login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: keyword:new
Displaying 1-10 of 377 results found. page 1 2 3 4 5 6 7 8 9 10 ... 38
     Sort: relevance | references | number | modified | created      Format: long | short | data
A372326 Number A(n,k) of acyclic orientations of the Turán graph T(k*n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals. +0
0
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 6, 1, 1, 1, 230, 426, 24, 1, 1, 1, 6902, 122190, 24024, 120, 1, 1, 1, 329462, 90768378, 165392664, 2170680, 720, 1, 1, 1, 22934774, 138779942046, 4154515368024, 457907248920, 287250480, 5040, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
The Turán graph T(k*n,k) is the complete k-partite graph K_{n,...,n}.
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
LINKS
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
Wikipedia, Turán graph
FORMULA
A(n,k) = A267383(k*n,k).
EXAMPLE
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 14, 230, 6902, ...
1, 6, 426, 122190, 90768378, ...
1, 24, 24024, 165392664, 4154515368024, ...
1, 120, 2170680, 457907248920, 495810323060597880, ...
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
T:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [k$n, 0],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
seq(seq(T(n, d-n), n=0..d), d=0..10);
CROSSREFS
Columns k=0-2 give: A000012, A000142, A033815.
Rows n=0+1,2-3 give: A000012, A048163(k+1), A370961.
Main diagonal gives A372084.
Cf. A267383.
KEYWORD
nonn,tabl,new
AUTHOR
Alois P. Heinz, Apr 27 2024
STATUS
approved
A372228 a(n) is the largest prime factor of n^n + n. +0
0
2, 3, 5, 13, 313, 101, 181, 5419, 21523361, 52579, 212601841, 57154490053, 815702161, 100621, 4454215139669, 4562284561, 52548582913, 1895634885375961, 211573, 2272727294381, 415710882920521, 9299179, 1853387306082786629, 22496867303759173834520497 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
a(n) = A006530(A066068(n)).
MATHEMATICA
Table[f = FactorInteger[n^n + n]; f[[Length[f]]][[1]], {n, 1, 25}] (* Vaclav Kotesovec, Apr 26 2024 *)
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Tyler Busby, Apr 23 2024
STATUS
approved
A372229 a(n) is the largest prime factor of n^n - n. +0
0
2, 3, 7, 13, 311, 43, 337, 193, 333667, 13421, 266981089, 28393, 29914249171, 10678711, 1321, 184417, 7563707819165039903, 236377, 192696104561, 920421641, 12271836836138419, 39700406579747, 58769065453824529, 152587500001, 4315817869647001, 797161 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
LINKS
FORMULA
a(n) = A006530(A061190(n)).
MAPLE
pf := n -> NumberTheory:-PrimeFactors(n): a := n -> max(pf(n^n - n));
seq(a(n), n = 2..27); # Peter Luschny, Apr 27 2024
MATHEMATICA
Table[f = FactorInteger[n^n-n]; f[[Length[f]]][[1]], {n, 2, 25}] (* Vaclav Kotesovec, Apr 26 2024 *)
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Tyler Busby, Apr 23 2024
STATUS
approved
A371936 Decimal expansion of Sum_{k>=0} (-1)^k / (2*(k+1)*(2*k+1)!). +0
0
4, 5, 9, 6, 9, 7, 6, 9, 4, 1, 3, 1, 8, 6, 0, 2, 8, 2, 5, 9, 9, 0, 6, 3, 3, 9, 2, 5, 5, 7, 0, 2, 3, 3, 9, 6, 2, 6, 7, 6, 8, 9, 5, 7, 9, 3, 8, 2, 0, 7, 7, 7, 7, 2, 3, 2, 9, 9, 0, 2, 7, 4, 4, 6, 1, 8, 8, 9, 9, 6, 0, 5, 2, 2, 5, 5, 2, 8, 2, 3, 5, 4, 8, 2, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
FORMULA
Equals 1 - cos(1) = A371935/2 = 1 - A049470.
Equals 1/A206533. - Hugo Pfoertner, Apr 26 2024
EXAMPLE
0.459697694131860282599063392557023396267689579382077772...
MATHEMATICA
s = N[Sum[(-1)^k/(2(k + 1) (2 k + 1)!), {k, 0, Infinity}], 120]
First[RealDigits[s]]
CROSSREFS
KEYWORD
nonn,cons,new
AUTHOR
Clark Kimberling, Apr 24 2024
STATUS
approved
A371945 Decimal expansion of Sum_{k>=0} (-1)^k / (k^3 + 1). +0
0
5, 8, 5, 6, 9, 8, 8, 6, 1, 9, 4, 9, 7, 9, 1, 8, 8, 6, 4, 5, 3, 3, 2, 7, 0, 4, 6, 9, 5, 9, 1, 8, 6, 1, 5, 3, 9, 7, 5, 3, 6, 3, 0, 2, 1, 2, 8, 6, 9, 4, 9, 2, 8, 3, 7, 4, 7, 5, 2, 7, 3, 3, 2, 7, 7, 8, 0, 9, 0, 1, 4, 0, 7, 0, 0, 9, 4, 3, 8, 5, 6, 8, 2, 9, 9, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
EXAMPLE
0.58569886194979188645332704695918615397536302...
MATHEMATICA
s = Chop[N[Sum[(-1)^k/(k^3 + 1), {k, 0, Infinity}], 120]]
First[RealDigits[s]]
CROSSREFS
Cf. A339606.
KEYWORD
nonn,cons,new
AUTHOR
Clark Kimberling, Apr 24 2024
STATUS
approved
A371935 Decimal expansion of Sum_{k>=0} (-1)^k / ((k+1)*(2*k+1)!). +0
0
9, 1, 9, 3, 9, 5, 3, 8, 8, 2, 6, 3, 7, 2, 0, 5, 6, 5, 1, 9, 8, 1, 2, 6, 7, 8, 5, 1, 1, 4, 0, 4, 6, 7, 9, 2, 5, 3, 5, 3, 7, 9, 1, 5, 8, 7, 6, 4, 1, 5, 5, 5, 4, 4, 6, 5, 9, 8, 0, 5, 4, 8, 9, 2, 3, 7, 7, 9, 9, 2, 1, 0, 4, 5, 1, 0, 5, 6, 4, 7, 0, 9, 6, 4, 0, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
FORMULA
Equals 2*(1 - cos(1)) = 2 * A371936.
From Hugo Pfoertner, Apr 26 2024: (Start)
Equals A243596/Pi.
Equals A272795^2. (End)
EXAMPLE
0.91939538826372056519812678511404679253...
MATHEMATICA
s = N[Sum[(-1)^k/((k + 1) (2 k + 1)!), {k, 0, Infinity}], 120]
First[RealDigits[s]]
CROSSREFS
KEYWORD
nonn,cons,new
AUTHOR
Clark Kimberling, Apr 24 2024
STATUS
approved
A372314 Determinant of the matrix [Jacobi(i^2 + 3*i*j + 2*j^2, 2*n + 1)]_{1 < i, j < 2*n}, where Jacobi(a, m) denotes the Jacobi symbol (a / m). +0
0
1, 3, 0, 125, -1215, 0, 0, 9126441, 0, -187590821, 0, 0, 20686753425, 0, 0, 0, 9224101117395305225, 0, 881852208012283730302080, 624391710361368134976, 0, -3428714319207136609529065, 0, 0, 3878246452353765171209988566241, 0, 0, 4308304210666498856284267223158421 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,2
COMMENTS
Conjecture 1: Let n be any positive integer.
(i) If a(2*n) is nonzero, then 4*n + 1 is a sum of two squares.
(ii) a(2*n + 1) is divisible by phi(4*n + 3)/2, where phi is Euler's totient function. If n is even, then a(2*n + 1)/(phi(4*n + 3)/2) is a square. This has been verified for n = 2..1000.
For any odd integer n > 3 and integers c and d, we introduce the notation: {c,d}_n = det[Jacobi(i^2 + c*i*j + d*j^2, n)]_{1 < i, j < n-1}.
The following conjecture is similar to Conjecture 1.
Conjecture 2: (1) {2, 2}_p = 0 for any prime p == 13,19 (mod 24), and {2, 2}_p == 0 (mod p) for any prime p == 17,23 (mod 24).
(2) If n == 5 (mod 8), then {4, 2}_n = 0. If n == 5 (mod 12), then {3, 3}_n = 0.
(3) If n == 5 (mod 12) and n is a sum of two squares, then {10, 9}_n = 0. Also, {10, 9}_p == 0 (mod p) for any prime p == 11 (mod 12).
(4) {8, 18}_p == 0 (mod p^2) for any prime p == 19 (mod 24), and {8,18}_p == 0 (mod p) for any prime p == 23 (mod 24). If n == 13,17 (mod 24) and n is a sum of two squares, then {8, 18}_n = 0.
We have verified Conjecture 2 for p or n smaller than 2000.
LINKS
D. Krachun, F. Petrov, Z.-W. Sun and M. Vsemirnov, On some determinants involving Jacobi symbols, Finite Fields Appl. 64 (2010), Article 101672.
Z.-W. Sun, On some determinants with Legendre symbol entries, Finite Fields Appl. 56 (2019), 285-307.
EXAMPLE
a(2) = 1 since the determinant of the matrix [Jacobi(i^2 + 3*i*j + 2*j^2, 5)]_{1 < i, j < 2*2} = [1,0; 0,1] is 1.
MATHEMATICA
a[n_]:=a[n]=Det[Table[JacobiSymbol[i^2+3*i*j+2*j^2, 2n+1], {i, 2, 2n-1}, {j, 2, 2n-1}]];
tab={}; Do[tab=Append[tab, a[n]], {n, 2, 29}]; Print[tab]
PROG
(PARI) f(i, j) = i^2 + 3*i*j + 2*j^2;
a(n) = matdet(matrix(2*n-2, 2*n-2, i, j, kronecker(f(i+1, j+1), 2*n+1)));
vector(25, n, a(n+1)) \\ Michel Marcus, Apr 27 2024
CROSSREFS
KEYWORD
sign,new
AUTHOR
Zhi-Wei Sun, Apr 27 2024
STATUS
approved
A372315 Expansion of e.g.f. exp( x - LambertW(-2*x)/2 ). +0
0
1, 2, 8, 68, 960, 18832, 471136, 14324480, 512733696, 21119803136, 984029612544, 51169331031040, 2937675286583296, 184560174104465408, 12594824112085327872, 927757127285523243008, 73369903633161123397632, 6200198958236463387836416 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (2*k+1)^(k-1) * x^k / (1-x)^(k+1).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-2*x)/2)))
(PARI) a(n) = sum(k=0, n, (2*k+1)^(k-1)*binomial(n, k));
CROSSREFS
Cf. A362694.
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved
A372316 Expansion of e.g.f. exp( x - LambertW(-3*x)/3 ). +0
0
1, 2, 10, 125, 2644, 77597, 2904382, 132169403, 7083715240, 437031850841, 30506442905194, 2377038378159359, 204521399708464252, 19259006462435865413, 1970114326513629358654, 217556451608123850352523, 25794252755430105917806288, 3268152272130255473300883377 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k / (1-x)^(k+1).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x)/3)))
(PARI) a(n) = sum(k=0, n, (3*k+1)^(k-1)*binomial(n, k));
CROSSREFS
Cf. A362734.
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved
A372321 Expansion of e.g.f. -exp( x + LambertW(-3*x)/3 ). +0
0
-1, 0, 6, 81, 1620, 45765, 1671678, 74794671, 3958829640, 241898775273, 16756621904970, 1297547591499819, 111065107263415308, 10412999996499836541, 1061234184094567585326, 116812280111404106348415, 13810631408232372091755792, 1745470697932523785587735249 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (3*k-1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (3*k-1)^(k-1) * x^k / (1-x)^(k+1).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-3*x)/3)))
(PARI) a(n) = sum(k=0, n, (3*k-1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
sign,new
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 38

Search completed in 0.122 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 27 16:24 EDT 2024. Contains 372020 sequences. (Running on oeis4.)