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Abstract

We describe a methodology for assigning individual estimates of long-term average air pollution

concentrations that accounts for a complex spatio-temporal correlation structure and can

accommodate spatio-temporally misaligned observations. This methodology has been developed

as part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air), a prospective

cohort study funded by the U.S. EPA to investigate the relationship between chronic exposure to

air pollution and cardiovascular disease. Our hierarchical model decomposes the space-time field

into a “mean” that includes dependence on covariates and spatially varying seasonal and long-term

trends and a “residual” that accounts for spatially correlated deviations from the mean model. The

model accommodates complex spatio-temporal patterns by characterizing the temporal trend at

each location as a linear combination of empirically derived temporal basis functions, and

embedding the spatial fields of coefficients for the basis functions in separate linear regression

models with spatially correlated residuals (universal kriging). This approach allows us to

implement a scalable single-stage estimation procedure that easily accommodates a significant

number of missing observations at some monitoring locations. We apply the model to predict

long-term average concentrations of oxides of nitrogen (NOx) from 2005–2007 in the Los Angeles

area, based on data from 18 EPA Air Quality System regulatory monitors. The cross-validated R2

is 0.67. The MESA Air study is also collecting additional concentration data as part of a

supplementary monitoring campaign. We describe the sampling plan and demonstrate in a

simulation study that the additional data will contribute to improved predictions of long-term

average concentrations.
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1 Introduction

There is a growing understanding in the literature that exposure to air pollution is associated

with adverse health outcomes. The early epidemiological evidence was based on assigning
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exposures using area-wide monitored concentrations in different geographic regions

(Dockery et al. 1993; Pope et al. 2002) or at different times within the same region (Samet et

al. 2000). A weakness of area-wide monitoring approaches is that they fail to take advantage

of variation between individuals living in the same geographic region. In addition,

depending on the study design, there is the potential for unmeasured confounding by region

or by time.

More recent cohort studies have assigned individual concentrations based on estimates of

intra-urban variations in ambient concentrations. Prediction approaches have included

assigning the value measured at the nearest monitor to the participant’s residential location

(Miller et al. 2007; Basu et al. 2000; Ritz et al. 2006); using “land use regression” estimates

based on Geographic Information System (GIS) covariates (Hoek et al. 2008; Brauer et al.

2003; Jerrett et al. 2005a); and interpolating concentrations by a geostatistical method such

as kriging (Jerrett et al. 2005b; Kunzli et al. 2005) or semi-parametric smoothing (Kunzli et

al. 2005). These studies and others like them have used relatively simple spatial statistical

techniques for exposure assignment based on monitoring data from existing regulatory

networks. Our objective is a flexible and practical methodology that accounts for the

complex structure of the ambient spatio-temporal concentration field and can take full

advantage of regulatory and other monitoring data to more accurately predict concentrations

for individual cohort members.

The work described in this paper is motivated by the Multi-Ethnic Study of Atherosclerosis

and Air Pollution (MESA Air). MESA Air is a cohort study funded by the U.S.

Environmental Protection Agency (EPA) that emphasizes accurate prediction of individual

exposures in order to accomplish its primary aim of assessing the relationship between

chronic exposure to air pollution and sub-clinical cardiovascular disease. The MESA Air

cohort is comprised of 6226 male and female subjects in six major U.S. metropolitan areas

(Los Angeles, CA; New York, NY; Chicago, IL; Minneapolis-St. Paul, MN; Winston-

Salem, NC; and Baltimore, MD). Although it is possible to estimate health effects based on

variations in concentrations between these regions, a major thrust in MESA Air is to develop

accurate exposure predictions for individuals that also incorporate intra-urban difference in

ambient concentrations in order to reduce exposure misclassification, increase the study

power, and obviate possible confounding by region. The primary MESA Air hypotheses

relate to exposure to particulate matter of ambient origin with aerodynamic diameter less

than 2.5 µm (PM2.5). Gaseous oxides of nitrogen (NOx) demonstrate more intra-urban

heterogeneity and are also considered as a marker for traffic-related air pollution. In this

paper we present examples of modeling outdoor NOx concentrations in the Los Angeles

area, but the statistical methodology is equally applicable to other regions and to PM2.5 and

will ultimately be applied in all of these settings. We also note that final exposure estimates

in MESA Air will integrate predictions of outdoor concentrations with additional subject-

level data, including time-activity patterns, home infiltration characteristics, address history,

and employment address.

A primary source of concentration data for estimating exposures is the EPA’s regulatory Air

Quality System (AQS) repository of ambient monitoring data. The AQS network includes a

number of fixed site monitors in each region, each of which measures ambient air pollution
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levels on a regular basis, typically hourly for NOx and less frequently for PM2.5. Although

there are some missing data and variations between sites, most AQS sites provide nearly

complete NOx concentration time series over several years at their spatial locations. MESA

Air is also engaged in a supplementary measurement campaign to provide additional

concentration data. The objective of the MESA Air monitoring is to more completely

sample a design space that emphasizes traffic-related pollution and to capture data at actual

subject home locations. For logistical reasons, the supplementary monitoring data are

sampled as two-week averages based on a design with spatio-temporal misalignment that

results in significant amounts of missing data at some measurement locations (Cohen et al.

2009).

Although the primary interest in MESA Air and similar cohort studies is in predicting spatial

variation of long-term average concentrations to estimate exposures, our statistical modeling

approach needs to account for spatio-temporal variability and correlation structures in the

data. For an overview of techniques for modeling correlated spatio-temporal data, see

Banerjee et al. (2004). A recent paper by Fanshawe et al. (2008) emphasizes the role of

carefully chosen covariates in obviating the need to accommodate spatio-temporal

correlation in the residuals, but the model in that paper assumes a uniform time trend across

locations. Paciorek et al. (2008) and Sahu et al. (2006) model particulate matter using

techniques that allow for more complex spatio-temporal dependencies, however their

estimation and prediction procedures are applicable only with relatively well aligned

monitoring data. Smith et al. (2003) uses an expectation-maximization (EM) algorithm to

allow for arbitrary missing data patterns, but their model does not accommodate complex

spatio-temporal dependencies. We describe a new modeling and prediction procedure that

includes sufficiently complex spatio-temporal dependencies to accurately account for

variation in seasonal patterns at different locations and that naturally allows for significant

amounts of missing data.

In Section 2, we describe the available AQS monitoring data as well as the sampling pattern

for the MESA Air supplementary monitoring campaign. We also describe the geographic

covariates that are used in this paper. In Section 3, we specify our hierarchical spatio-

temporal model and discuss techniques for efficient estimation. In Section 4, we apply the

model to the AQS data from the Los Angeles region and assess the quality of predictions by

cross-validation. In Section 5, we conduct a simulation study to assess the added benefit of

including data from the supplementary MESA Air monitoring campaign. (The MESA Air

supplementary monitoring campaign and quality control process are ongoing, so these

concentration measurements are not included in the present paper.) We conclude in Section

6 with a discussion.

2 Description of Data

2.1 AQS Data

The EPA manages the national AQS network of regulatory monitors. Many AQS sites report

NOx concentrations on an ongoing basis, most typically as hourly averages. For this study

we are including data from 18 AQS monitors in the Los Angeles region that cover most of

the area in which MESA Air cohort members reside. The monitor locations are shown on
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the map in Figure 1. Because the MESA Air supplementary monitoring is done at the two-

week average time scale, we also aggregate the AQS monitoring data to two-week averages.

There is a small amount of variability in the number of AQS measurements that contribute

to each two-week average, which can result in variable amounts of measurement error. The

current model assumes a common variance for the measurement error of all AQS and

MESA Air two-week average concentrations. Since the data are skewed, we log-transform

two-week average NOx concentrations. Example time series for the period from July 2005

through December 2007 are shown in Figure 2. The locations of these three sites in Los

Angeles, Long Beach, and Pomona are highlighted on the map in Figure 1. Notice that the

time series have different mean levels as well as different patterns of seasonal variation.

2.2 MESA Air Monitoring

A major focus of the MESA Air project is to provide improved individual exposure

prediction, relative to what has been used in previous air pollution cohort studies. To this

end, additional monitoring data are being collected in each of the study’s six geographic

regions. One of the problems with basing exposure estimates entirely on AQS monitoring

data is that the AQS system is designed for regulatory rather than epidemiology study

purposes. It is not intended to resolve small scale differences in pollution levels for

individuals living in the same general area, and there are siting restrictions that limit the

characterization of roadway effects on concentration levels. Therefore, the aim of the MESA

Air supplementary monitoring campaign is to provide increased diversity in geographic

sampling locations and to systematically span a design space based on proximity to traffic.

In addition, the supplementary monitoring campaign involves collecting samples at a subset

of the actual cohort home addresses (approximately one in ten cohort members) in order to

more realistically characterize the pollution to which these cohort members are actually

exposed. The sampling strategy and measurement methodology are described below and in

more detail by Cohen et al. (2009).

The MESA Air supplementary monitoring for NOx in each of the six study areas involves

collecting two-week average concentrations in three sub-campaigns: “fixed sites”, “home

outdoor”, and “community snapshot”. All of the locations at which data had been collected

in the Los Angeles region as of July 13, 2007 are shown on the map in Figure 1. Since the

measurement and quality control processes are ongoing, measured concentrations are not

used in the present paper, rather our simulation study is based on the actual locations and

times of the MESA Air supplementary monitoring prior to July 13, 2007.

There are a total of seven MESA Air “fixed sites” in the Los Angeles area, one of which is

colocated with an AQS monitor to allow for instrument calibration. These “fixed sites”

began measuring two-week average concentrations in November 2005. There were

approximately 40 measurements per site and a total of 264 “fixed site” measurements during

this timeframe. A total of 73 “home outdoor” monitoring locations in Los Angeles are also

included, and these were sampled during two-week periods starting in May 2006. The plan

calls for each home to be sampled two times, in different seasons. As of the cutoff date for

inclusion in this paper, a total of 103 “home outdoor” measurements were completed. The

final component of supplemental monitoring is the “community snapshot” sub-campaign
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that consists of three separate rounds of spatially rich sampling during single two-week

periods. In the downtown and coastal Los Angeles area, a total of 433 “community

snapshot” measurements were made during three two-week periods in June 2006, October

2006, and January 2007. The sampling was done at different times in the Riverside area,

with a total of 130 measurements from January 2007, April 2007, and June 2007. In each

round of “community snapshot” monitoring, the majority of monitors were arranged in

clusters of six, with three on either side of a major road at distances of approximately 50,

100, and 300 meters. In addition, the locations were chosen to characterize different land use

categories and to cover the geographic region as broadly as possible.

2.3 Geographic Information System (GIS)

Part of our strategy for predicting concentrations at locations and times where there are no

measurements is to use a regression model with geographic covariates. This approach is

often termed “land use regression” because some of the geographic variables relate to local

land utilization (Jerrett et al. 2005a). We embed this regression in a hierarchical spatio-

temporal model that incorporates flexible correlation structures. In this paper, we consider a

limited set of geographic covariates: (i) distance to the coast, (ii) distance to a major road

(major road defined as census feature class code A1–A3, with distance truncated at 300

meters), and (iii) average population density in a 2000 meter buffer. These are all derived

using the ArcGIS (ESRI, Redlands, CA) software package. The distance to coast variable is

based on the Tele Atlas (Lebanon, NH) Dynamap 2000 County Boundary defined border of

the Pacific Ocean, the population density is calculated from publicly available U.S. Census

Bureau data, and the roadway variable is derived from the proprietary Tele Atlas Dynamap

2000 roadway network. The choice of these variables is based on preliminary exploratory

analysis of the AQS monitoring data using linear regression (results not shown). In our final

prediction model we plan to incorporate a much broader set of geographic covariates,

including new covariates under development to account for local traffic patterns (Wilton et

al. 2008).

3 Model and Estimation

3.1 Spatio-Temporal Framework

We are primarily interested in predicting long-term average concentrations at subject home

locations, but certain features of the application and the data necessitate modeling the two-

week average spatio-temporal field rather than pre-averaging the data for a purely spatial

analysis. First, the long-term average time period of interest is not fixed, and it may vary

between subjects based on the hypothesized time scale for the effect of air pollution

exposure. We can easily accommodate the need for averages over arbitrary time periods by

predicting a spatio-temporal field of two-week average concentrations.

Second, as we have seen in Figure 2, there are important spatio-temporal dependencies in

the measured concentration field that manifest in varying seasonal patterns at different

spatial locations. Given the spatio-temporal misalignment in the MESA Air supplementary

monitoring, this suggests that we need to accurately account for space and time in order to

optimally use these data. As a notional example, with only two concentration measurements
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at a particular home, the only way to determine if these data suggest that the home has long-

term average concentrations that are relatively high or low compared to other locations in

the same region is to calibrate the two measurements by comparing them to an estimate of

the seasonal trend at the home location.

We define here the overall spatio-temporal modeling framework. Denote by Yst a set of

known observations from a space-time field of log-transformed two-week average

concentration measurements with indices st ∈ W, where the cardinality of W is

Define the set of all times at which there are measurements

the set of all locations at which there are measurements

and the total number of spatial locations

Also define the set of times for which there are measurements at location s ∈ S

and the set of locations for which there are measurements at time t ∈ T

Let  be a set of values from the same space-time field at which we are interested in

making predictions, and similarly define W*, N*, n*, T*, S*, , and . The space-time

indices in Yst and  may overlap, in which case the predicted value could differ from the

colocated observations due to the potential for measurement error and process noise that we

do not want to include in the health effect analysis.

We assume that Yst and  can be modeled jointly as a Gaussian random field with a multi-

dimensional parameter Ψ

(1)
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Our strategy is to first estimate Ψ and then use the estimated Ψ̂ along with the known values

of Yst to predict . Specifically, we estimate Ψ by the method of maximum-likelihood

(2)

where the density for Yst is

In the above expression, ΣY (Ψ) and μY (Ψ) are sub-matrices of ΣYY* (Ψ) and μYY* (Ψ). We

then predict  as the conditional mean of  from equation (1)

(3)

We can also compute uncertainty estimates for the  that incorporate the covariance from

equation (1) and the uncertainty in estimating Ψ. We do not present these here as they do not

add any new insight over the cross-validatory assessments of prediction accuracy in Section

4 and because such individual uncertainty estimates are not helpful when using the predicted

concentrations to estimate exposure in a health effects analysis; see the discussion in Section

6.

Suppose that we are interested in long-term average concentrations over a time interval (τ1,

τ2) at a set of locations S*. We can obtain the spatial field of long-term average predictions

 by defining W* such that for each location s ∈ S*,  consists of a non-overlapping

sequence of two-week periods ranging from (τ1, τ2) and then computing the average back-

transformed concentration

(4)

We have defined  to average over the same time period at each location s, but this is

only for notational convenience. In practice, we can easily predict averages over different

time periods for different subjects’ home locations.

3.2 Hierarchical Model

We now describe the hierarchical structure for the multivariate Gaussian model in equation

(1). To ease the notation we describe the model as it applies to Yst, but it is easy to expand it

to the pair . We decompose the field into

(5)

where μst and νst will be defined below. The idea is that μst represents a smooth spatio-

temporal mean field that incorporates dependence on geographic covariates along with
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seasonal and long-term trends, and νst represents the space-time residual field with primarily

spatial correlation structure.

Take as given for now a set of m smooth temporal basis functions f1(t), …, fm(t), where m is

typically a small number. We assume that each of the fi(t) has mean zero over the interval

(τ1, τ2), and we also define the constant basis function f0(t) ≡ 1. Following Fuentes et al.

(2006), we write the spatio-temporal mean field as

(6)

where for each i, we regard βi· as a spatial field on S of coefficients for fi(t). For each

location s, the smooth function of time μs· represents the seasonal and long-term trend,

which is essentially a projection of the time series at location s onto the space spanned by

the fi(t).

Each of the spatial fields βi· is modeled by linear regression with geographic covariates and

spatial correlation following a geostatistical structure, which amounts to embedding several

instances of universal kriging (Cressie 1993) in our overall hierarchical model. In particular,

we assume that for each i = 0, …, m

where Xi is an n × pi design matrix, αi is the corresponding pi-vector of unknown regression

coefficients, and ΣS(θi) is obtained by plugging the unknown multi-dimensional parameter θi

into a common n × n geostatistical covariance matrix function ΣS(·). Note that the design

matrices Xi can incorporate intercept terms and may include different geographic covariates

for the different spatial fields.

What remains is to specify a model for the residual space-time field νst. We will show

(Section 4.1) that our modeling μst with seasonal basis functions leaves residuals that are

essentially uncorrelated in time at the two-week average time scale. So we define νst as a

mean-zero, separable space-time process, such that for each time t the spatial field ν·t is

distributed as

(7)

and there is no temporal autocorrelation. The matrix function ΣSt(·) is defined to be the sub-

matrix of ΣS(·) corresponding to the subset St ⊂ S, i.e., the set of locations with monitoring

data at time t, and θν is a multi-dimensional geostatistical covariance parameter.

Notice that we have assumed a common family of spatial covariance functions for νst and

the various spatial fields embedded in μst. We do this for notational convenience, but in

practice it is not necessary. In particular, while we do not explore the possibility here, the

residual field may have a non-stationary correlation structure that could be accommodated

with a deformation model (Sampson 2002; Damian et al. 2003).
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We still need to define the spatial covariance matrix function ΣS(·). Any of the common

geostatistical forms would be appropriate, and the decision of which to use should be based

on the data. In this paper, we focus on exponential covariance matrices that can be

characterized by a range ϕ, partial sill σ2, and nugget τ2. For the βsi fields we assume that

the nugget term is zero, implying that the mean value and seasonal trend are each highly

correlated at adjacent locations. Thus, the parameter Ψ is composed of “land use regression”

coefficients

along with spatial covariance parameters for the βsi fields

where

and spatial covariance parameters for the space-time residual field

The hierarchical model we have described in this subsection completely specifies the mean

and covariance functions μY (Ψ) and ΣY (Ψ) of Section 3.1.

3.3 Unified Estimation

The first step in predicting  is to find a parameter estimate Ψ̂ by maximum-likelihood, as

in equation (2). We use the constrained L-BFGS-B algorithm implemented in the optim()

function in R (Byrd et al. 1995; R Development Core Team 2008), first log-transforming the

variance parameters to make the optimization easier. The dimension of ΣY (Ψ) is N × N,

where N is the total number of space-time concentration measurements in Yst. As such, the

time consuming step in the optimization procedure is evaluating

(8)

For the simulation scenario we consider in Section 5 with n = 346 monitoring sites and a

total of N = 2011 observations, one such evaluation takes 4.34 seconds running as a single

thread in the default installation of R version 2.6.0 on a Dell workstation with two quad-core

Intel Xeon processors running at 2.33 GHz processor (Red Hat Linux Enterprise Linux

Server release 5.2, 64 bit). Linking R to the Goto implementation of a Basic Linear Algebra

System (BLAS) in the identical setting reduces the computation time to 0.84 seconds (Goto

2008).
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Although using R linked to the Goto BLAS results in reasonable computation times for our

simulation scenario, we note that longer time series of measurements (which are available

from the AQS monitors) would result in N being substantially larger than 2011, which could

make direct evaluation of the term in (8) impractical on current generation computers.

Fortunately an alternative method of calculating the likelihood is available that scales well

for large N when the number of spatial locations n is held fixed.

We have already decomposed

(9)

To facilitate algebraic manipulations rewrite equation (9) in the form

(10)

with vectors Y = (Yst) and V = (νst) defined by varying s and then t, the vector B = (βis)

defined by varying s and then i, and the matrix F = (fst,is′) with similar indexing defined by

We have

where ΣV is an N × N matrix with block diagonal structure, and we have

where

The likelihood for Y can be restated such that
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(11)

where μB|Y and ΣB|Y are given by

This decomposition of the likelihood is convenient because the only N × N matrix to solve is

ΣV, the covariance for the space-time residual field. This matrix is block-diagonal if we

assume temporally uncorrelated residuals, and even if we were to assume an AR(1) or

similar structure this matrix would be significantly more tractable than the full covariance

ΣY. See Lindstrom and Lindgren (2008) for some related manipulations.

3.4 Temporal Basis Functions

Up to now we have regarded the fi(t) as pre-specified seasonal trend functions. In practice

we follow an approach similar to Fuentes et al. (2006) and estimate empirical orthogonal

basis functions from the data at locations where there are nearly complete time series for the

dates of interest. If we restrict to the set of concentration measurements at such locations

(e.g., the AQS sites) then we can regard Yst as a |T| × n matrix where T consists of a non-

overlapping sequence of two-week periods ranging from (τ1, τ2) and n is the number of

monitoring locations. For pre-specified m ≥ 1, if there were no missing data in Yst we would

adopt the following procedure

1. Construct Ỹst by normalizing the columns to have mean zero and variance one.

2. Extract f̃1, …, f̃m as the first m left singular vectors from a singular value

decomposition (SVD) of Ỹst.

3. Use smoothing splines to derive smooth temporal basis functions f1(t), …, fm(t) on

the interval (τ1, τ2).

Recall that we always take f0(t) ≡ 1. The idea is that the first few singular vectors will span

the range of seasonal trends observed in the data, but that they will be noisy representations

so the smoothing is used to approximate the truly seasonal piece. Even the AQS time series

have some missing values, so there are missing observations in Yst and the procedure

described above cannot be applied directly. We modify step 2 of the procedure by using an

algorithm similar to expectation-maximization (EM) to approximate the SVD using imputed

values. See Fuentes et al. (2006) for further details on this algorithm.
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4 Los Angeles AQS Data

We now apply the hierarchical model from Section 3 to make predictions based on two-

week average log-transformed NOx concentrations from 18 monitoring locations of AQS

network in the Los Angeles area for the time period from July 2005 through December

2007. This involves estimating the model parameters and then assessing prediction accuracy

for long-term average concentrations by means of cross-validation. As previously noted, the

locations of the monitors we consider are shown in Figure 1, and several example time

series are shown in Figure 2.

Since there are essentially complete time series of data at each location, we can conduct a

multistep exploratory analysis that will validate the appropriateness of the hierarchical

model described in Section 3. This multi-step analysis gives estimates for all of the

parameters in the hierarchical model, and we can compare these to the estimates obtained by

the unified maximum-likelihood estimation procedure of Section 3.3.

4.1 Seasonal Trends and Residual Autocorrelation

We follow the methodology described in Section 3.4 to extract m = 2 smooth temporal basis

functions that are intended to capture the range of seasonal variation in the region. After

determining the first two singular vectors of the observed data matrix, we smooth them

using smoothing splines as implemented in the R function smooth.spline() with four degrees

of freedom per year (R Development Core Team 2008). The two seasonal trend functions

are shown in Figure 3, and an additional basis function that is not shown is f0(t) ≡ 1. For

each AQS monitoring location s, we estimate values β̂0s, β̂1s, and β̂2s by fitting

(12)

with ordinary least squares.

For each location s, the residuals from this linear model constitute a time series. Our

objective in using the basis functions to model seasonal variability is to simplify the

structure of the residual field νst, ideally allowing us to treat it as having no temporal

correlation. This corresponds to the residual time series being uncorrelated. Autocorrelation

plots are shown in Figure 4 for the residuals at each of the 18 AQS sites. While there is a

small amount of variability between sites, these plots taken as a group validate our

assumption that there is no temporal correlation at the two-week time scale.

In order to assess the Normality assumption for the residual field, we show smoothed

density and Normal Q-Q plots for the combined distribution of residuals from the 18 AQS

sites in Figure 5. There is evidence of skewness in the distribution and a heavy left tail, but

overall the Normality assumption seems like a reasonable approximation. In principle, our

spatio-temporal model could be modified to make the residual distribution closer to Normal,

potentially by using a generalized logarithm transformation (Durbin and Rocke 2003) or by

formulating the model on a finer time scale (e.g., daily average concentrations). However,

either of these approaches would entail a significant increase in the computational burden.
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4.2 βîs Spatial Fields

For each i = 0, 1, 2 we analyze the estimated spatial field β̂is in terms of its relationship with

geographic covariates and its residual spatial structure. The three geographic covariates

considered in this analysis are: (i) distance to the coast, (ii) distance to a major road (major

road is defined by census feature class code A1–A3, with distance truncated at 300 meters),

and (iii) average population density in a 2000 meter buffer. These variables were extracted

using GIS, as described in Section 2.3.

The results of separate linear regression model fits for each of the β̂is fields are shown in

Table 1. As expected, the estimated long-term averages β̂0s tend to be lower for locations

that are farther from roads and higher in areas of higher population density. In addition, the

long-term averages tend to be higher further from the coast, which is broadly consistent with

the notion that the prevailing wind concentrates pollution on the west side of the coastal

mountains in the Los Angeles basin. The two sets of estimated seasonal basis function

coefficients β1̂s and β̂2s do not have statistically significant relationships with the roadway or

population variables, but both are associated with distance to the coast, indicating that the

effect of meteorology varies by geography in this region.

We expect there to be spatial correlation in the β̂is fields. To assess the degree of spatial

correlation, we examine empirical variograms for the residuals from regression on the

spatial covariates. For β̂1s and β̂2s, only the distance to coast covariate is included in the

regression since the other two covariates do not appear to be important. Empirical variogram

clouds and binned values calculated using the GeoR package in R (Ribeiro and Diggle 2001)

are shown in Figure 6. The variograms suggest that there is significant spatial correlation in

β̂0s, modest correlation in β̂1s, but limited correlation in β̂2s. We quantify this by fitting

universal kriging models with exponential variograms and no nugget to each of the three

fields using the likfit() function in GeoR. The resulting parameter estimates are shown in the

first column of Table 2.

4.3 Spatio-Temporal Residuals

The last part of the model to be estimated is the spatial structure of the spatio-temporal

residual νst defined by equation (5). We can construct an estimate ν̂st by taking residuals

from separately fitting the linear model in equation (12) at each location s. Then assuming

an exponential form in equation (7) we jointly estimate the range, nugget, and sill

parameters by maximum-likelihood using the likfit() function in GeoR. The estimated

parameter values are shown in the first column of Table 2.

4.4 Full Model Estimation

In the previous subsections, we estimated the model parameters using a multi-step

procedure. This is feasible for the AQS data because there are long time series with few

missing values at each location, so it is possible to estimate the βis fields directly. If there

were significant missing data (as in the MESA Air supplementary monitoring), it would be

necessary to jointly estimate the model parameters using the full hierarchical form, and in

any case a unified estimation procedure is preferable for estimating uncertainty in the health

effect analyses (Szpiro et al. 2008; Gryparis et al. 2009; Madsen et al. 2008). Unified
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estimation of all of the parameters is accomplished by maximum-likelihood using the

methodology describe in Section 3.3. Results for the AQS data are shown in the second

column of Table 2, and there is very good agreement with estimates from the multi-step

approach.

4.5 Prediction Accuracy

Using the parameter estimates derived above, it is straightforward to follow the procedure in

Section 3.1 and predict long-term average concentrations at locations where measurements

are not available. This amounts to predicting log-concentration values as the conditional

mean of the latent Gaussian random field at locations without data, and then back-

transforming to obtain concentrations as in equation (4).

We assess the accuracy of the prediction model by leave-one-out cross-validation. For each

s ̄ corresponding to the spatial location of one of the 18 AQS monitoring sites, we predict the

long-term average concentration  by applying the model from Section 3 as above,

replacing Yst by the set of observations that excludes all measurements at location s̄

This procedure yields a cross-validated spatial field of predicted long-term average

concentrations , where s ranges over the 18 AQS monitoring locations. A scatter-plot

of cross-validated pre-dictions is shown in Figure 7. The plot suggests that the model fits

well since there are no noticeable outliers. The root mean square error (RMSE) is 4.21 parts

per billion (ppb), corresponding to an R2 of 0.67. The formula used to compute R2 is

(13)

where  is the spatial field of true long-term average concentrations that could be

defined by replacing  by  in equation (4).

5 Simulation Study in Los Angeles

In order to evaluate the added value of the MESA Air supplementary monitoring campaign,

we conducted a simulation study based on sampling Yst at all of the AQS and MESA Air

sites described in Section 2 (N = 2011, n = 346). We simulated log-transformed two-week

average concentrations using the hierarchical model of Section 3 with temporal basis

functions and parameters as estimated from the AQS data in Section 4. We also simulated

time series of concentrations at 200 additional randomly selected subject home addresses.

The approximate locations are shown in Figure 1. We calculated the long-term average

concentration values at each home address from July 2005 through December 2007 and

regard these as a validation set  for evaluating prediction performance.

We simulated 48 random realizations and then estimated the parameters using maximum-

likelihood as in Section 3.3. Mean estimated parameter values are shown in the second
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column of Table 3 along with the standard deviation of estimates and the mean standard

errors (calculated based on the Hessian of the likelihood function). The estimates are

generally very close to the assumed values (first column), although we note that the range

and sill tend to be underestimated for the β0s field. The sampling standard deviations are also

reasonably well aligned with the standard error estimates. The standard errors are calculated

by inverting the Hessian of the likelihood function at its mode. In future work, we will

investigate alternative approaches such as Bayesian and empirical Bayesian calculations that

may provide improved standard error estimates. The third column contains analogous values

when the maximum-likelihood estimation is based only on simulated observations at the

AQS and MESA Air “fixed sites” (N = 1343, n = 25). The mean values are very close to the

ones obtained by using all monitoring locations, with a modest amount of additional

variability. This suggests that the additional sampling at the “home outdoor” and

“community snapshot” locations adds little value for parameter estimation.

However, our interest is in predicting the long-term average concentrations at subject home

locations ( ), not just in estimating the model parameters. Scatterplots of predicted

values for the first twelve Monte Carlo simulations in each of two scenarios are shown: (i)

using the AQS and all MESA Air monitoring sites in Figure 8, and (ii) using only the AQS

and MESA Air “fixed sites” in Figure 9. The predictions obtained by using information from

all of the MESA Air monitoring sites are better than those using only the MESA Air “fixed

sites”, with a lower average RMSE (4.02 compared to 6.24), and a higher average R2 (0.95

compare to 0.88). Since the parameter estimates are very close, this result suggests that there

is significant benefit from having additional monitoring locations for the prediction step of

equation (3), even though the measurements at the MESA Air “home outdoor” and

“community snapshot” sites are temporally sparse.

To further evaluate this potential benefit, we consider two additional prediction scenarios:

(iii) all of the monitoring locations are used for parameter estimation but only the AQS and

MESA Air “fixed sites” are used for prediction, and (iv) only the AQS and MESA Air

“fixed sites” are used for parameter estimation but all of the monitoring locations are used

for prediction. The results are shown in the red curves of Figures 10 and 11, and they

validate the hypothesis that for this simulation scenario the primary benefit from including

the “home outdoor” and “community snapshot” monitoring campaigns is for prediction

rather than for parameter estimation. We also show analogous results for the incremental

value of adding the “home outdoor” or “community snapshot” monitoring locations (green

and blue curves, respectively, in Figures 10 and 11). The same pattern persists, with

incremental benefit from each set of additional monitoring locations.

We note that this simulation study demonstrates the benefit of having additional sampling

from the “home outdoor” and “community snapshot” campaigns in the prediction step. In

addition to the simulation study findings, there may turn out to be additional benefit for

parameter estimation in the actual MESA Air study. This will be determined by the final

choice of geographic covariates and how well the various sampling campaigns span the

range of values for those covariates. The “community snapshot” campaign was specifically

designed to capture near-road effects, and as we develop more refined traffic-related
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covariates we expect the data from this sub-campaign to be particularly important for

estimating the relevant regression coefficients (Wilton et al. 2008).

In addition to the simulation scenario described above, we have also considered a second set

of simulations in which we assume that there is greater variability in the temporal trend at a

fine spatial scale. This additional variability is induced by allowing the β1s and β2s fields to

be dependent on the distance to a major road covariate. The results are very similar, so we

do not show them here.

6 Discussion

The methodology described in this paper has two features that make it attractive for

exposure prediction in environmental epidemiology, and more generally for applications that

benefit from accurate prediction using spatio-temporal data. First, our model has a very

flexible correlation structure that allows for non-separability of space and time by modeling

seasonal and long-term trends using empirical orthogonal basis functions with spatially

correlated random fields of coefficients. Second, the unified estimation approach can be

implemented with standard software and accommodates arbitrary missing data patterns, as

long as there are sufficiently rich time series at a subset of locations to derive temporal basis

functions.

An important consideration in implementing this model is determining what covariates are

helpful for modeling the spatial fields of temporal basis function coefficients (recall that one

of the temporal basis functions is the constant function, representing the long-term average).

In this paper we have restricted our attention to a relatively small number of covariates that

are easy to calculate using GIS. However, as part of our work on the MESA Air project, we

are developing a more comprehensive set of spatial covariates, and we expect that these will

be very valuable for making predictions at subject homes. In particular, we are investigating

more complex covariates to account for the influence of local traffic patterns. This includes

estimating actual traffic densities on the road network and incorporating the results of

meteorology through physics-based plume modeling. Preliminary exploratory analysis in the

Los Angeles region indicates that accounting for meteorology and traffic patterns will

contribute significantly to improved predictions (Wilton et al. 2008).

One of our key findings in the simulation study is that the temporally sparse components of

the MESA Air monitoring campaign (“home outdoor” and “community snapshot”)

contribute to improved predictions, but that this improvement is primarily through better

interpolation in the prediction step and not through improved parameter estimation. The

details of this finding are likely connected to the choice of geographic covariates. For

example, when we use more refined covariates to represent traffic density, we expect that

the “community snapshot” monitoring will prove important for accurate estimation of the

regression coefficients for these covariates. This is because the “community snapshot”

monitoring includes extensive sampling at gradients within a few hundred meters of major

roads in multiple directions corresponding to up- and down-wind locations. Thus, our

expectation is that the benefit of MESA Air monitoring data in the prediction step will
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persist when we use additional covariates, and that additional gains in prediction accuracy

will be realized through more accurate parameter estimation based on these data.

We have focused on making point predictions and evaluating the accuracy of these

predictions compared to true values. It would be straightforward to also calculate a

prediction variance at each location, taking a similar approach to Fanshawe et al. (2008). We

do not pursue this here, however, because separate uncertainty estimates for each location

are not helpful if the objective is to use the predicted concentrations to estimate the health

effect in an environmental epidemiology study. To obtain valid health effect standard errors,

we need to properly account for the uncertainty in the exposure prediction surface taken as a

whole, including correlations between locations. In a future paper we will adapt recently

developed measurement error correction procedures to accomplish this objective (Szpiro et

al. 2008). Standard errors for the spatio-temporal model parameter estimates like those

reported in Table 3 play an important role in the applicable measurement error correction

procedures.
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Figure 1.
AQS and MESA Air monitoring locations in Los Angeles, and the 200 cohort residence

locations used for validation in simulation scenario. (All home locations jittered on map to

protect confidentiality)
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Figure 2.
Example time series of log-transformed two-week average NOx concentrations at three AQS

monitors in the Los Angeles area for the period July 2005 through December 2007
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Figure 3.
Smoothed (line) and unsmoothed (points) empirical orthogonal basis functions based on

AQS NOx two-week averages in Los Angeles area (centered and normalized to SD=0.707

for smooth version).
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Figure 4.
Empirical autocorrelation functions for two-week average residuals after fitting to empirical

orthogonal basis functions. (18 AQS monitors in Los Angeles area.)
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Figure 5.
Density plot and Normal Q-Q plot for log two-week average residuals after fitting to

empirical orthogonal basis functions. (18 AQS monitors in Los Angeles area.)

Szpiro et al. Page 23

Environmetrics. Author manuscript; available in PMC 2014 May 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6.
Empirical variograms for the estimated spatial fields of long-term averages (β̂0s) and

coefficients of seasonal basis functions (β̂1s, β2̂s). The black curve represents a classical

variogram estimate, and the red curve is derived using the robust modulus method. (18 AQS

monitors in Los Angeles area.)
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Figure 7.
Cross-validated predictions of long-term average NOx concentrations for 18 AQS monitors

in Los Angeles area. The RMSE is 4.21 and the R2 is 0.67. The formula used to compute R2

is given in Section 4.5.
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Figure 8.
Simulation study results for the first twelve Monte-Carlo realizations. Scatter plots of

predicted vs. true long-term average NOx concentrations at 200 subject homes in validation

set. Results based on using all AQS and MESA Air monitoring locations for parameter

estimation and prediction.
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Figure 9.
Simulation study results for the first twelve Monte-Carlo realizations. Scatter plots of

predicted vs. true long-term average NOx concentrations at 200 subject homes in validation

set. Results based on using only AQS and MESA Air “fixed sites” for parameter estimation

and prediction.
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Figure 10.
Simulation study results for 48 Monte-Carlo realizations. Average root mean squared error

for predicted vs. true long-term average NOx concentrations at 200 subject homes in

validation set. Results based on using different subsets of the AQS and MESA Air

monitoring locations for parameter estimation and prediction in the spatio-temporal

hierarchical model.
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Figure 11.
Simulation study results for 48 Monte-Carlo realizations. Average R2 for predicted vs. true

long-term average NOx concentrations at 200 subject homes in validation set. Results based

on using different subsets of the AQS and MESA Air monitoring locations for parameter

estimation and prediction in the spatio-temporal hierarchical model. The formula used to

compute R2 is given in Section 4.5.
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Table 2

Hierarchical model parameter estimates for AQS data in Los Angeles area. The values in the first column are

obtained by first estimating the βis at each site s and then fitting a universal kriging model to each estimated

spatial field β̂is. An estimated field of residuals ν̂st is then derived and fit to a separate ordinary kriging model

to get the parameter estimates for ν. The values in the second column are obtained by a single step maximum-

likelihood estimation for the full model as described in Section 3.3.

Multi-step estimation Full maximum-likelihood

β0s Intercept 3.04 3.04

Distance to road (km) −1.63 −1.62

Distance to coast (km) 0.013 0.013

Population density (m−1) 34.5 34.3

Sill 0.049 0.049

Range (km) 27.1 27.8

β1s Intercept 0.96 0.97

Distance to coast (km) −0.009 −0.010

Sill 0.031 0.032

Range (km) 19.73 22.2

β2s Intercept −0.21 −0.21

Distance to coast (km) 0.0052 0.0053

Sill 0.017 0.017

Range (km) 4.15 5.05

νst Sill 0.031 0.033

Range (km) 107.11 106.11

Nugget 0.0095 0.0100
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