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Abstract

Given an undirected graph G(V, E) with vertex set V and edge
set E, the Radiocoloring of G is defined as a function f : V → N

such that for all pairs of vertices x, y in G |f(x) − f(y)| ≥ 2 when
d(x, y) = 1 and |f(x) − f(y)| ≥ 1 when d(x, y) = 2, where d(x, y) is
the distance between the vertices x and y and N is the set of non-
negative integers. The range of numbers used is called a span. The
radiocoloring problem consists of determining the minimum span for
a given graph G. This minimum span of G is called the radiochro-

matic number, λ of G. In this paper, we discuss Nordhaus-Gaddum
type result for the sum and product of the radiochromatic number of
a graph and that of its complement. We also propose an approximate
parallel algorithm for radiocoloring. Our algorithm is based on the
largest-degree-first coloring heuristic.

Keywords: Radiocoloring, L(2, 1) labelling, Nordhaus-Gaddum, Par-
allel algorithm.

1 INTRODUCTION

There has been a considerable growth of wireless networks in the last two
decades. Wireless networks must make use of the limited radio spectrum
through frequency reuse. The frequency assignment problem (FAP) deals
with assigning channels (i.e. frequencies) to radio stations while keeping
the interference to a minimum. According to [13], F. S. Roberts (in a
private communication with Griggs and Yeh) first suggested assigning radio
channels to transmitters, represented by nonnegative integers such that
channels assigned to adjacent transmitters be at least two units apart, and
all pairs of transmitters at a distance of two have distinct channels assigned



to them. The radiocoloring problem is a graph-theoretic approach to solving
the FAP.

DEFINITION 1. A radiocoloring of a graph G is an assignment to each
node, one of the numbers 0, 1, 2, . . . , λ called colors such that all pairs of
adjacent vertices, get colors which differ by at least two and no pair of
vertices at distance two, get the same color. The radiocoloring problem
(RCP) consists of determining the minimum λ for a given graph.
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Example 1: Radiocoloring of a star K1,8
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Example 2: Radiocoloring of a 3-dimensional cube

The first condition (every adjacent pair of nodes have colors that are
at least two units apart) makes sure that there is a guard band between
channels assigned to adjacent radio stations.

DEFINITION 2. A guard band is an unused frequency band between two
adjacent channels in wireless communication to minimize the interference
between the channels.



The second condition (pair of nodes at a distance of two have different
colors) makes sure that the radio stations with a common neighbor, say u,
do not communicate with u using the same channel.

The RCP was first introduced by Griggs and Yeh [13] as the L(2, 1)
labelling problem. The RCP in general has been proved to be NP-complete
[13]. However exact results have been obtained for certain special class of
graphs such as paths [21], cycles, trees [13], cacti, unicycles, bicycles [14],
cliques, stars [4]; and approximate bounds have been obtained for certain
others such as bipartite graphs, outerplanar graphs, split graphs [1], chordal
graphs [18], hypercubes [20], planar graphs [14], unigraphs [3].

The rest of the paper is organised as follows: Section 2 deals with
Nordhaus-Gaddum type result for the sum and product of the radiochro-
matic number of a graph and that of its complement. In Section 3 we
propose an algorithm based on the largest-degree-first coloring heuristic to
radiocolor a given graph and then parallelize it to obtain a cost-optimal, ap-
proximate parallel algorithm. Finally in Section 4 we give our conclusions
and discuss further work.

Throughout this paper, G will denote a simple undirected graph and
G, its complement; n, the number of vertices; Kn, a complete graph on n

vertices; χ, the chromatic number; and λ, the radiochromatic number.

2 NORDHAUS-GADDAM TYPE RESULTS

Nordhaus and Gaddum [17] obtained the upper and lower bounds on the
sum and product of the chromatic number of a graph and that of its com-
plement. We reproduced their results here for the sake of completeness.

THEOREM 1. (Nordhaus and Gaddum [17]) If G and G are com-
plementary graphs on n nodes, their chromatic numbers, χ(G) and χ(G),
satisfy the following:

2
√

n ≤ χ(G) + χ(G) ≤ n + 1, and

n ≤ χ(G) · χ(G) ≤
(

n + 1

2

)2

.

We derive similar bounds on the radiochromatic number of a graph and
that of its complement.

THEOREM 2. If G and G are complementary graphs on n nodes, their
radiochromatic numbers, λ(G) and λ(G), satisfy the following:

2
√

n− 2 ≤ λ(G) + λ(G) ≤ 3n− 3, and

0 ≤ λ(G) · λ(G) ≤
(

3n− 3

2

)2

.



PROOF: Griggs and Yeh [13] proved that for a graph G with n nodes

λ(G) ≤ n + χ(G)− 2,

which can also be written for the complement G,

λ(G) ≤ n + χ(G)− 2.

Adding the preceding two inequalities, we get

λ(G) + λ(G) ≤ 2n− 4 + χ(G) + χ(G). (1)

In [17] Nordhaus and Gaddum have shown that χ(G) + χ(G) ≤ n + 1.
Substituting this inequality into inequality (1), we get

λ(G) + λ(G) ≤ 3n− 3. (2)

Which gives us an upper bound on λ(G) + λ(G).
To compute the lower bound on the sum, λ(G) + λ(G), we use the

relationship between radiochromatic number of a graph G and its chromatic
number obtained by Chang and Kuo [6]. They show that

χ(G)− 1 ≤ λ(G),

which can also be written for the complement G

χ(G)− 1 ≤ λ(G).

Adding the preceding two inequalities, we get

χ(G) + χ(G)− 2 ≤ λ(G) + λ(G). (3)

In [17] Nordhaus and Gaddum have shown that 2
√

n ≤ χ(G) + χ(G).
Substituting this inequality into inequality (3), we get

2
√

n− 2 ≤ λ(G) + λ(G). (4)

Combining inequalities (2) and (4) we get,

2
√

n− 2 ≤ λ(G) + λ(G) ≤ 3n− 3.

Now, in order to determine the upper bound on the product, λ(G)·λ(G),
we observe that

0 ≤ (λ(G)− λ(G))2 = (λ(G) + λ(G))2 − 4λ(G) · λ(G),

which implies
4λ(G) · λ(G) ≤ (λ(G) + λ(G))2.



Substituting the upper bound on λ(G) + λ(G) from inequality (2) we
get

λ(G) · λ(G) ≤
(

3n− 3

2

)2

. (5)

For the lower bound on the product λ(G) ·λ(G), we look for the smallest
value λ(G) can have. Unlike in traditional vertex coloring, 0 is a valid color
in radiocoloring, and the null graph on n nodes (consisting of n isolated
nodes with no edges) can be radiocolored with λ = 0.

It is obvious that the lowest value the product, λ(G) · λ(G), can attain
is 0, which is attained only when either G or G is a null graph (the other
being the complete graph). Hence

λ(G) · λ(G) ≥ 0. (6)

Combining inequalities (5) and (6) we get

0 ≤ λ(G) · λ(G) ≤
(

3n− 3

2

)2

.

3 A PARALLEL ALGORITHM

In practice a number of different approaches to solving the FAP have been
developed , all being NP-hard[5, 8, 5, 12, 15, 16, 10]. The graph-theoretic
approach via radiocoloring has also been shown to be NP-complete [13].
A few approximate algorithms have been proposed for the RCP, and some
exact algorithms have been proposed for special classes of graphs namely,
outerplanar graphs, graphs with treewidth k, permutation and split graphs
by Bolaender, Kloks, Tan, and Leeuwen [1], planar graphs by Fotakis, Niko-
letseas, Papadopoulou, and Spirakis [11]. Little effort has been made in
speeding up the approximate algorithms for radiocoloring using parallel
computers.

We propose an approximate parallel algorithm for radiocoloring (PARC)
a general graph, which is based on the parallel graph coloring algorithm by
Das and Deo[7]. It makes use of a concurrent-read and exclusive-write
(CREW) parallel random access machine (PRAM) consisting of n pro-
cessors, each of which is equipped with a small amount of local memory
and a processing unit. Processors are identified by a unique number and
they share a global memory. They can simultaneously read from the global
shared memory. However, they cannot simultaneously write into the shared
memory. The processors communicate among themselves using shared vari-
ables, and each can perform a scalar, arithmetic, or boolean operation in
unit time.

We represent parallel operation by using the the parallel forloop con-
struct. For example, the code segment



1: for all Pi such that 0 < i < q do
2: parbegin
3: statements to be executed in parallel
4: parend
5: end for

when run on a processor Pk, indicates that when Pk executes the forloop
it would fork into q parallel processes in q processors (corresponding to
processors Pi, 0 < i < q). The processors share a common environment
and are distinguished by their unique processor id Pi. Any statement in
between the parbegin and parend are executed simultaneously by all the
q processors. On reaching the parend statement the q processes again join
into a single process which could again run on Pk.

3.1 ALGORITHM DESCRIPTION

The largest-degree-first (LF) algorithm for graph coloring, proposed by
Walsh and Powell [19] can be extended to radiocolor general graphs. The
adjacency matrix of the given graph G and the number of vertices, n, are
provided as the input to the algorithm. The algorithm consists of three
steps: in the first step, the given vertices are sorted in a non-increasing
order on the basis of their degrees; in the second step, a distance-two bi-
nary matrix of graph G is constructed; and finally, the vertices are assigned
colors in the sorted order one by one. The algorithm makes use of an n×n

adjacency matrix, ADJMATRIX, which is provided as input, a linear array,
DEGREE, where the degree of each vertex is computed and stored, a linaer
array, SORT, to store the vertices sorted by their degree, a n× n distance-
two matrix, D2MATRIX, to show the list of vertices that are at a distance
of two from each vertex, a n × 2n − 1 (It is obvious that any graph can
be radiocolored with a maximum λ of 2n − 2 which is the radiochromatic
number of a complete graph on n vertices [4].) matrix, FORBIDDEN, to
record the colors that cannot be assigned to a vertex, and a linear array,
COLOR, to store the colors assigned to each vertex.

First, the degree of each vertex is computed, degree of a vertex v,
DEGREE[v] = Σ0<i<n ADJMATRIX[v, i]. Now the vertices are sorted
based by their degrees in a non-increasing order and stored in the array
SORT. Next, the distance-two matrix is computed, D2MATRIX[x, y]← 1,
if and only if ADJMATRIX[x, k] = 1 and ADJMATRIX[k, y] = 1 for some
k, where 0 < k < n, and x 6= y. Then, a color c is assigned to vertex v, if and
only if c is the minimum number such that FORBIDDEN[v, c] = 0. Now
the matrix FORBIDDEN is updated, for any vertex u, if ADJMATRIX[v, u] =
1 then FORBIDDEN[u, c−1], FORBIDDEN[u, c], and FORBIDDEN[u, c+
1] are assigned 1 (i.e. any vertex u which is adjacent to v cannot receive
colors that are not at least two apart from c). Similarly, for any vertex u,



if D2MATRIX[v, u] = 1 then FORBIDDEN[u, c] = 1 (i.e. color c cannot
be assigned to any vertex u which is at a distance of two from v). In each
successive iteration the next uncolored vertex with the largest degree is
colored and the matrix FORBIDDEN updated to incorporate the change.

Like the sequential algorithm, the parallel version of the algorithm has
three steps and makes use of all the data structures described above.

Input : ADJMATRIX, n

Output : λ, SORT

1: procedure PARC
2: for all Pi such that 0 ≤ i < n do {/* Step 1: Sort the vertices in

descending order based on their degree */}
3: parbegin
4: DEGREE[i] ← 0
5: COLOR[i] ← 0
6: for all l such that 0 ≤ l < n do
7: D2MATRIX[i, l] ← 0
8: FORBIDDEN[i, 2l] ← 0
9: if l 6= n− 1 then

10: FORBIDDEN[i, 2l + 1] ← 0
11: end if
12: if ADJMATRIX[i, l] = 1 then
13: DEGREE[i] ← DEGREE[i] + 1
14: end if
15: end for
16: Sort the vertices in parallel to obtain the array SORT
17: parend
18: end for
19: for all j such that 0 ≤ j < n do {/* Step 2: Compute the

distance two matrix */}
20: for all Pi such that 0 ≤ i < n do
21: parbegin
22: if ADJMATRIX[i, j] = 1 then
23: for all m such that 0 ≤ m < n do
24: if ADJMATRIX[j,m] = 1 AND m 6= i then {/*

concurrent read required */}
25: D2MATRIX[i,m] ← 1
26: end if
27: end for
28: end if
29: parend
30: end for
31: end for
32: λ ← 0 {/* assume λ to be 0 initially */}



33: for all j such that 0 ≤ j < n do {/* Step 3: Assign colors to
vertices */}

34: for all Pi such that 0 ≤ i < n do
35: parbegin
36: find the smallest c such that FORBIDDEN[SORT[j], c] = 0
37: parend
38: end for
39: COLOR[SORT[j]] ← c

40: if λ < c then
41: λ ← c

42: end if
43: for all Pi such that 0 ≤ i < n do
44: parbegin
45: if ADJMATRIX[SORT[j],i] = 1 AND c 6= 0 then
46: FORBIDDEN[i, c− 1] ← 1
47: end if
48: if ADJMATRIX[SORT[j],i] = 1 then
49: FORBIDDEN[i, c] ← 1
50: end if
51: if ADJMATRIX[SORT[j],i] = 1 AND c 6= 2n− 2 then
52: FORBIDDEN[i, c + 1] ← 1
53: end if
54: if D2MATRIX[SORT[j],i] = 1 then
55: FORBIDDEN[i, c] ← 1
56: end if
57: parend
58: end for
59: end for

3.2 COMPLEXITY OF THE ALGORITHM

In this section, we first analyze the complexity of the sequential algorithm.
The sequential algorithm consists of three steps, at first we compute the
degree of each vertex, which takes O(n2) time, followed by sorting which
takes O(n log n) time. In the next step we compute the distance-two matrix
which takes time O(n3) and the final step involves assigning colors to the
vertices; this step could be divided into two, first we search for a color to be
assigned to a vertex and then update the FORBIDDEN matrix. This re-
quires O(n3) time. Thus the overall complexity for the sequential algorithm
is

≈ O(n2) + O(n log n) + O(n3) + O(n3),

≈ O(n3).
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B(2)C(4)

D(3)
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λ = 5

Example 3: PARC employs λ = 5 to radiocolor the 3-prism shown above
which is the best possible value.

A(0)

B(2)

C(4)

D(6)
λ = 6

Example 4: The cycle shown above can be radiocolored with λ = 4 but
PARC uses λ = 6 which is the radiochromatic number of a complete graph
on 4-vertices.



The parallel algorithm also consists of three steps. Given n processors
we can compute the array DEGREE in parallel in time O(n). Sorting the
array DEGREE can be done in O(log n) time, if we use parallel quicksort.
Then we compute the D2MATRIX which takes O(n2) time using n pro-
cessors. Assigning colors to the vertices and updating the FORBIDDEN
matrix requires time O(n log n) with n processors. The overall complexity
for the parallel algorithm would be

≈ O(n) + O(log n) + O(n2) + O(n log n),

≈ O(n2).

The cost of a parallel algorithm is the product of the number of pro-
cessors and time. A parallel algorithm is said to be cost-optimal, if the
parallel cost is the same as the sequential time. The cost of the PARC is
O(n)×O(n2) ≈ O(n3), which is the same as the sequential time. Hence, our
algorithm is cost-optimal. By employing Brent’s scheduling [2] to PARC,
one can use fewer processors and still obtain the same asymptotic time
complexity.

4 CONCLUSION AND FUTURE WORK

In this paper, we study the radiocoloring problem on graphs and derive
Nordhaus-Gaddam type result for the sum and product of the radiochro-
matic number of a graph and its complement. We also propose a cost-
optimal, parallel largest-degree-first algorithm to radiocolor graphs for a
shared memory, concurrent-read and exclusive-write (CREW) architecture.
Further work on the PARC could involve implementation of the algorithm,
application of Brent’s scheduling, use of more efficient data structures, like
the adjacency matrix of order n ×∆∗ as described by Eckstein and Alton
in [9].
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