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The pizza-cutter’s problem was introduced and solved by Steiner in 1826 (see [14]);
it is considered as a doorstep to Euler’s well-known formula v + f − e = 2 where v

is the number of vertices, e the number of edges, and f the number of faces in a con-
nected planar graph. The goal of the pizza-cutter’s problem is to maximize the number
of pieces that can be made with n straight cuts through a circular pizza, regardless
of the size and shape of the pieces. Determining the maximum number of pieces of
pizza is the same as determining the maximum number of regions formed by n lines in
the plane, which appears in the literature as Steiner’s plane-cutting problem [1, 2, 16,
17]. If �n denotes this number then it satisfies the recurrence relation �n = �n−1 + n

for n ≥ 1 anchored by �0 = 1, which induces the closed form �n = n(n+1)

2 + 1 (see
A000124 in [13]). Indeed, from a solution to the problem with n − 1 lines that forms
�n−1 regions, we add an nth line that is not parallel to any of the others, and such
that n − 1 new intersection points are created. Then, this line crosses n different
regions, and each of them is divided into two regions which induces the above recursive
formula.

Historically, the problem of line arrangements in the plane is studied by considering
oriented matroids, more specifically known as non degenerate dissection types (see
[4, 5, 7, 11] for the literature and [6, 8] for some databases). In this paper, we consider
this problem from the point of view of graph theory. We refer to a solution of the
Steiner’s plane-cutting problem as an S-solution. For each S-solution, we consider the
associated graph G = (V , E) with vertex set V and the edge set E such that

• V is the set of regions; and
• (p, q) ∈ E if and only if the two regions p and q are adjacent, i.e., if they share
a common boundary that is not a corner, where corners are the points shared by
three or more regions.

Of course there are many ways to cut the plane into a maximal number of regions
with n lines, but G always has |V | = �n and |E| = n2. In the case where two solutions
produce two isomorphic graphs, we say that these solutions are isomorphic; otherwise
they are called non-isomorphic. See Figure 1 for an illustration of two non-isomorphic
S-solutions with their corresponding graphs. Finding the number of classes of non-
isomorphic solutions for the plane-cutting problem still remains an open problem for
n ≥ 10. For 1 ≤ n ≤ 9, it is known that these numbers are given by the sequence
A090338 in [13]: 1, 1, 1, 1, 6, 43, 922, 38609, 3111341; see [8].
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Figure 1 Two non-isomorphic S-solutions for n = 5 with their associated graphs drawn
in blue.

A graph will be called traceable whenever it contains a Hamiltonian path, i.e., if
there is a path that visits each vertex exactly once. This concept was introduced in
1856 in [15] to study whether a polyhedron contains a path that reaches each vertex
once and only once. More generally, the problem of determining whether a graph is
traceable is NP-complete and has many applications; see [9]. In particular, this problem
appears in network theory where it is crucial to connect points so that the total length
of connecting lines is a minimum. On the other hand, determining the traceability can
often be a simple way to prove that two graphs are not isomorphic. Then it becomes
natural to ask the following question. For n ≥ 1, does an S-solution exist such that its
corresponding graph is traceable (respectively not traceable)? A traceable solution to
the pizza-cutter’s problem means that we can eat up all pieces of the pizza such that
any two pieces eaten consecutively are adjacent.

In the next section, we show how from an S-solution we can label each region with
a binary string. This induces a graph where the vertex set is the set of labels, and
two binary strings are adjacent if their Hamming distance is one. We prove that the
traceability of the associated graph is equivalent to that of the graph on labels. Then,
we construct an S-solution where the associated graph is not traceable for all n ≥ 5.
In the final section, we adapt this construction in order to obtain an S-solution for all n

such that the graph is traceable. To our knowledge, no such precise constructions have
previously been published. We conclude by formulating some open problems.

Binary string interpretation

A binary string s of length n is a word s1s2 . . . sn on the alphabet {0, 1}. The value si ,
1 ≤ i ≤ n, will be called the ith digit of s. A substring t of s is a word made up of
consecutive digits of s. A run of 1’s in s is a maximal substring of s of the form 1k

where k ≥ 1, i.e., a run of 1’s is a substring constituted of 1’s that cannot be extended
to a larger substring of 1’s in s. For a binary string set B, we denote by B ′ (respectively
B ′′) the subset of B of strings with an odd (respectively even) number of 1’s.

The Hamming distance between two n-length binary strings s and t is the number
of i, 1 ≤ i ≤ n, such that si is different from ti . A Gray code for a set of binary strings
B ⊆ {0, 1}n is an ordered list B for B, such that the Hamming distance between any
two consecutive strings in B is exactly one. A Gray code B for the set B may be viewed
as a Hamiltonian path in the restriction of the hypercube Qn to the set B. Note that no
Gray code is possible for B whenever

∣∣|B ′| − |B ′′|∣∣ > 1.
Now, let us consider an S-solution with n lines numbered from 1 to n. We label each

region with a binary string of length n where the ith digit is either 0 or 1 depending
on whether the region is on one side or the other of the ith line. See Figure 2 for
three illustrations of such a labeling. Of course, there are n! possible ways to label n

lines from 1 to n, and two half-planes are delimited by each line. Therefore, for an
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S-solution there are at most 2n · n! possible sets of labels. In the following, such a set
will be called admissible for a given S-solution.

Lemma 1. Let us consider an S-solution for n ≥ 1, G = (V , E) its associated graph
and W an admissible set of binary strings for this solution. Let H = (W, F ) be the
graph where the vertex set is W and two elements are adjacent in H if and only if their
Hamming distance is one. Then G and H are isomorphic; and thus, G is traceable if
and only if H is traceable.

Proof. It is straightforward to see that the two following assertions are equivalent: (1)
two regions r and s are adjacent; and (2) the Hamming distance of the binary strings
labeling r and s is one. �

Figure 2 Regions labeled using admissible sets of binary strings. The leftmost and right-
most labeling provide the sets L2 and L3, while the central one does not generate L3.

Remark 1. With the hypotheses of Lemma 1, a necessary condition for the traceability
of the graph G is that the cardinalities of W ′ and W ′′ differ by at most one.

We end this section by introducing a set that will be crucial in what follows.
Let Ln be the set of binary strings of length n containing at most one run of
1’s. Any string s1s2 . . . sn ∈ Ln, n ≥ 1, can be written either s = 0s2 . . . sn where
s2 . . . sn ∈ Ln−1, or s = 1k0n−k with 1 ≤ k ≤ n. So, we have |Ln| = |Ln−1| + n

which induces |Ln| = �n. Now, we denote by L′
n (respectively L′′

n) the subset of
Ln constituted of strings in Ln with an odd (respectively even) number of 1’s. For
instance, L3 = {000, 001, 010, 100, 110, 011, 111}, L′

3 = {001, 010, 100, 111} and
L′′

3 = {000, 110, 011}.

An S-solution where G = (V , E) is not traceable

In this part, we construct an S-solution such that for each n ≥ 5, its associated graph
G = (V , E) is not traceable. For this, we prove that the set Ln of n-length binary
strings with at most one run of 1’s is admissible for this solution and that the cardinality
of their two subsets L′

n and L′′
n differ by at least 2. Using Lemma 1 and Remark 1, we

conclude that G is not traceable.

Lemma 2. For n ≥ 1, there is an S-solution such that the set Ln of binary strings of
length n with at most one run of 1’s is admissible.

Proof. We proceed by induction on the number n of lines. The case n = 1 is trivial
since we label the two half-planes by 0 and 1 and L1 = {0, 1}.
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Assume now that there is an S-solution of n − 1 lines such that the regions can
be labeled with the binary strings of the set Ln−1. Since there are exactly n − 1
binary strings ending in a one in Ln−1, the (n − 1)th line splits the plane into
two half-planes such that one of them contains exactly the n − 1 regions labeled
0n−21, 0n−312, . . . , 01n−2, 1n−1. Then, we necessarily have the leftmost configuration
illustrated in Figure 3 where all previous binary strings appear on the same half-plane
defined by the line n − 1 (line 5 in Figure 3). Now, it suffices to place the nth line
(line 6 in Figure 3) such that: it crosses the region 0n−1 and all other regions labeled
0k1n−1−k for 0 ≤ k ≤ n − 2 (the process is illustrated in Figure 3). Note that we can
always add this line since it can be obtained from the (n − 1)th line by a rotation
centered on a point placed on the border between the regions 0n−1 and 0n−21, and with
an angle small enough to allow the nth line to intersect the first (n − 2) lines (as the
(n − 1)th line). Then, the labels of the newly created regions are obtained by adding
1 to the right of 0n−1 and 0k1n−1−k for 0 ≤ k ≤ n − 2, and adding 0 to the right of
all other labels in Ln−1. Finally, the set of the obtained labels is exactly the set Ln of
binary strings of length n with at most one run of 1’s, and the proof is obtained by
induction. �

Figure 3 An illustration for the induction in the proof of Lemma 2.

Let {φn}n ≥ 0 be the parity difference integer sequence corresponding to the binary
strings with at most one run of 1’s, i.e., φn = |L′

n| − |L′′
n| for n ≥ 0.

Lemma 3. For n ≥ 1, we have φn = � n−1
2 	.

Proof. For 1 ≤ i ≤ n, we denote by Li
n the subsets of Ln made of strings with

exactly i ones. Thus, it follows trivially that |Li
n| = n − i + 1 for 1 ≤ i ≤ n, and

|L0
n| = 1. Moreover, for i odd, 1 ≤ i ≤ n − 1, we have |Li

n| − |Li+1
n | = 1. Since

L′
n = ⋃� n+1

2 	
i=1 L2i−1

n and L′′
n = ⋃� n

2 	
i=0 L2i

n , we distinguish two cases. If n is odd, then

φn = |L′
n| − |L′′

n| = |Ln
n| − |L0

n| +
∑� n−1

2 	
i=1 (|L2i−1

n | − |L2i
n |) = � n−1

2 	. If n is even, then

φn = ∑� n
2 	

i=1(|L2i−1
n | − |L2i

n |) − |L0
n| = � n−1

2 	. �

Theorem 1. For each n ≥ 5, there exists an S-solution such that its associated graph
is not traceable.

Proof. Figure 4 demonstrates a graph for n = 5 that is not traceable. For n ≥ 5,
Lemma 3 implies that φn = � n−1

2 	 ≥ 2. The combination of Remark 1 and Lemma
2 extends the result for n > 5. �
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Figure 4 An S-solution where its associated graph is not traceable.

An S-solution where G = (V , E) is traceable

In this part, for each n ≥ 1, we construct an S-solution such that its associated graph
is traceable.

From the set Ln defined previously ( as the set of binary strings o flength n

containing at most one run of 1’s), we define the set Kn by replacing all strings
04i00100n−4(i+1) ∈ Ln with 04i01010n−4(i+1) for 0 ≤ i ≤ � n

4 	 − 1. For instance, we
obtain K5 (respectively K8) from L5 (respectively L8) by replacing 00100 (respec-
tively 00100000 and 00000010) with 01010 (respectively 01010000 and 00000101).

Figure 5 Construction in the proof of Lemma 4.

Lemma 4. For n ≥ 1, there is an S-solution such that the set Kn is admissible.

Proof. Let us take the S-solution constructed in the proof of Lemma 2. Then we mod-
ify the position of each line labeled 4i, 1 ≤ i ≤ � n

4 	 in the following way. For i from 1
to � n

4 	, the line labeled 4i is moved so that in this new position, the half-plane delim-
ited by this line and containing the point of intersection of the lines 4i − 1 and 4i − 2
does not contain any other points of intersection between lines from 1 to 4i − 1. See
Figure 5 for an illustration of the process. Then, a simple observation provides that the
labels in Ln are preserved up to the labels 04i00100n−4(i+1), 0 ≤ i ≤ � n

4 	 − 1, that are
replaced with 04i01010n−4(i+1) which transforms the set Ln into the set Kn. Thus Kn is
admissible. �
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Figure 6 An S-solution where its associated graph is traceable. The red edges constitute
a Hamiltonian path.

Theorem 2. For n ≥ 1, there exists an S-solution such that its associated graph is
traceable.

Proof. Due to Lemmas 1 and 4, it suffices to prove that the set Kn can be ordered in a
list Kn such that two consecutive elements differ by one digit, i.e., Kn is in Gray code
order. In order to facilitate the reading of the (somewhat theoretical) proof, we invite
the reader to follow it by setting n = 7 or n = 8 before referring to Table 1. (We use
color, different fonts, and boxed and underlined items to make proof easier to follow.)

Let Sn, n ≥ 0, be the list of the n + 1 binary strings defined as follows: the ith
binary element of the list is 1i−10n−i+1, 1 ≤ i ≤ n + 1. For instance, the list S4 is
0000, 1000, 1100, 1110, 1111. For n = 0, the list Sn is reduced to the empty string.
Obviously, two consecutive elements of Sn differ by exactly one digit and the first and
last elements of Sn are respectively 0n and 1n.

Using the lists Sn, n ≥ 0, we define an ordered list Ln of the set Ln by

Ln = 0n 

n−1⊙

i=0

0i1 · S i
n−i−1,

where 
 is the concatenation operator of lists, and where S i
n is the reverse list of Sn

(i.e., the list Sn considered from the last to the first element) whenever i is odd, and
the list Sn otherwise. See Table 1 for an illustration of the two lists L7 and L8.

In the list Ln, it is straightforward to see that two consecutive elements differ by at
most one digit except for the transitions between the sublists 0i1 · S i

n−i−1 and 0i+11 ·
S i+1

n−i−2 for i odd and 1 ≤ i ≤ n − 2. In these cases, the transitions move two digits
since (when i is odd) the last element of 0i1 · S i

n−i−1 is 0i10n−i−1 and the first element

of 0i+11 · S i+1
n−i−2 is 0i+110n−i−2 . Moreover, the first and last elements of the list Ln

are respectively 0n and 0n−11. Now we modify the list Ln in order to construct a list
Kn in Gray code order for the set Kn.

For all odd i such that i = 1 mod 4, 1 ≤ i ≤ n − 3, we replace the string

0i0100n−i−3 with 0i1010n−i−3 and we change the place of 0i0010n−i−3 by insert-

ing it just after 0i1010n−i−3 and thus just before 0i0110n−i−3. See Table 1 for an
illustration of this process for the lists K7 and K8.

By construction, the four binary strings 0i1000n−i−3, 0i1010n−i−3 , 0i0010n−i−3 and
0i0110n−i−3 are consecutive in the list Kn and the three transitions differ by only one
digit.

On the other hand, since we change the position of the binary strings of the form
0i0010n−i−3, for i = 1 mod 4, 1 ≤ i ≤ n − 3, we create a new transition between its
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TABLE 1: The Lists Ln and Kn for n = 7, 8 and the Hamiltonian path on the S-solutions
associated to the sets K7 and K8.

L7 K7

0000000 1000000
i = 0 1000000 1100000

1100000 1110000
1110000 1111000
1111000 1111000
1111000 1111000
1111000 1111110
1111110 1111111
1111111 0111111

i = 1 0111111 0111110
0111110 0111100
0111100 0111000
0111000 0110000
0110000 0100000
0100000 0010000

i = 2 0010000 0001000
0011000 0011000
0011100 0011100
0011110 0011110
0011111 0011111

i = 3 0001111 0001111
0001110 0001110
0001100 0001100
0001000 0000100

i = 4 0000100 0000110
0000110 0000111
0000111 0000111

i = 5 0000011 0000010
0000010 0000000

i = 6 0000001 0000001

L8 K8

00000000 00000000
i = 0 10000000 10000000

11000000 11000000
11100000 11100000
11110000 11110000
11111000 11111000
11111100 11111100
11111110 11111110
11111111 11111111

i = 1 01111111 01111111
01111110 01111110
01111100 01111100
01111000 01111000
01110000 01110000
01100000 01100000
01000000 01000000

i = 2 00100000 01010000
00110000 00010000
00111000 00110000
00111100 00111000
00111110 00111100

i = 3 00011111 00111111
00011110 00011111
00011100 0011110
00011000 00011100
00010000 00011000

i = 4 00001000 00001000
00001100 00001100
00001110 00001110
00001111 00001111

i = 5 00000111 00000111
00000110 00000110
00000100 00000100

i = 6 00000010 00000101
00000011 00000001

i = 7 00000001 00000011
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predecessor 0i00110n−i−4 and its successor 0i00010n−i−4 (if it exists) that moves only
one digit. Notice that if i = n − 3 then the string 0i0010n−i−3 has no successor in the
list Ln and after moving its position, the last element of Kn becomes 0n−211.

If n is even, then the last transition of two digits in Ln occurs between 0n−3100 and
0n−210 which means that all transitions of two digits have been treated above, and the
list Kn is in Gray code order. So, the first and last elements are respectively 0n and
0n−211 for n = 0 mod 4, and 0n and 0n−11 for n = 2 mod 4.

If n is odd, then the last transition of two digits in Ln occurs between 0n−210 and
0n−11. We distinguish two subcases. If n �= 3 mod 4, then the string 0n−210 is moved
by the above process and the obtained list is in Gray code order. So, the first and last
elements are respectively 0n and 0n−11 (the Gray code is cyclic). However, if n = 3
mod 4, then we insert the first element 0n between 0n−210 and 0n−11 and we obtain a
Gray code. Here, the first and last elements are respectively 10n−1 and 0n−11.

Finally, for all n ≥ 1 the constructed list Kn is in Gray code order. �

Remark 2. For n = 1, 2 mod 4, the Hamming distance between the first and last
elements of the list Kn is one. Thus the associated graph becomes Hamiltonian (see
Figure 6).

Going further

In this paper, we use a constructive method in order to prove that the pizza-cutter’s
problem admits an S-solution where its associated graph is traceable. Is it possible to
provide a similar result using probabilistic method as studied in [3, 12]? For a given
n, can we find the number of isomorphism classes of S-solutions for n ≥ 10? How
many classes induce a traceable graph? For a given S-solution, can we characterize its
corresponding admissible sets? More generally, can we make the same study for the
space-cutting problem where the dimension of the space is greater than two?
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and their helpful comments and suggestions.
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