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Abstract
A new data structure for efficient similarity search in

very large datasets of high-dimensional vectors is intro-
duced. This structure called the inverted multi-index gen-
eralizes the inverted index idea by replacing the standard
quantization within inverted indices with product quan-
tization. For very similar retrieval complexity and pre-
processing time, inverted multi-indices achieve a much
denser subdivision of the search space compared to inverted
indices, while retaining their memory efficiency. Our exper-
iments with large datasets of SIFT and GIST vectors demon-
strate that because of the denser subdivision, inverted multi-
indices are able to return much shorter candidate lists with
higher recall. Augmented with a suitable reranking proce-
dure, multi-indices were able to improve the speed of ap-
proximate nearest neighbor search on the dataset of 1 bil-
lion SIFT vectors by an order of magnitude compared to the
best previously published systems, while achieving better
recall and incurring only few percent of memory overhead.

1. Introduction
In computer vision, inverted indices (inverted files) [23]

are widely used for retrieval and similarity search. For a
large dataset of visual descriptors, a typical inverted index
is built around a codebook containing a set of codewords,
i.e. a representative set of vectors that may be constructed
by performing clustering on the initial dataset. An inverted
index then stores the list of vectors that lie in the proximity
of each codeword (belong to its Voronoi cell). The purpose
of an inverted index is then to efficiently generate a list of
dataset vectors that lie close to any query vector. Given a
query, either the closest codeword or a set of few closest
codewords are identified. The lists corresponding to those
codewords are then concatenated to produce the answer to
the query.

Querying the inverted index avoids evaluating distances
between the query and every point in the dataset and, thus,
provides a substantial speed-up over the exhaustive search.
Furthermore, as the index does not need to contain the orig-
inal dataset vectors to perform the search, the memory foot-
print of each data point can be reduced significantly, and
only useful metadata (e.g. image IDs or heavily compressed
original vectors) can be stored in the list entries. Because of
these efficiency benefits, inverted indices are widely used
within computer vision systems such as image and video
search [23] or location identification [18]. More generally,

they can be used within any computer vision task that in-
volves fast near(est) neighbor retrieval or kernel density es-
timation (i.e. image classification [3, 5], understanding [14],
image editing [6], etc.).

The efficiency of inverted indices has however certain
limitations that begin to show up for very large datasets
of vectors (hundreds of million to billions), which com-
puter vision researchers and practitioners are starting to
tackle [1, 12, 24]. In this scenario, a very fine partition
of the search space is desirable to avoid returning exces-
sively large lists in response to the queries or, put differ-
ently, to return vectors that are better localized around the
query point. Unfortunately, increasing the number of code-
words in order to achieve finer partition also increases the
query time and the index construction time. While approxi-
mate nearest neighbor approaches (e.g. tree codebooks [16]
or kd-trees [2]) may be invoked to make this deceleration
graceful, these techniques often reduce the accuracy (recall
and precision) of the returned candidate lists considerably.

The goal of this paper is to introduce and evaluate a
new data structure called the inverted multi-index that is in
many respects similar to the inverted index and can there-
fore be used within computer vision systems in a similar
way. The advantage of multi-indices is in their ability to
produce much finer subdivisions of the search space with-
out increasing the query time and the preprocessing time
compared to inverted indices with moderately-sized code-
books (importantly, the relative increase of memory us-
age for large datasets is also small). Consequently, multi-
indices result in faster and more accurate retrieval and ap-
proximate nearest neighbor search, especially when dealing
with very large scale datasets, while retaining the memory
efficiency of standard inverted indices.

In a nutshell, inverted multi-indices are obtained by re-
placing the vector quantization inside inverted indices with
the product quantization (PQ) [9]. PQ proceeds by splitting
high-dimensional vectors into dimension groups. PQ then
effectively approximates each vector as a concatenation of
several codewords of smaller dimensionality, coming from
several codebooks pretrained for each group of dimensions
separately. Following the PQ idea, an inverted multi-index
is constructed as a multi-dimensional table. The entries of
this table correspond to all possible tuples of codewords
from the codebooks corresponding to different dimension
groups. This multi-dimensional table replaces a “flat” table
containing entries corresponding to codewords of the stan-
dard inverted index.

Similarly to a standard inverted index, each entry of a
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-



based reranking [9] in some of our experiments, one can
also employ binary embedding [8] or any other compres-
sion/fast distance computation scheme to rerank lists re-
turned by a multi-index (or, depending on the application,
omit the reranking altogether) .

3. The Inverted Multi-Index
The structure of the inverted multi-index. We now ex-
plain how an inverted multi-index is organized. Along the
way, we will compare the analogous parts between inverted
multi-indices and standard inverted indices.

We assume that a large collection D of N M -
dimensional vectors D = {p1,p2, . . . ,pN}, pi ∈ RM
is given. The construction of a standard inverted in-
dex then starts with learning a codebook W of K M -
dimensional vectors W = {w1,w2, . . . ,wK} via a k-
means algorithm. The initial dataset is then split into K
lists W1,W2, . . . ,WK , where each list Wi contains all vec-
tors that fall in its Voronoi cell in RM , i.e. Wi = {p ∈
D|i = argminj d(p,wj)}. Here, d is a distance measure
inRM . In practice, each listWi can be represented in mem-
ory as a contiguous array, where each entry may contain the
compressed version of the initial vector (which is useful for
reranking) and typically some metadata associated with the
vector (e.g. the class label or the ID of the image that the
visual descriptor p was sampled from).

Following the product quantization idea [9], the inverted
multi-index is organized around splitting the M input di-
mensions into several dimension blocks. The number of
blocks affects the accuracy of retrieval and its speed. In
previous works where PQ was used for compression and
fast distance evaluation, the best trade-off was achieved for
8 or so blocks [9, 11, 10]. In the multi-index case, how-
ever, it is optimal to split dimensions in just two blocks, at
least for the characteristic scales considered in our evalua-
tion and assuming that the accuracy and low query time are
more important than low index construction time. We com-
ment more on the choice of the number of blocks below.
For the time being, to simplify the explanation we discuss
how a multi-index can be built for the case of splitting vec-
tors into two halves. Where required, we refer to this case
as the second-order inverted multi-index. It will be evident
how to generalize the proposed algorithms to higher-order
inverted multi-indices (which split vectors into more than
two dimension groups).

Let pi = [p1
i p2

i ] be the decomposition of a vector
pi ∈ RM from the dataset into two halves, where p1

i ∈
RM

2 ,p2
i ∈ R

M
2 . As in the case of other PQ-based sys-

tems, inverted multi-indices perform better when the corre-
lation between D1 = {p1

i } and D2 = {p2
i } is lower and

the amount of variance within D1 and D2 are closer to each
other. For SIFT-vectors, splitting them directly into halves
seems to be a near-optimal strategy, while in other cases one

can regroup the dimensions to reduce the correlation or mul-
tiply all vectors by a random orthogonal matrix to balance
the variances between the halves [10, 9].

The PQ codebooks for the inverted multi-index are
obtained via independent k-means clustering of the sets
D1 and D2 independently, producing the codebooks
U = {u1,u2, . . . ,uK} for the first half and V =
{v1,v2, . . . ,vK} for the second half of dimensions1. We
then perform the product quantization of the dataset vec-
tors, so that the K2 lists corresponding to all possible pairs
of codewords (ui,vj), i = 1..K, j = 1..K are created. We
denote each of the K2 lists as Wij . Each point p = [p1 p2]
is assigned to the closest point [ui vj ], so that:

Wij = {p = [p1 p2] ∈ D | (1)

i = argmin
k
d1(p

1,uk) ∧ j = argmin
k
d2(p

2,vk)} .

Note that the “catchment area” of each list Wij is now a
Cartesian product of the two Voronoi cells in RM

2 spaces.
In (1), the distance measures d1 and d2 in RM

2 are induced
by d, so that ∀a,b : d(a,b) = d1(a

1,b1) + d2(a
2,b2).

The simplest and most important case is setting d, d1, and
d2 to be squared Euclidean norms in respective spaces, so
that the resulting multi-index can be used to retrieve points
with low Euclidean distance from the query. We briefly dis-
cuss alternative distances in Section 5.

Querying the multi-index. Given a query q =
[q1 q2] ∈ RM and a desired candidate list length T<<N ,
an inverted multi-index allows to generate a list of T (or
slightly more) points from D that tend to be close to q with
respect to the distance d. This is achieved via identifying a
sufficient number of codeword pairs [ui vj ] that are closest
to q inRM and concatenating their listsWij . Finding those
[ui vj ] is performed in two stages (Figure 2-top).

On the first stage, q1 and q2 are independently matched
to corresponding codebooks. Thus, for q1 and q2 the L
nearest neighbors among U and V respectively are identi-
fied (where L<K depends on the specified T ). As the size
of U and V is typically not large (thousands of vectors), ex-
haustive search can be used. Denote with α(k) the index of
the kth closest neighbor to q1 in U (i.e. uα(1) is the near-
est neighbor to q1 in U , uα(2) is the second closest, etc.).
Similarly, denote with β(k), the index of the kth closest
neighbor to q2 in V . Also, denote with r(k) and s(k) the
distances from q1 and q2 to uα(k) and vβ(K) respectively,
i.e. r(k) = d1

(
q1,uα(k)

)
and s(k) = d2

(
q2,vβ(k)

)
.

On the second stage, given the two monotoni-
cally increasing sequences r(1), r(2), . . . , r(L) and
s(1), s(2), . . . , s(L), we traverse the set of pairs

1We have deliberately chosen different letters u and v in the notation
of the two sub-codebooks, to emphasize that they are learned separately
and that wi 6= [ui vi].
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Figure 2. Top – The overview of the query process within the inverted multi-index. First, the two halves of the query q1 and q2 are
matched w.r.t. sub-codebooks U and V to produce the two sequences of codewords ordered by the distance (denoted r and s) from the
respective query half. Then, those sequences are traversed with the multi-sequence algorithm that outputs the pairs of codewords ordered
by the distance from the query. The lists associated with those pairs are concatenated to produce the answer to the query. Bottom – The
first iterations of the multi-sequence algorithm in this example. Red denotes pairs in the priority queue, blue indicates traversed pairs (the
pair traversed at the current iteration is emphasized). Green numbers correspond to pair indices (i and j), while black symbols give original
codewords (uα(i) and vβ(j)). The numbers in entries are the distances r(i)+s(j) = d

(
q, [uα(i) vβ(j)]

)
.

{(r(i), s(j)) | i = 1 . . . L, j = 1 . . . L} in the or-
der of the increasing sum r(i) + s(j) (which equals
d(q, [uα(i) vβ(j)])). In this way, the centroids [uα(i) vβ(j)]
are visited in the order of increasing distance from q. The
traversal starts from the pair (1, 1) naturally corresponding
to the cell around the centroid [uα(1) vβ(1)], which the
query falls into. During the traversal, the lists Wα(i) β(j)

are concatenated, until the length of the answer exceeds the
predefined length T , at which point the traversal stops.

We propose an algorithm to perform such a traver-
sal (Figure 2-bottom). This multi-sequence algorithm is
based around a priority queue of index pairs (i, j), where
the priority of each pair is defined as − (r(i) + s(j)) =
−d

(
q, [uα(i) vβ(j)]

)
. The queue is initialized with a sin-

gle pair (1, 1). At each subsequent step t, the pair (it, jt)
with top priority (lowest distance from q) is popped from
the queue and considered traversed (the associated list
Wα(i) β(j) is added to the output list). The pairs (it + 1, jt)
and (it, jt+1) are then considered for the insertion into the
priority queue. The pair (it+1, jt) is inserted into the queue
if its other preceding pair (it + 1, jt − 1) has also been tra-
versed (or if jt=1). Similarly, the pair (it, jt+1) is inserted
into the queue if its other preceding pair (it− 1, jt+1) has
also been traversed (or if it=1). The idea is that each pair
is inserted only once when both of its preceding pairs are
traversed.

The multi-sequence algorithm produces a sequence of

pairs (i, j), whose lists Wi,j are accumulated into the query
response. One can prove the correctness of the algorithm:

Corollary 1 (correctness): the multi-sequence algo-
rithm produces the sequence of pairs in the order of in-
creasing r(i) + s(i) and will eventually visit every pair in
{1 . . . L} ⊗ {1 . . . L}.

Regarding the efficiency of the algorithm, one can prove
that the queue within the algorithm grows slow enough:

Corollary 2: at the tth step of the algorithm, when t
pairs have been output, the priority queue is no longer than
0.5 +

√
2t+ 0.25.

The proof of both corollaries and the pseudocode of the
multi-sequence algorithm are given in the supplementary
material.

Inverted index vs. inverted multi-index. Let us now
discuss the relative efficiency of the two indexing structures,
given the same codebook size K. In this situation, the in-
duced subdivision of the space is very different for the stan-
dard inverted index and for the inverted multi-index (Fig-
ure 1). In particular, the standard index maintains K lists
that correspond to the space subdivision into K cells, while
the multi-index maintains K2 lists corresponding to a much
finer subdivision of the space. While the lengths of the cell
lists within the inverted index tend to be balanced (due to
the nature of the k-means algorithm), the distribution of list
lengths within the multi-index is highly non-uniform. In
particular, there are lots of empty lists that correspond to ui



and vj that never co-occur together (e.g. cells in the bottom-
right corner in Figure 1-right). Still, as will be revealed in
the experiments, despite a highly non-uniform distribution
of list lengths, inverted multi-indices enjoy a large boost in
retrieval accuracy due to higher sampling density.

Furthermore, despite the increase in the subdivision den-
sity, matching a query with codebooks for both structures
requires the same number of operations. Thus, in the in-
verted multi-index case one has to compute the K distances
between M -dimensional vectors, while in the multi-index
case 2K distances between M/2-dimensional vectors are
computed (while the number of the scalar operations is
the same, vector instructions on modern CPUs can make
the matching moderately faster in the inverted index case).
Querying the multi-index also incurs an overhead in compu-
tational cost due to the use of the multi-sequence algorithm.
In our experiments, we however observed (Section 4) that
the overhead was small compared to the quantization cost
even for rather long list lengths T .

The use of the inverted multi-index also incurs a mem-
ory overhead, as it has to maintain K2 rather than K lists.
However, the joint length of all lists remains the same (as
the number of entries equals the total number of vectors i.e.
N ). Therefore, given that all lists are stored contiguously
as a large array, maintaining each list Wij effectively re-
quires one integer (that contains the starting location of the
list within the large array). Within our experimental setting
of N = 109 and K = 214, this overhead amounts to one
byte per dataset vector (4 bytes*K/N ). Such overhead is
small compared to several bytes of meta-data and/or com-
pressed vector that are typically stored for each instance.

Coming back to higher-order multi-indices, which split
vectors into more than two dimension groups, our experi-
ments (partially presented in Section 4) suggest that while
they result in much smaller quantization times (for the same
subdivision densities), their memory overheads grow quite
rapidly with K and so does non-uniformity of list lengths
and the numbers of empty cells in the index. This memory
inefficiency limits the usage of such “higher-order” multi-
indices to small values ofK, where the accuracy of retrieval
is limited. Overall, in our experiments, second-order multi-
indices proved to be a sweet spot between inverted indices
(low memory overhead, large quantization times for suf-
ficient subdivision density) and higher-order multi-indices
(high memory overhead, low quantization time). The use of
the latter, however, is justified when small pre-processing
times are required, as the time required to product quan-
tize all dataset vectors during higher-order multi-index con-
struction is much smaller (due to lower K).

4. Experiments

We now present the results of the experimental evalua-
tion of inverted multi-indices on two large-scale datasets of

visual descriptors. The majority of experiments were per-
formed on the BIGANN dataset of 1 billion 128-dimensional
SIFT descriptors [13] extracted from natural images that
was introduced by Jegou et al. [11]. The ground truth
(true Euclidean nearest neighbors) for a hold-out set of
10000 queries is provided with the dataset. We also per-
form experiments with the 384-dimensional GIST [17] de-
scriptors corresponding to 80 million Tiny Images [24]. For
this set, we picked a subset of 100 vectors and computed
their Euclidean nearest neighbors within the rest of the
dataset through exhaustive search thus obtaining the query
set (which was excluded from the original dataset).

Below we report different measurements related to list
lengths, timings, and the recall, which is defined as the
probability of finding the first nearest neighbor of a query
in a list returned by a certain system. This probability is al-
ways evaluated by averaging the rate of success (true near-
est neighbor is on the list) over the available query set. In
practice, the performance of retrieving other nearest neigh-
bors (beyond the first one) is often important, however, this
performance is highly correlated with the ability to retrieve
the first nearest neighbor, and is therefore omitted from this
evaluation. All timings were obtained on a single core of
Intel Xeon 2.40 GHz CPU (using BLAS instructions in the
single-thread mode).

How successful are inverted multi-indices at return-
ing nearest neighbors in candidate lists? This is, ar-
guably, the most important question. We address it by com-
paring the recall of a second-order inverted multi-index and
an inverted index for the same codebook size K. We per-
form this comparison for K = 214 for the BIGANN and 80
million dataset and, additionally, for a smaller K = 212 for
the BIGANN dataset. For a set of predefined list lengths T
(powers of two) and for each query, we traverse both data
structures concatenating the lists stored in the entries. The
traversal stops one step before the concatenated list length
exceeds the predefined length T . Figure 3 plots the recall of
such lists (to which we refer as recall@T ) versus the length
T . In general, for a fixed K, the advantage of multi-indices
over indices is very significant for the whole range of list
lengths.

We then evaluate a more challenging baseline. As kd-
trees [2] have emerged as a popular tool for working with
very large codebooks, we took such a codebook (218 code-
words) and used a kd-tree (vl feat [26] implementation)
to match the queries and the dataset vectors to this codebook
(thus replacing the exhaustive search within the inverted in-
dex quantization with the fast approximate search). For a
fair comparison, we limited the number of vector distance
evaluations within the kd-tree to the respective K (either
214 or 212). As can be seen in Figure 3, the new base-
line is more competitive in the low recall area, although
it performs worse than the first baseline when high recall
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Figure 3. Recall as a function of the candidate list length. For the same codebook size K, we compare three systems with similar retrieval
and construction complexities: an inverted index with K codewords, an inverted index with larger codebook (218 codewords) sped up by a
kd-tree search with a maximum of K comparisons, an inverted multi-index with codebooks having K codewords. In all three experiments,
multi-indices returned shorter lists with higher recall.
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Figure 4. Time (in milliseconds) required to retrieve a list of a
particular length from the inverted multi-index and index on the
BIGANN dataset.

is needed. Overall, the recall@T of both baselines was
uniformly worse than the recall@T of the inverted multi-
indices in our experiments. Both, kd-trees and multi-indices
incur some computational overhead over inverted indices
(tree search and multi-sequence algorithm, respectively)
and we now address the question how big this overhead is
for the inverted multi-indices.

How fast is querying an inverted multi-index? To
answer this question, we give the timings for the inverted
multi-indices (K = 212,K = 214) on the BIGANN dataset
as a function of the requested list length in Figure 4. The
multi-index retrieval time essentially remains flat until the
list length grows into many thousands, which means that
the computational cost of the multi-sequence algorithm re-
mains small compared to the quantization. We also give the
timing curves for inverted indices with K = 212, 214. Their
approximately two-fold speed advantage over the second-
order indices (for the same K) stems most likely from the
particular efficiency of vector instructions (BLAS library)
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Figure 5. Recall@T ∗ (T ∗ = 1 to 10000) of the Multi-ADC sys-
tem (storing m = 8 extra bytes per vector for reranking) for the
BIGANN dataset. The curves correspond to the Multi-ADC sys-
tem that reranks a candidate list of a certain length T (x-axis)
returned by the second-order multi-index (K = 214), while the
flat dashed lines corresponds to the system that reranks the en-
tire dataset. After reranking a tiny part of the billion-size dataset,
Multi-ADC is able to match the performance of the exhaustive
search-based system.

on our CPU. This efficiency makes matching against code-
books faster in the inverted index case despite the same
number of scalar operations.

Put together, Figure 3 and Figure 4 demonstrate the ad-
vantage of the second-order inverted multi-index over the
standard inverted index. Thus, the multi-index with K =
212 provides much higher recall and is faster to query than
the inverted index with K = 214. In Figure 4, we also
provide timings for the fourth-order index and small K.
Here, querying for short list lengths is much faster, however
the overhead from the multi-sequence algorithm kicks in at
shorter lengths (hundreds) exhibiting the main weakness of
higher-order inverted multi-indices.

Nearest neighbor search with reranking. The goal of



System List len.T R@1 R@10 R@100 Time
BIGANN, 1 billion SIFTs, 8 bytes per vector

IVFADC[11] 8 million 0.112 0.343 0.728 155
(0.088) (0.372) (0.733) (74*)

Multi-D-ADC 10000 0.158 0.472 0.706 6
Multi-D-ADC 30000 0.164 0.506 0.813 13
Multi-D-ADC 100000 0.165 0.517 0.860 37

BIGANN, 1 billion SIFTs, 16 bytes per vector
IVFADC+R[11] 8 million (0.262) (0.701) (0.962) (116*)
Multi-D-ADC 10000 0.304 0.665 0.740 7
Multi-D-ADC 30000 0.328 0.757 0.885 16
Multi-D-ADC 100000 0.334 0.793 0.959 49

Tiny Images, 80 million GISTs, 8 bytes per vector
Multi-D-ADC 10000 0.06 0.40 0.59 19
Multi-D-ADC 30000 0.06 0.41 0.63 41
Multi-D-ADC 100000 0.06 0.41 0.66 119

Tiny Images, 80 million GISTs, 16 bytes per vector
Multi-D-ADC 10000 0.06 0.49 0.64 19
Multi-D-ADC 30000 0.06 0.56 0.76 46
Multi-D-ADC 100000 0.06 0.56 0.85 139

Table 1. The performance (recall for the top-1, top-10, and top-
100 matches after reranking + time in milliseconds) of the Multi-
D-ADC system (based on the second-order multi-index with
K=214) for different datasets, different compression levels. We
also give the performance of the IVFADC and IVFADC+R (our
reimplementation for IVFADC as well as numbers reproduced
from [11] in brackets – the timings are not directly comparable
in the latter case).

the remainder of the section is to evaluate the performance
of the inverted multi-index within the systems for the ap-
proximate nearest neighbor search. The systems we con-
sider combine querying an inverted multi-indices with the
subsequent reranking of candidate lists. To enable rerank-
ing, for each entry of the lists in the index, we store few
extra bytes corresponding to the product quantization (PQ)
of the respective point. At test time, for each candidate point
on the list, those extra bytes are used to reconstruct its posi-
tion in RM [9]. We then evaluate the distance between the
query q and the reconstructed candidate point and rerank all
candidates according to the increasing distance (i.e. we use
the asymmetric distance computation (ADC) idea of [9]).
We then consider the top T ∗ points with the lowest recon-
structed distance and report the recall@T ∗ (T ∗<T ).

We consider two variants of the query+reranking sys-
tem: Multi-ADC and Multi-D-ADC (analogous to systems
called ‘ADC’ and ’IVFADC’, respectively, in [9]). To ob-
tain the extra bytes for reranking, the Multi-ADC system
applies product quantization to the original dataset vec-
tors, while Multi-D-ADC applies product quantization to
the residual displacement between each point p and the
closest centroid [uivj ] (at test time this residual displace-
ment is reconstructed and added to the centroid). In gen-

eral, for the same number of extra bytes, Multi-D-ADC
leads to higher recall@T ∗ than Multi-ADC, because resid-
ual displacements have smaller magnitudes than the origi-
nal points and hence allow less lossy PQ compression. At
the same time, Multi-ADC is faster since it allows efficient
precomputation of a single look-up table for the ADC com-
putation [9].

In the first experiment, we evaluate the Multi-ADC sys-
tem with m = 8 extra bytes per vector (each vector is
split into 8 dimension chunks and the PQ vocabularies of
size 256 are used). Figure 5 then gives recall@T ∗ for
T ∗ = 1, 10, 100, 1000, 10000 (different curves) on the BI-
GANN dataset as a function of the original candidate list
length T returned by the inverted multi-index. As a base-
line, we give the performance of the ADC system of [9] that
essentially reranks the entire dataset (T = 1 billion), which
takes several seconds per query. Figure 5 shows that, de-
pending on T ∗, it is sufficient to query only few hundred
to few tens of thousand (i.e. a tiny fraction of the entire
billion-size dataset) to match the performance of a system
that reranks the entire dataset. At this point, the shortcom-
ings of lossy compression within ADC seem to supersede
(on average) whatever retrieval errors are made within the
inverted multi-index2.

In the final set of experiments, we compare the perfor-
mance (recall@T ∗ and timings) of the Multi-D-ADC sys-
tem for T ∗ = 1, 10, 100, T = 10000, 30000, 100000, and
the number of extra bytes m = 8, 16. This performance
is summarized in Table 4. For the Tiny Images dataset, we
visualize few qualitative results of retrieval with Multi-D-
ADC in Figure 6. For the BIGANN dataset, we give the
recall and timings for our own re-implementation of the IV-
FADC system closely following the description in [9, 11].
We also reproduce the perfromance for the IVFADC system
(state-of-the-art for m = 8 extra bytes) and for IVFADC+R
system (state-of-the-art for m = 16 extra bytes) from [11]
(the timings are thus computed on a different CPU).

Overall, it can be observed that for the same level of
compression, the use of the inverted multi-indices gives
Multi-D-ADC a very substantial speed advantage (about an
order of magnitude for comparable recall accuracy) over
IVFADC(+R). This is achieved because Multi-D-ADC has
to rerank much shorter candidate lists (tens of thousands
vs. millions) to achieve similar or better recall values com-
pared to IVFADC(+R). The memory overhead of Multi-D-
ADC compared to IVFADC(+R) is about 8% (∼13GB vs.
∼12GB) form = 8 and about 5% (∼21GB vs. ∼20GB) for

2Curiously, the curves for Multi-ADC actually rise above the perfor-
mance of full reranking before converging to it. We believe that this effect
can have the following explanation. Because the PQ encoding is lossy,
some “nasty” vectors are considered to be closer than the true nearest
neighbor (NN) after reranking. In some cases, as T grows, the true NN
first enters the top T ∗ short list but then “sinks” out of it, as more and
more of such “nasty” vectors enter the list of T candidate points.



Figure 6. Retrieval examples on the Tiny Images dataset (the im-
ages associated with GIST vectors are shown). In each of the three
row pairs, the left-most images correspond to the query, the top
row corresponds to Euclidean nearest neighbors found by exhaus-
tive search, the bottom row are the top matches returned by the
Multi-D-ADC system (K = 214, m = 16 extra bytes). Em-
pirically, for most examples, we observed that the top matches
returned by a Multi-D-ADC are similar in terms of semantic sim-
ilarity to the exhaustive search on uncompressed vectors (top two
rows) with few exceptions (bottom row).

m = 16 (all numbers include 4GB that are required to store
point IDs).

5. Summary and outlook

We have introduced the inverted multi-index, which is
a new data structure for the large-scale retrieval in the
datasets of high-dimensional vectors. In our evaluation,
multi-indices significantly outperformed standard inverted
indices in terms of the accuracy of the returned candidate
lists. In combination with a suitable reranking procedure,
inverted multi-indices improved considerably previously re-
ported speed and accuracy of approximate nearest neighbor
search on the BIGANN dataset of 1 billion SIFT vectors.

The idea of multi-index can have a wider applicabil-
ity then just approximate nearest neighbor search. Thus,
multi-indices can be used within retrieval systems that com-
bine the candidate lists returned for multiple descriptors
extracted from the same query image [23]. There, replac-
ing candidate lists corresponding to a single codeword with
something closer to nearest neighbor search has been shown
to improve the accuracy significantly albeit at a consider-
able computational cost (cf. e.g. [19]). Furthermore, it is
straightforward to replace the (square of the) Euclidean dis-
tance within the multi-index with any other additive dis-
tance measure or kernel; it will thus be interesting to evalu-
ate inverted multi-indices within large-scale machine learn-
ing systems.
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