,
England.

4 Even worse, in our view, is Hardy’s remark in A Mathematician’s
Apology (p.81): “. . . Farey isimmortal because he failed to understand a
theorem which Haros had proved perfectly fourteen years before;. . .”
From where does Hardy know that Farey “failed to understand” —or
that Farey even knew of Haros’s paper. Glaisher in 1879 does not men-
tion it! And then “a theorem which Haros had proved perfectly” —
poetic licence, perhaps, to which Hardy seems to have succumbed more
than once in this book.

Why should Goodwyn be credited with the theorem if
Haros proved the result 14 years earlier?
Later (p. 157), Dickson states,

J. W. L. Glaisher gave some of the above facts on the history
of Farey series. Glaisher treated the history more fully. ...

But even Glaisher is at best a secondary source. With so
many doubts and unanswered questions, only primary
sources can resolve them.

The “Real” Farey

The whole is so short that we can let the original Farey
[6] speak for himself.

On a curious Property of vulgar Fractions.
By M. ]. Farey, Sen. To Mr. Tilloch

Sik.—On examining lately, some very curious and elabo-
rate Tables of “Complete decimal Quotients,” calculated by
Henry Goodwyn, Esq. of Blackheath, of which he has printed
a copious specimen, for private circulation among curious
and practical calculators, preparatory to the printing of the
whole of these useful Tables, if sufficient encouragement, ei-
ther public or individual, should appear to warrant such a
step: I was fortunate while so doing, to deduce from them
the following general property; viz.

If all the possible vulgar fractions of different values,
whose greatest denominator (when in their lowest terms)
does not exceed any given numbet, be arranged in the or-
der of their values, or quotients; then if both the numerator
and the denominator of any fraction therein, be added to the
numerator and the denominator, respectively, of the fraction
next but one to it (on either side), the sums will give the
fraction next to it; although, perhaps, not in its lowest terms.

For example, if 5 be the greatest denominator given;
then are all the possible fractions, when arranged,
L1 12 13 2 3 and §; taking 3, as the given fraction,

12l
we have %f% = 2 = 1 the next smaller fraction than };
or § = 3 = %, the next larger fraction to 3. Again, if 99 be

the largest denommator then, in a part of the arranged Ta-

ble, we should have 2,'8 2 2 1L &c.;and if the third of

these fractions be given, we have £ + 2 = £ the second: or
B = 3 = & the fourth of them: and so in all the other cases.

[ am not acquainted, whether this curious property of vul-
gar fractions has been before pointed out?; or whether it
may admit of any easy or general demonstration?; which
are points on which I should be glad to learn the sentiments
of some of your mathematical readers; and am

Sir,
Your obedient humble servant,
J. Farey.
Howland-street.

We now know what Farey did and did not do. He did not
write a “mathematical paper,” and not only is it “unlikely
that he had found one” but it would seem certain that he
did not have a proof.

What remains is Haros’s “claim” to priority. Glaisher
[7], p. 335 was apparently unaware of Haros, but seems
to have been suitably cautious:
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It seems curious that so elementary and remarkable a prop-
erty of fractions should not have been discovered until 1816.
It may of course be found that it had been published previ-
ously; but supposing the discovery to be due to Mr. Good-
wyn and Mr. Farey, an explanation might be afforded by the
fact that the ‘Tabular Series’ is probably the earliest Table
of the kind, and that the property would not be likely to
present itself to anyone who had not arranged a complete
series of proper fractions having denominators less than a
given number in order of magnitude.

The fact is that Haros [8] anticipated both Goodwyn and
Farey in a certain sense, as just the title of his paper
indicates®:

Tables pour évaluer une fraction ordinaire avec autant de
décimales qu’on voudra; et pour la fraction ordinaire la
plus simple, et qui approche sensiblement d'une fraction
décimale.

[Tables for evaluating a common fraction with as many
decimals as desired; and the simplest good approxima-
tion by a common fraction of a decimal fraction.]

In the first part, he discusses the conversion of a frac-
tion into decimal form. After stating some of the prop-
erties, he announces that he has calculated a new table
yielding the decimal expansion of any irreducible frac-
tion with denominator not exceeding 99. Unfortunately,
he does not give the table, and this makes his description
somewhat difficult to follow. However, it is the second
part of the paper which interests us here.

His aim is to enable one to evaluate best approxima-
tions to decimal numbers by fractions with alow denom-
inator. For this, he wants to arrange all fractions with de-
nominator < 99 in order of size, for then he will be able
to rely on their already calculated decimal values.

In other words, Haros proposes to write down the se-

quence fqq.
He begins with the sequence

% 97 98
97’98’ 99’

111 11123
99°98'97 4’3°2'3'4
in which, as he shows, each fraction differs from its
neighbour by the reciprocal of the product of their de-

nominators. Now comes the crux of his argument:

It remains to intercalate between the foregoing all other ir-
reducible fractions with denominator less than 100. In this
process, intermediate fractions must follow in order of size,
and the difference of a fraction from its neighbour must al-
ways be one over the product of their denominators; for then
any fraction in the sequence will be irreducible and will give
as simply as possible the approximate value of one or the
other of the two fractions between which it lies.

This falls far short of proving the first of the fundamental
properties of Farey series. (The two properties are equiv-
alent, see [4].)

5 We are grateful to Dr. Baruch Schwarz of the Hebrew University at
Jerusalem for help with understanding the French and for checking
what we have written about Haros’s paper.
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In the following, Haros shows thatif a/band ¢/ d satisfy
the condition bc — ad = 1, and z/y is a fraction between
them satisfying the same condition with regard to its
neighbours, then z/y = (a + ¢)/(b + d).

What Haros seems to have done is to give a method for
finding fractions belonging to fq, between those already
listed — but how does one know that one will get them
all? And it does not prove the more general result noted
by Farey that if a/b, ¢/ f, and c/d are any three consecu-
tive fractions in a Farey series, thene/f = (a+c)/(b+d).

Clearly, Dickson overstated the case when he wrote
that Haros proved the results rediscovered by Farey and
Cauchy — and understated the case when he devoted rel-
atively many lines to Goodwyn's tables, without a men-
tion of those of Haros described in the 1802 paper. As
Glaisher surmised, it was tables of fractions that made
people notice the remarkable property of three consecu-
tive fractions in what have come to be called Farey series.
Farey did no more, but Haros deduced this property in
special circumstances from the fundamental property of
the difference of two neighbouring fractions. However,
not until Cauchy saw Farey’s letter were both results
stated and proved satisfactorily.

Pick’s Area Theorem

That would have been the end of the story. But a couple of
years later we decided to develop an activity for students
around Pick’s area theorem and, as usual, we wanted to
include some historical background. So we began our
search in textbooks again, starting with one by Coxeter
[9] —and at once we were back in Farey land. There,
opposite Pick’s area theorem (p. 209), heading the section
was the misleading quote from Hardy and Wright about
Farey’s entry in the DNB. The connection between Pick
and Farey obviously had to be explored, both historically
and for the activity we wanted to develop.
The relevant bits from Coxeter are as follows.

According to Steinhaus ... it was G. Pick in 1899, who dis-
covered the following theorem:

The area of any simple polygon whose vertices are lattice points
is given by the formula

%b+c—l,

where b is the number of lattice points on the boundary while c is
the number of lattice points inside.

“According to Steinhaus” would suggest that Coxeter is
being careful — or why not quote Pick, as cited in Ref. 10
(p. 260), directly. Perhaps because he had not seen Pick’s
paper.

From Pick’s area theorem, Coxeter deduces that if a
triangle, whose vertices are the lattice points (0, 0), (b, a),
(d, ¢), contains no other lattice points within or on its
sides, then bc — ad = 1.

Now if we represent any fractiona/bin f,, by thelattice
point (b, a) then because the fractions are reduced, any
two adjacent fractions a/b and c/d in f, together with



the origin form an otherwise lattice-point-free triangle
as above.® Hence, we have bc — ad = 1, one of the two
fundamental properties of Farey series proved in a most
elegant fashion. Coxeter attributes this proof of the Farey
property to Pélya [11].

To fill in the historical background a little, we obtained
a few biographical details of Pick from Poggendorf [12],
p-569 and ordered copies of the papers by Pick and Pélya.
It appears that Georg Alexander Pick was born in 1859
in Vienna and died in 1943 (?) in the Theresienstadt con-
centration camp. He spent most of his working life at the
German University in Prague, and Kline [13}, p. 1131, in
connection with Einstein’s work on the theory of general
relativity, notes,

However, to make progress ... he [Einstein] discussed it in

Prague with a colleague, the mathematician Georg Pick, .. ..
To analysts, Pick is well remembered for interpolation of
analytic functions; see [14].7

To return to Pick’s area theorem. The impression we
were left with from Coxeter was that Pick discovered his
theorem and Pélya applied Pick to Farey.® However, the
facts as they appear from the original articles are some-
what different. Thus, Pick [16] begins his article by citing
the widespread use of plane lattices “for visualisation
and as heuristic aids in number theory” going back to
Gauss.? His own aim, he says, is rather to put the ele-
ments of number theory on a geometric basis, by use of
an area formula for lattice polygons which “in spite of
its simplicity seems to have gone unnoticed till now.”

The surprise, however, comes in the third section of his
article, where he derives the above fundamental prop-
erty of Farey series (and some more) in exactly the same
way as in [9], where Coxeter as we saw attributes this to
Pélya.!®

And so to Pélya and the introduction to his paper.

A Dbeautiful geometric treatment of the well-known princi-

pal property of Farey series goes back to Sylvester. As this

treatment seems to have been generally forgotten, and as,

moreover, Sylvester’s inferences are not irreproachable, it is
probably in order to go through the matter briefly here.

Thus, Pélya himself attributes the lattice approach to
the Farey property to Sylvester, in a paper originally pub-
lished in 1883. Pélya does not present it as his own

& For the details, see Ref. 9, p. 211.

7 In a recent paper on Pick’s theorem, Griinbaum and Shephard [15]
write: “He [Pick] made significant contributions to analysis and dif-
ferential geometry.” Perhaps we may say that among geometers Pick
is remembered almost exclusively for a relatively minor, if exiremely
beautiful, result.

8 A development similar to that of Coxeter, but without Pick’s area the-
orem, can already be found in [4], where in their note on the appropriate
sections (3.5-3.7) Hardy and Wright write, “Here we follow the lines
of a lecture by Professor Pélya,” thus strengthening the impression that
the application of lattices to Farey series is due to Pélya.

9 See also, for example, [17], p. 35.

10 The mathematics in Pick’s paper is discussed by the present authors
in “A visual approach to some elementary number theory”, Mathemat-
ical Gazette (to appear).

method.!! Sylvester’s paper does not contain Pick’s area
theorem; all he needs, as we have noted above, is the area
of a lattice-point-free triangle. However, Pélya does give
Pick’s area theorem (in a slightly variant form) but does
not attribute it to Pick — or to anyone else.

It would seem that the application of the geometry of
lattices to Farey series probably dates back to Sylvester
in 1883. Pick published his theorem in 1899 and, appar-
ently unaware of Sylvester, applied a special case to Farey
series again. This was repeated in 1925 by Pélya, appar-
ently unaware of Pick, but based on Sylvester. By his own
account, Polya does not “deserve” the historical credit
given him by Coxeter.'?

1 And presumably did not do so either in the “lecture” referred to by
Hardy and Wright.

12And Hardy and Wright.
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