login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: keyword:new
Displaying 1-10 of 416 results found. page 1 2 3 4 5 6 7 8 9 10 ... 42
     Sort: relevance | references | number | modified | created      Format: long | short | data
A368411 Number of non-isomorphic connected multiset partitions of weight n contradicting a strict version of the axiom of choice. +0
0
0, 0, 1, 2, 6, 15, 50, 148, 509, 1725, 6218 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
LINKS
Wikipedia, Axiom of choice.
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(5) = 15 multiset partitions:
{{1},{1}} {{1},{1,1}} {{1},{1,1,1}} {{1},{1,1,1,1}}
{{1},{1},{1}} {{1,1},{1,1}} {{1,1},{1,1,1}}
{{1},{1},{1,1}} {{1},{1},{1,1,1}}
{{1},{2},{1,2}} {{1},{1,1},{1,1}}
{{2},{2},{1,2}} {{1},{1},{1,2,2}}
{{1},{1},{1},{1}} {{1},{1,2},{2,2}}
{{1},{2},{1,2,2}}
{{2},{1,2},{1,2}}
{{2},{1,2},{2,2}}
{{2},{2},{1,2,2}}
{{3},{3},{1,2,3}}
{{1},{1},{1},{1,1}}
{{1},{2},{2},{1,2}}
{{2},{2},{2},{1,2}}
{{1},{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]& /@ sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s, Flatten[MapIndexed[Table[#2, {#1}]&, #]]& /@ IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List /@ c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Union[brute /@ Select[mpm[n], Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]], {n, 0, 6}]
CROSSREFS
The case of labeled graphs is A140638, connected case of A367867.
The complement for labeled graphs is A129271, connected case of A133686.
This is the connected case of A368097.
For set-systems we have A368409, connected case of A368094, ranks A367907.
Compliment set-systems: A368410, connected case of A368095, ranks A367906.
The complement is A368412, connected case of A368098, ranks A368100.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
KEYWORD
nonn,more,new
AUTHOR
Gus Wiseman, Dec 26 2023
STATUS
approved
A368400 Irregular triangle read by rows: T(n,k) is the position of k within the Christmas tree pattern (A367562) of order n, with n >= 1 and k >= 0. +0
0
1, 2, 2, 3, 1, 4, 5, 6, 3, 7, 1, 2, 4, 8, 12, 13, 9, 14, 6, 7, 10, 15, 2, 3, 1, 4, 5, 8, 11, 16, 27, 28, 23, 29, 19, 20, 24, 30, 13, 14, 11, 15, 17, 21, 25, 31, 5, 6, 3, 7, 1, 2, 4, 8, 9, 10, 12, 16, 18, 22, 26, 32, 58, 59, 53, 60, 48, 49, 54, 61, 40, 41, 37, 42, 45 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Row n is a permutation of the integers in the interval [1, 2^n].
See A367508 for the description of the Christmas tree patterns, references and links.
LINKS
EXAMPLE
Triangle begins:
.
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
--------------------------------------------------------
1 | 1 2
2 | 2 3 1 4
3 | 5 6 3 7 1 2 4 8
4 | 12 13 9 14 6 7 10 15 2 3 1 4 5 8 11 16
...
For example, the order 3 of the Christmas tree pattern is the following (binary on the left, converted to decimal in the middle, position within the pattern on the right):
.
100 101 | 4 5 | 1 2
010 110 | 2 6 | 3 4
000 001 011 111 | 0 1 3 7 | 5 6 7 8
.
The position of the elements within the pattern is therefore the following:
.
Element: 0 1 2 3 4 5 6 7
| | | | | | | |
V V V V V V V V
Position: 5 6 3 7 1 2 4 8
.
MATHEMATICA
A367562list[imax_]:=Map[FromDigits[#, 2]&, NestList[Map[Delete[{If[Length[#]>1, Map[#<>"0"&, Rest[#]], Nothing], Join[{#[[1]]<>"0"}, Map[#<>"1"&, #]]}, 0]&], {{"0", "1"}}, imax-1], {3}];
With[{nmax=6}, Map[Flatten[Values[KeySort[PositionIndex[Flatten[#]]]]]&, A367562list[nmax]]]
CROSSREFS
KEYWORD
nonn,base,tabf,new
AUTHOR
Paolo Xausa, Dec 23 2023
STATUS
approved
A368399 Irregular triangle read by rows: row n lists the indices of rows of the Christmas tree pattern (A367508) of order n, sorted by row length and, in case of ties, by row index. +0
0
1, 1, 2, 1, 2, 3, 1, 3, 2, 4, 5, 6, 1, 2, 4, 5, 7, 3, 6, 8, 9, 10, 1, 3, 7, 9, 13, 2, 4, 5, 8, 10, 11, 14, 15, 17, 6, 12, 16, 18, 19, 20, 1, 2, 4, 5, 7, 11, 12, 14, 15, 17, 21, 22, 24, 28, 3, 6, 8, 9, 13, 16, 18, 19, 23, 25, 26, 29, 30, 32, 10, 20, 27, 31, 33, 34, 35 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Row n is a permutation of the integers in the interval [1, binomial(n,floor(n/2))].
See A367508 for the description of the Christmas tree patterns, references and links.
LINKS
EXAMPLE
Triangle begins (vertical bars separate indices of rows having different lengths):
.
[1] 1;
[2] 1| 2;
[3] 1 2| 3;
[4] 1 3| 2 4 5| 6;
[5] 1 2 4 5 7| 3 6 8 9|10;
[6] 1 3 7 9 13| 2 4 5 8 10 11 14 15 17| 6 12 16 18 19|20;
...
For example, the order 4 of the Christmas tree pattern is the following:
.
1010 Row 1 length = 1
1000 1001 1011 Row 2 length = 3
1100 Row 3 length = 1
0100 0101 1101 Row 4 length = 3
0010 0110 1110 Row 5 length = 3
0000 0001 0011 0111 1111 Row 6 length = 5
.
and ordering the rows by length (and then by row index) gives 1, 3, 2, 4, 5, 6.
MATHEMATICA
With[{nmax=8}, Map[Flatten[Values[PositionIndex[#]]]&, SubstitutionSystem[{1->{2}, t_/; t>1->{t-1, t+1}}, {2}, nmax-1]]]
CROSSREFS
Cf. A001405, A363718 (row lengths), A367508, A368400.
KEYWORD
nonn,tabf,new
AUTHOR
Paolo Xausa, Dec 23 2023
STATUS
approved
A368429 Main diagonal of A357914. +0
0
1, 0, 0, 1, 4, 17, 68, 267, 1041, 4049, 15739, 61194, 238081, 927071, 3613362, 14097113, 55050810, 215178232, 841813885, 3296075636, 12915801131, 50648751006, 198756000104, 780472848048, 3066651564995, 12056585499217, 47426685674204, 186657789816391, 734990466616069 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
LINKS
FORMULA
a(n) = A357914(n,n).
MATHEMATICA
With[{nmax=30}, Diagonal[NestList[Accumulate, MoebiusMu[Range[nmax]], nmax-1]]]
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Paolo Xausa, Dec 24 2023
STATUS
approved
A368465 Number of even terms in each row of the iterates of the Christmas tree pattern map (A367508). +0
0
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 5, 1, 1, 2, 1, 1, 2, 1, 2, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 1, 4, 1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 4, 1, 6, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
See A367508 for the description of the Christmas tree patterns, references and links.
LINKS
EXAMPLE
The first 4 tree pattern orders are shown below (left), with the corresponding number of even terms on the right.
.
Order 1: |
0 1 | 1
|
Order 2: |
10 | 1
00 01 11 | 1
|
Order 3: |
100 101 | 1
010 110 | 2
000 001 011 111 | 1
|
Order 4: |
1010 | 1
1000 1001 1011 | 1
1100 | 1
0100 0101 1101 | 1
0010 0110 1110 | 3
0000 0001 0011 0111 1111 | 1
.
MATHEMATICA
With[{imax=8}, Map[Total, Map[Mod[FromDigits[#]+1, 2]&, NestList[Map[Delete[{If[Length[#]>1, Map[#<>"0"&, Rest[#]], Nothing], Join[{#[[1]]<>"0"}, Map[#<>"1"&, #]]}, 0]&], {{"0", "1"}}, imax-1], {3}], {2}]] (* Generates terms up to order 8 *)
PROG
(Python)
from itertools import islice
from functools import reduce
def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
def agen(): # generator of terms
R = [["0", "1"]]
while R:
r = R.pop(0)
yield sum(b[-1] == '0' for b in r)
if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
print(list(islice(agen(), 88))) # Michael S. Branicky, Dec 25 2023
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Paolo Xausa, Dec 25 2023
STATUS
approved
A368463 Parity of the iterates of the Christmas tree pattern map (A367508), read by rows. +0
0
0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1
COMMENTS
See A367508 for the description of the Christmas tree patterns, references and links.
LINKS
FORMULA
a(n) = A367508(n) mod 2.
MAPLE
The first 4 tree pattern orders are shown below (left), with the corresponding parity on the right.
.
Order 1: |
0 1 | 0 1
|
Order 2: |
10 | 0
00 01 11 | 0 1 1
|
Order 3: |
100 101 | 0 1
010 110 | 0 0
000 001 011 111 | 0 1 1 1
|
Order 4: |
1010 | 0
1000 1001 1011 | 0 1 1
1100 | 0
0100 0101 1101 | 0 1 1
0010 0110 1110 | 0 0 0
0000 0001 0011 0111 1111 | 0 1 1 1 1
.
MATHEMATICA
With[{imax=6}, Map[Mod[FromDigits[#], 2]&, NestList[Map[Delete[{If[Length[#]>1, Map[#<>"0"&, Rest[#]], Nothing], Join[{#[[1]]<>"0"}, Map[#<>"1"&, #]]}, 0]&], {{"0", "1"}}, imax-1], {3}]] (* Generates terms up to order 6 *)
PROG
(Python)
from itertools import islice
from functools import reduce
def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
def agen(): # generator of terms
R = [["0", "1"]]
while R:
r = R.pop(0)
yield from map(lambda b: int(b[-1]), r)
if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
print(list(islice(agen(), 94))) # Michael S. Branicky, Dec 25 2023
CROSSREFS
KEYWORD
nonn,tabf,new
AUTHOR
Paolo Xausa, Dec 25 2023
STATUS
approved
A368464 Number of odd terms in each row of the iterates of the Christmas tree pattern map (A367508). +0
0
1, 0, 2, 1, 0, 3, 0, 2, 0, 2, 0, 4, 1, 0, 3, 1, 0, 3, 0, 3, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 6, 1, 0, 3, 1, 0, 3, 0, 3, 0, 5, 1, 0, 3, 1, 0, 3, 0, 3, 0, 5, 1, 0, 3, 0, 3, 0, 5, 0, 3, 0, 5, 0, 5, 0, 7, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
See A367508 for the description of the Christmas tree patterns, references and links.
LINKS
EXAMPLE
The first 4 tree pattern orders are shown below (left), with the corresponding number of odd terms on the right.
.
Order 1: |
0 1 | 1
|
Order 2: |
10 | 0
00 01 11 | 2
|
Order 3: |
100 101 | 1
010 110 | 0
000 001 011 111 | 3
|
Order 4: |
1010 | 0
1000 1001 1011 | 2
1100 | 0
0100 0101 1101 | 2
0010 0110 1110 | 0
0000 0001 0011 0111 1111 | 4
.
Apparently, removing the 0 terms from the order i pattern (for i >= 2), gives the row lengths of the order i-1 pattern (cf. A363718).
MATHEMATICA
With[{imax=8}, Map[Total, Map[Mod[FromDigits[#], 2]&, NestList[Map[Delete[{If[Length[#]>1, Map[#<>"0"&, Rest[#]], Nothing], Join[{#[[1]]<>"0"}, Map[#<>"1"&, #]]}, 0]&], {{"0", "1"}}, imax-1], {3}], {2}]] (* Generates terms up to order 8 *)
PROG
(Python)
from itertools import islice
from functools import reduce
def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
def agen(): # generator of terms
R = [["0", "1"]]
while R:
r = R.pop(0)
yield sum(1 for b in r if b[-1] == '1')
if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
print(list(islice(agen(), 88))) # Michael S. Branicky, Dec 25 2023
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Paolo Xausa, Dec 25 2023
STATUS
approved
A368398 Iterates of the Christmas tree pattern map (A367508), where each row is interpreted as a single word and converted to decimal. +0
0
1, 2, 7, 37, 22, 95, 10, 2203, 12, 1117, 622, 4991, 661, 598, 542327, 793, 346, 271739, 412, 136637, 72158, 1154559, 42, 166507, 44, 149869, 141742, 545667567, 50, 199795, 52, 83317, 75190, 272971255, 56, 99961, 42682, 136623867, 51004, 68474749, 35186622, 1125971967 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
See A367508 for the description of the Christmas tree patterns, references and links.
LINKS
EXAMPLE
The first 4 tree pattern orders of A367508 are shown below (left). In the middle the elements of each row are joined into single words; decimal conversion is on the right.
.
Order 1: | |
0 1 | 01 | 1
| |
Order 2: | |
10 | 10 | 2
00 01 11 | 000111 | 7
| |
Order 3: | |
100 101 | 100101 | 37
010 110 | 010110 | 22
000 001 011 111 | 000001011111 | 95
| |
Order 4: | |
1010 | 1010 | 10
1000 1001 1011 | 100010011011 | 2203
1100 | 1100 | 12
0100 0101 1101 | 010001011101 | 1117
0010 0110 1110 | 001001101110 | 622
0000 0001 0011 0111 1111 | 00000001001101111111 | 4991
.
MATHEMATICA
With[{imax=7}, Map[FromDigits[StringJoin[#], 2]&, NestList[Map[Delete[{If[Length[#]>1, Map[#<>"0"&, Rest[#]], Nothing], Join[{#[[1]]<>"0"}, Map[#<>"1"&, #]]}, 0]&], {{"0", "1"}}, imax-1], {2}]] (* Generates terms up to order 7 *)
PROG
(Python)
from itertools import islice
from functools import reduce
def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
def agen(): # generator of terms
R = [["0", "1"]]
while R:
r = R.pop(0)
yield int("".join(r), 2)
if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
print(list(islice(agen(), 42))) # Michael S. Branicky, Dec 26 2023
CROSSREFS
KEYWORD
nonn,base,new
AUTHOR
Paolo Xausa, Dec 22 2023
STATUS
approved
A368461 a(n) is the number of unlabeled planar modular lattices on n nodes. +0
0
1, 1, 1, 2, 4, 8, 16, 33, 70, 151, 329, 723, 1601, 3569, 8000, 18015, 40723, 92351, 209997, 478598, 1092856, 2499567, 5724970, 13128115, 30135636, 69238343, 159202607, 366308948, 843338278, 1942591448, 4476714720, 10320774953, 23802355725, 54911686727 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
Jukka Kohonen, Modular racks (code to compute the numbers).
CROSSREFS
Cf. A006981 (modular lattices), A343161 (planar distributive lattices).
KEYWORD
nonn,new
AUTHOR
Jukka Kohonen, Dec 25 2023
STATUS
approved
A368095 Number of non-isomorphic set-systems of weight n satisfying a strict version of the axiom of choice. +0
1
1, 1, 2, 4, 8, 17, 39, 86, 208, 508, 1304 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 17 set-systems:
{1} {12} {123} {1234} {12345}
{1}{2} {1}{23} {1}{234} {1}{2345}
{2}{12} {12}{34} {12}{345}
{1}{2}{3} {13}{23} {14}{234}
{3}{123} {23}{123}
{1}{2}{34} {4}{1234}
{1}{3}{23} {1}{2}{345}
{1}{2}{3}{4} {1}{23}{45}
{1}{24}{34}
{1}{4}{234}
{2}{13}{23}
{2}{3}{123}
{3}{13}{23}
{4}{12}{34}
{1}{2}{3}{45}
{1}{2}{4}{34}
{1}{2}{3}{4}{5}
MATHEMATICA
Table[Length[Select[bmp[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]], {n, 0, 10}]
CROSSREFS
For labeled graphs we have A133686, complement A367867.
For unlabeled graphs we have A134964, complement A140637.
For set-systems we have A367902, complement A367903.
These set-systems have BII-numbers A367906, complement A367907.
The complement is A368094, connected A368409.
Repeats allowed: A368098, ranks A368100, complement A368097, ranks A355529.
Minimal multiset partitions not of this type are counted by A368187.
The connected case is A368410.
Factorizations of this type are counted by A368414, complement A368413.
Allowing repeated edges gives A368422, complement A368421.
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
KEYWORD
nonn,more,new
AUTHOR
Gus Wiseman, Dec 24 2023
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 42

Search completed in 0.127 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 26 22:54 EST 2023. Contains 368167 sequences. (Running on oeis4.)