The Wayback Machine - https://web.archive.org./web/20231105030355/https://stripe.com/climate
Stripe Climate

Remove carbon as you grow your business

With Stripe Climate, you can direct a fraction of your revenue to help scale emerging carbon removal technologies in just a few clicks. Join a growing group of ambitious businesses changing the course of climate change.

Enroll in one minute

Contribute a fraction of your company’s revenue to fund permanent carbon removal technologies right from your dashboard in just a few clicks.

Fund permanent carbon removal

We direct 100% of your contribution to carbon removal. Carbon removal projects are sourced and vetted by Frontier, Stripe's in-house team of science and commercial experts.

Share effortlessly

Let your customers know about your commitment with a new badge updated automatically on Stripe-hosted checkout, receipts, and invoices. Our asset kit makes it easy to use the badge anywhere you see fit.

Available now for global businesses

It will take a global, collective effort to scale carbon removal. Stripe Climate is available to Stripe users globally.

Early adopters

Join ambitious businesses

A growing group of early adopters is helping change the course of carbon removal.

The case for funding carbon removal

Carbon removal is critical to counteract climate change

To prevent the most catastrophic effects of climate change, we should aim to limit global average temperature increase to 1.5°C above pre-industrial levels, which corresponds to reducing global annual CO₂ emissions from about 40 gigatons per year as of 2018, to net zero by 2050.

To accomplish this, the world will likely need to both radically reduce the new emissions we put into the air, and remove carbon already in the atmosphere.

Path to limit global temperature increase to ~1.5°C
Limit global temperature increase to:
Historical emissions ~2°C path ~1.5°C path Current path
Carbon removal needed to limit global temperature increase to ~1.5°C.
Historical emissions via Global Carbon Project,1 "Current path" shows SSP4-6.0,2,3 removal pathways adapted from CICERO.4 For simplicity this chart only shows CO₂, though the modeled scenarios account for other greenhouse gas emissions, all of which will need to be reduced.

However, carbon removal is behind

Existing carbon removal solutions such as reforestation and soil carbon sequestration are important, but they alone are unlikely to scale to the size of the problem. New carbon removal technologies need to be developed—ones that have the potential to be high volume and low cost by 2050—even if they aren’t yet mature.

Today, carbon removal solutions face a chicken-and-egg problem. As early technologies, they’re more expensive, so don’t attract a critical mass of customers. But without wider adoption, they can’t scale production to become cheaper.

Early adopters can change the course of carbon removal

Early purchasers can help new carbon removal technologies get down the cost curve and up the volume curve. Experience with manufacturing learning and experience curves has shown repeatedly that deployment and scale beget improvement, a phenomenon seen across DNA sequencing, hard drive capacity, and solar panels.

This thinking shaped Stripe’s initial purchases and ultimately led us to launch Frontier, an advanced market commitment (AMC) to buy carbon removal. The goal is to send a strong demand signal to researchers, entrepreneurs, and investors that there is a growing market for these technologies. We’re optimistic that we can shift the trajectory of the industry and increase the likelihood the world has the portfolio of solutions needed to avoid the worst effects of climate change.

Stylized representation of experience curves from the Santa Fe Institute.5

How we find and fund

Our portfolio and scientific reviewers

Stripe Climate works with Frontier, Stripe's in-house team of science and commercial experts committed to carbon removal technologies, to make carbon removal purchases. Frontier is advised by a multidisciplinary group of top scientific experts to help us evaluate the most promising carbon removal technologies. Explore the growing portfolio of projects, read the criteria we use to select them, or view our open sourced project applications.

Target criteria

See what we look for when evaluating projects.

Project applications

View our open source project applications.

Our portfolio

Fall 2023 projects

Airhive is building a geochemical direct air capture system using a sorbent that can be made out of cheap and abundant minerals. This sorbent reacts rapidly with atmospheric CO₂ when mixed with air in Airhive’s fluidized bed reactor. Coupled with a regeneration process that’s powered by electricity to release the CO₂ for geologic storage, this provides a promising approach to low-cost DAC.

Alkali Earth uses alkaline byproducts from industrial processes as carbon-removing gravel to apply to roads. These minerals act as a sink for atmospheric CO₂, storing it permanently while cementing road surfaces. The formation of CO₂-containing minerals within the gravel can be directly measured, leading to high-confidence in resulting removals.

Banyu Carbon uses sunlight to capture CO₂ from seawater. A reusable, light-activated molecule that becomes acidic when exposed to light causes carbon dissolved in seawater to degas as CO₂, which is then stored permanently. Because only a small portion of the visible light spectrum is needed to trigger the reaction, this is a highly energy-efficient approach to direct ocean removal.

Carbon Atlantis is using a process known as electrochemical pH-swing. Their system uses a solvent to capture CO₂ and an acid to release it. This approach is inspired by recent innovation in Proton Exchange Membrane fuel cells and electrolyzers, making the process both cost-effective and energy-efficient. The CO₂ is then run through Paebbl’s mineralization process for permanent storage in construction materials.

CarbonBlue uses calcium in a closed-loop cycle to mineralize, separate, and remove dissolved CO₂ from water. This results in a pure stream of CO₂ that can be durably sequestered. Their approach can operate in freshwater or saltwater and can rely on waste heat for the regeneration process. The team plans to integrate with desalination plants and other water-withdrawing industries, reducing energy usage and costs.

CarbonRun enhances the natural ability of river currents to weather abundant, low-cost limestone and reduce river acidity levels. This benefits river ecosystems locally and enhances the rivers’ ability to capture CO₂ from the atmosphere. Rivers, which are natural carbon transport systems, then deliver CO₂ to the ocean for permanent storage in the form of bicarbonate.

EDAC Labs uses an electrochemical process to produce acid and base. The acid is used to start the recovery of valuable metals from mining waste, and the base is used to capture CO₂ from air. The acid and base streams are then combined to produce metals that can be sold for applications such as batteries, and solid carbonates, which permanently store CO₂.

Holocene captures CO₂ from air using organic molecules that can be produced at low cost. In the first step of their process, CO₂ is captured from air when it comes into contact with a liquid solution. In the second step, a chemical reaction crystallizes the material as a solid. That solid is heated up to release the CO₂, minimizing energy wasted in heating water. Holocene’s process runs at lower temperatures, further reducing the energy required, increasing energy flexibility, and lowering overall cost.

Mati applies silicate rock powders to agricultural fields, starting with rice paddy farms in India. These rocks react with water and CO₂ to produce dissolved inorganic carbon that is subsequently stored in the local watershed and eventually in the ocean. Mati relies on rice field flooding and higher subtropical temperatures to accelerate weathering, and extensive sampling and soil and river modeling to measure removal and deliver co-benefits to smallholder farmers.

Planetary harnesses the ocean for scalable removal. They introduce alkaline materials to existing ocean outfalls like wastewater plants and power station cooling loops. This speeds up the sequestration of CO₂ safely and permanently as bicarbonate ions in the ocean. Planetary then verifies the removal through advanced measurement and modeling techniques.

Spiritus uses a sorbent made from commercially-available materials and a passive air contactor that requires little energy to capture CO₂. The CO₂-saturated sorbent is then regenerated using a novel desorption process, capturing the CO₂ and allowing the sorbent to be reused with less energy than a higher-heat vacuum chamber typically used in direct air capture approaches. The high-performance, inexpensive sorbent and lower regeneration energy provide a path to low cost.

Vaulted Deep injects organic waste into durable wells, where the carbon in the waste is sequestered as it decomposes. Using a specialized slurry injection technology, their process can handle a wide range of organic carbon sources with minimal energy and upfront processing. Their system has the potential to be deployed quickly at large scales.

Arbon uses a 'humidity-swing' process to capture CO₂ from the air. The sorbent binds CO₂ when dry and releases it when wet. This process uses less energy than approaches that rely on changing temperature and pressure to release CO₂. The sorbent’s ability to bind CO₂ has been shown to remain stable over thousands of cycles. Both of these innovations could reduce the cost of DAC.

Vycarb uses a reactor to add limestone alkalinity to coastal ocean water, resulting in the drawdown and storage of atmospheric CO₂. Their dissolution system has a novel sensing apparatus that base tests water, dissolves calcium carbonate, and doses alkalinity into the water at a controlled amount safe for dispersion. Their closed system makes it easier to measure the amount of dissolved alkalinity added and CO₂ removed.

Carboniferous sinks bundles of leftover sugarcane fiber and corn stover into deep, salty, oxygenless basins in the Gulf of Mexico. The lack of oxygen in these environments–and therefore absence of animals and most microbes–slows the breakdown of biomass so it is efficiently preserved and stored durably in ocean sediments. The team will conduct experiments to determine the functional stability of sunken biomass as well as the interaction with ocean biogeochemistry.

Rewind uses cranes off of boats to sink agricultural and forest residues to the oxygenless bottom of the Black Sea, the largest anoxic body of water on Earth. Oxygenless water dramatically slows biomass decomposition. The lack of living organisms in the Black Sea limits any potential ecosystem risks. This process allows for affordable and environmentally safe carbon removal.

Technical reviewers

Brentan Alexander, PhD

Tuatara Advisory
Tech to Market

Stephanie Arcusa, PhD

Arizona State University
Governance

Habib Azarabadi, PhD

Arizona State University
Direct Air Capture

Damian Brady, PhD

Darling Marine Center University of Maine
Oceans

Robert Brown, PhD

Iowa State University
Biochar

Holly Jean Buck, PhD

University at Buffalo
Governance

Liam Bullock, PhD

Geosciences Barcelona
Geochemistry

Wil Burns, PhD

Northwestern University
Governance

Micaela Taborga Claure, PhD

Repsol
Direct Air Capture

Struan Coleman

Darling Marine Center University of Maine
Oceans

Niall Mac Dowell, PhD

Imperial College London
Biomass / Bioenergy

Anna Dubowik

Negative Emissions Platform
Governance

Petrissa Eckle, PhD

ETH Zurich
Energy Systems

Erika Foster, PhD

Point Blue Conservation Science
Ecosystem Ecology

Matteo Gazzani, PhD

Utrecht University Copernicus Institute of Sustainable Development
Direct Air Capture

Lauren Gifford, PhD

University of Arizona’s School of Geography, Development & Environment
Governance

Sophie Gill

University of Oxford Department of Earth Sciences
Oceans

Emily Grubert, PhD

University of Notre Dame
Governance

Steve Hamburg, PhD

Environmental Defense Fund
Ecosystem Ecology

Booz Allen Hamilton

Energy Technology Team
Biomass / Direct Air Capture

Jens Hartmann, PhD

Universität Hamburg
Geochemistry

Anna-Maria Hubert, PhD

University of Calgary Faculty of Law
Governance

Lennart Joos, PhD

Out of the Blue
Oceans

Marc von Keitz, PhD

Grantham Foundation for the Protection of the Environment
Oceans / Biomass

Yayuan Liu, PhD

Johns Hopkins University
Electrochemistry

Matthew Long, PhD

National Center for Atmospheric Research
Oceans

Susana García López, PhD

Heriot-Watt University
Direct Air Capture

Kate Maher, PhD

Stanford Woods Institute for the Environment
Geochemistry

John Marano, PhD

JM Energy Consulting
Tech to Market

Dan Maxbauer, PhD

Carleton College
Geochemistry

Alexander Muroyama, PhD

Paul Scherrer Institut
Electrochemistry

Sara Nawaz, PhD

University of Oxford
Governance

Rebecca Neumann, PhD

University of Washington
Biochar / Geochemistry

NexantECA

Energy Technology Team
Biomass / Direct Air Capture

Daniel Nothaft, PhD

University of Pennsylvania
Mineralization

Simon Pang, PhD

Lawrence Livermore National Laboratory
Direct Air Capture

Teagen Quilichini, PhD

Canadian National Research Council
Biology

Zach Quinlan

Scripps Institution of Oceanography
Oceans

Mim Rahimi, PhD

University of Houston
Electrochemistry

Vikram Rao, PhD

Research Triangle Energy Consortium
Mineralization

Paul Reginato, PhD

Innovative Genomics Institute at UC Berkeley
Biotechnology

Debra Reinhart, PhD

University of Central Florida
Waste Management

Phil Renforth, PhD

Heriot-Watt University
Mineralization

Sarah Saltzer, PhD

Stanford Center for Carbon Storage
Geologic Storage

Saran Sohi, PhD

University of Edinburgh
Biochar

Mijndert van der Spek, PhD

Heriot-Watt University
Direct Air Capture

Max Tuttman

The AdHoc Group
Tech to Market

Shannon Valley, PhD

Woods Hole Oceanographic Institution
Oceans

Jayme Walenta, PhD

University of Texas, Austin
Governance

Frances Wang

ClimateWorks Foundation
Governance

Fabiano Ximenes, PhD

New South Wales Department of Primary Industries
Biomass / Bioenergy

FAQs

Get answers to common questions about Stripe Climate.