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THE OLYMPIAD CORNER 

No. 91 

R.E. WOODROW 

All communications about this column should he sent to Professor 

R.E. WoodroiD, Department of Mathematics and Statistics, The University of 

Calgary, Calgary, Alberta, Canada, T2N INk. 

This column marks the first anniversary of my taking over this Corner 

from Murray Klamkin. I am painfully aware of some of the errors that have 

crept through, but I hope, with the continued contributions from the 

readership, to carry on providing interesting Olympiad problems and solutions. 

I would particularly like to thank those who submitted problem sets and 

solutions this past year, even though we haven't yet published all the 

contributions. The list of contributors includes H. Abbott, H. Alzer, 

P. Andrews,, B. Arbel, Francisco Bellot, Aage Bondesen, Curtis Cooper, George 

Evagelopoulos, Chris Fisher, J.T. Groenman, R.K. Guy, Walther Janous, Murray 

Klamkin, Andy Liu, M. Molloy, Sister J. Monk, John Morvay, Richard Nowakowski, 

Bob Prielipp, Josef Rita i Coura, Daniel Ropp, Cecil Rousseau, M. Selby, 

Robert E. Shafer, Bruce Shawyer, D.J. Smeenk, Dan Sokolowsky, Dim. Vathis, and 

Edward T.H. Wang. 

x M * 

We begin with five sets of problems forwarded to us by Andy Liu. These 

are problems from the Klirschok Competitions, Hungary, for the years 1982 to 

1986. This competition is an annual four hour "open book" contest. 

1982.1. A cube of integral dimensions is given in space so that all 

four vertices of one of the faces are lattice points. Prove that the other 

four vertices are also lattice points. 

1982.2. Prove that for any integer fc > 2, there exist infinitely many 

positive integers n such that the least common multiple of 

?i,n+ l,n + 2,...,'n + k- 1 

is greater than the least common multiple of 

n + l,n + 2,...,n + k. 

1982.3. The set of integers is coloured with 100 colours in such a 

way th^J^pll the colours are used and the following is true: for any choice 

of intervals [a,b] and [c,d] of equal length and with integral endpoints, if a 
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and c have the same colour and b and d have the same colour, then the 

intervals [a,b] and [c,d] are identically coloured, in that for any integer x, 

0 < x < b - a, the numbers a + x and c + x are of the same colour. Prove that 

-1982 and 1982 are of different colours. 

1983.1. Let x, y, and z be rational numbers satisfying 

x3 + 3y3 + 9z3 - 9xyz = 0. 

Prove that x = y = z = 0. 

1983.2. Prove that f(2) > 3R where the polynomial 

f(x) = xa + aix"-"1 + . . . •+ aa.i% + 1 

has non-negative coefficients and n real roots. 
'j 

1983.3. Given are n + 1 points PltP29 ... 9Pn and Q in the plane, no 

three collinear. For any two different points Pi and Pj, there is a point P^ 

such that the point Q lies inside the triangle PiPjPfi. Prove that n is an odd 

number. 

1984.1. Writing down the first four rows of Pascal's triangle in the 

usual way and then adding up the numbers in vertical columns, we obtain seven 

numbers as shown below. If we repeat this procedure with the first 1024 rows 

of the triangle, how many of the 2047 numbers thus obtained will be odd? 
1 

1 1 
1 2 1 

1 3 3 1 

1 1 4 3 4 11 

1984.2. A1B1A2, B±A2B29 A2B2A3, ..., B13A14B14, A14B14A1,. and:B14A1B1 

are equilateral rigid plates that can be folded along the edges A^i, BtA2, 

A2B2,..., A14B14, and B14At, respectively. Can they be folded so that all 28 

plates lie in the same plane? 

1984.3. Given are n integers, not necessarily distinct, and two 

positive integers p and q. If the n numbers are not all distinct, choose two 

equal ones. Add p to one of them and subtract q from the other. If there are 

still equal ones among the n numbers, repeat this procedure. Prove that after 

a finite number of steps, all n numbers are distinct. 

* 

1985.1. The convex (n-i-l)-gon PQP1. . .Pn is partitioned into n - 1 
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triangles by n - 2 non-intersecting diagonals. Prove that the triangles can 

be numbered from 1 to n - 1 such that for 1 < i < n - 1, Pt is a vertex of the 

triangle numbered i. 

1985.2. Let n be a positive integer. For each prime divisor p of n, 

consider the highest power of p which does not exceed n. The sum of these 

powers is defined to be the power-sum of n. Prove that there exist infinitely 

many positive integers which are less than their respective power-sums. 

1985.3. Let each vertex of a triangle be reflected across the 

opposite side. Prove that the area of the triangle determined by the three 

points of reflection is less than 5 times the area of the original triangle. 

1986.1. Prove that three rays from a given point contain three face 

diagonals of a cuboid if and only if the rays include pairwise acute angles 
o 

such that their sum is 180 . 

1986.2. Let n be an Integer greater than 2. Find the maximum value 

for h and the minimum value for H such that for any positive numbers 

Cti,a2,. .. iGtn.1 

h < a i- a? 

a* + a5 a-> + cu 
+ . . . + a, 

an + &4 
< H. 

1986.3. A and B play the following game. They arbitrarily select k 

of the first 100 positive integers. If the sum of the selected numbers is 

even, then A wins. If their sum is odd, then B wins. For what values of k is 

the game fair? [Editor's note' In this form the question is not completely 

clear. Do A and B each independently choose h numbers? All at once, or one 

at a time? Are repetitions allowed, and If so, how are they handled?] 

* x * 

We return to solutions to problems from past years submitted in 1987. 

1. [1985: 168] 198k Dutch Olympiad. 

Two circles C± and C 2 with radii 

r± and r2, respectively, are tangent to the 

line p at point P. All other points of C± 

are inside C2. Line q is perpendicular to 

p at point S, is tangent to C± at point R9 

and intersects C 2 at points H and N, with N 

between R and S, as shown in the figure. 
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(a) Prove that PR bisects ZMPN. 

(b) Compute the ratio r1''r2 if, moreover, it is given that PJV bisects 

ZRPS. 

Solution hy Daniel Ropp, Washington University, St. Louis, MO, U.S.A. 

(a) Let 0t denote the center of circle Ct. Then 

ZOPS = ̂ PSR = ZSROi = 90°. 

Thus OiPSR is a square and ZRPS = ZPRS = 45°. Also, ZPMS and idVPS are equal 

since p is tangent to C2 at P and ZPMS is subtended by the arc PN. Now 

ZRPN = ZRPS - ZNPS = 45° - ZNPS; 

MPR = 180° - zPMR - zPRM 

= 180° - ZPMS - 135° = 45° - ZNPS. 

Thus ZRPN = ZMPR, or PR bisects ZMPS. 

(b) If PJV bisects ZRPS, then ZNPS = ZPMS ±: 22.5°. Also WR is a chord 

of C2 at distance r\ from the center of C2 (and hence C±) and so 

MN = 2>lrl - rf . 

Hence, 

NS = PS tan 22.5° = r±(y/2 - 1) 

MS = MN + NS = 2Jrl - rf + r2(v£ - 1) 

= PS tan 67.5° = r^vS" + 1). 

Thus 

Ex. - ^L 
r 2 ~ 2 " 

2. [1985: 170] 3**th Bulgarian Mathematical Olympiad (3rd Stage). 

If k and n are positive integers, prove that 

(n4 - l)(n3 - n2 + n - l)k + (n + IJn4^1 

is divisible by n5 + 1. 

Solution by Daniel Ropp9 Washington University, St. Louis, MO, U.S.A. 

The given expression is a polynomial in n, say fu(n)9 with integer 

coefficients. Since x5 + 1 = 0 has distinct complex roots it suffices to show 

that if x5 + 1 = 0 then ffc(x) = 0. Now 

x5 + 1 = (x + l)(x4 - x3 + x2 - x + 1). 

Since ffc(-l) = 0 by inspection, we suppose that 

x4 - x3 + x2 - x + 1 = 0. 

Then x4 = x3 - x2 + x - 1 and so 

ffe(x) = (x4 - l)(x4)fe + (x + i)x*k-* = x4fe"1'(x5 + 1) ='0. 
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This completes the proof. 

Editor's note: Edward T.EL Wang of Wilfrid Laurier University pointed 

out a more straightforward proof by induction. 

4. [1985: 170] 3*ith Bulgarian Mathematical Olympiad (3rd Stage). 

Let aa and ba be positive integers satisfying the relation 

aa + brc/2, = (2 -i- v 5 ) \ n = 1,2,3,... . 

Prove that lim(aa/ba) exists, and find this limit. 

Solution by Daniel Ropp, Washington Uniuersity, St. Louis, MO, U.S.A. 

By expanding (2 + V§)a = aa + ba since aa, ba are integers, we see 

that 

\2k 

hn = 

[n?]f« 
fc=0 

[2k+lJ 

where [x] is the greatest integer less than or equal to x, and we set the 

convention that ., = 0. From this it follows that 
ln+lj 

an - baV2~ = (2 - V2y. 

Thus 

aa = |[(2 + y£)n + (2 - >£)*]. 

ba = -M:(2 + vf)a - (2 - v2")a]. 
2V2 

Therefore 

lim j^ = lim V2~ 
n Ht» "• n-*» 

1 + 

1 -

2 - v£" 

2 + v2" 

2 - v2" 

2 + ^ . 

a 

a 
= V2~ 

since 
2 - V§" 

2 + v5 
< 1. 

6. [1985: 170] 3kth Bulgarian Mathematical Olympiad (3rd Stage). 

Five given points in the plane have the following property: of any 

four of them, three are the vertices of an equilateral triangle. 

(a) Prove that four of the five points are the vertices of a rhombus 
o 

with an angle equal to 60 . 

(b) Find the number of equilateral triangles having their vertices 

among the given five points. 
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Solution by Daniel Ropp, Washington Uniuerstty, St. Louis, MO, U.S.A. 

(a) Label the points A, B, C, D, E. Some three of the points, say A, 

B, C, form an equilateral triangle. If neither D nor E is the vertex of an 

equilateral triangle together with vertices A and B, B and C, or C and A, then 

by consideration of the three sets of four points {D.E.A.B}, {D,E,B,C}, and 

{D,E,C,A}, we see that two of the three triangles DEA, DEB, DEC are 

equilateral. Without loss suppose that ADEA and ADEB are equilateral. Then 
o 

A,D,B,E form the vertices of a rhombus with an angle of 60 . On the other 

hand, if either D or E, say D, is the third vertex of an equilateral triangle 
o 

with A and B then ADBC is a rhombus with interior angle 60 . 

(b) By relabelling if necessary, we may assume that ADBC is a rhombus 
o 

with ZADB = 60 = ZACB. Notice that AABE cannot be equilateral as then E = C 

or E = D. Consider now {B,C,D,E}. Since ACDB is not equilateral we must have 

some one of ABDE, ABCE or ACDE equilateral. In the first two cases we may (by 

relabelling) assume that ABDE is equilateral to obtain Figure 1. But then 

there is no equilateral triangle for {A.C.D.E}. Thus we conclude that ACDE is 

equilateral to give the configuration of Figure 2, after relabelling if 

necessary. Inspection shows that there are three equilateral triangles AABC, 

AABD and ACDE. It is also clear that such a configuration satisfies the 

conditions of the problem. 

E 

Figure 1 Figure 2 

JL [1985: 212] 16th Austrian Mathematical Olympiad (Final Round). 

Determine all quadruples (a,fo,c,d) of nonnegative integers such 

that 

a2 + b2 + c2 + d2 = a2b2c2. 

Solution by Daniel Ropp, Washington (iniuersily. St. Louis, MO. and 

independently hy John Morvau, Dallas, Texas, U.S.A. 

Let (a,b,c,d) be such a quadruple. If all three of a, b, c are odd, then 
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a2 = b2 = c2 = 1 mod 8, since the residues of x2 modulo 8 are 09 1 and 4. But 

then d2 = 1 - 1 - 1 - 1 = 6 mod 8, which is impossible. Thus we may suppose 

that a is even. Then a2 = 0 mod 4, and so b2 + c2 + d2 = 0 mod 4. This Is 

impossible if any of b9 c or d are odd. Thus a, b9 c, d are all even. 

We now prove that a/2a9 b/2
a
9 c/2

a
B d/2

a are all integers for n > 1 by 

induction. From this it is immediate that (a,bscsd) = (090,090) is the only 

solution to the problem. 

That the four quotients are integers for n = 1 was shown in the first 

paragraph. Suppose then that o/2a9 b/2
a
9 c/2

a and d/2a are integers. The 

equation a2 + b2 + c2 + d2 = a2b2c2 is equivalent to 

(a/2a)2 + (b/2a)2 +{c/2R)2 + (d/2a)2 = 24a(a/2a)2(b/2a)2(c/2a)2. 

Thus 

(a/2a)2 + (b/2a)2 + (c/2a)2 + (d/2a)2 = 0 mod 8. 

As before, we deduce that a/2a, b/2a
9 c/2

a and d/2a are all even. This gives 

a/2a+1, b/2a+i, c/2a+1 and d/2a+1 all integers to complete the induction step. 

2. [1985*. 212] 16th Austrian Mathematical Olympiad (Final Round). 

For n = 1,2,3.... let 

f(n) = la + 2a"1 + 3a"2 + ... + (n - l) 2 4- n. 

Determine 

m m 
f(n + 1) 

n>l Hn) 

Solution by Daniel Ropp, Washington Unluerslty, St. Louis, MO, U.S.A. 

We calculate 

f(l) = 1. f(2) = 3. 

f(3) = 8, f(4) = 22, 

f (5) = 65, f (6) = 209, 

f(7) = 732, f(8) = 2780, 

and suspect that 

min f(n + 1) _ £131 = 8 
^ f(n) ~ f(2) 3-

To show this it suffices to show that % , * > 3 for n > 5. 

tin) 
Now 

n+1 
f(n + 1) = 2 fea+2-fe 

fc=l 
n 

> 1 + 2 a + 3a~i -i- 4a"2 + 5a"3 -i- 2 3ka+1"k 

k=6 
(if n > 5), and since 
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n 
3f(n) = 3 + S ^ " 1 + 3«3a~2 + 3-4a~3 + 3-5a~4 + 2 3k a + i-\ 

k=6 

it suffices to show that for n > 5, 

1 + 2 a + S"-"1 + 4a~2 + 5a~3 > 3 + 3*2n"1 + 3*3a~2 + 3^4n~3 + 3-5a~4, 

or equivalently 

4a"3 + 2*5a""4 > 2a~1 + 2. 

But 2n - 6 > n - 1 and n - 4 > 0 for n > 5, so 

4a"3 + 2-5a~4 = 2 2 a" 6 + 2*5a"4 > 2a~1 + 2, 

completing the proof. 

3. [1985: 212] 16th Austrian Mathematical Olympiad (Final Round), 

A line intersects the sides (or sides produced) BG, CA, AB of a 

triangle ABC in the points A±, Blf C±, respectively. The points A2, B2, C2 

are symmetric to At, B±, C± with respect to the midpoints of BC, CA, AB, 

respectively. Prove that A2, B2> and C2 are collinear. 

Solution by Daniel J?opp, Washington Uriiuersity, St. Louis, MO, U.S.A. 

For any point P in the plane of triangle ABC, we let P denote the vector 

whose head is at P and whose tail is at C. Since A±, B±, Ct lie on BC, CA, 

AB, respectively, 

Ai = CiB 

Bi = c2A 

Ci = A + c3(B - A) 

for some constants c±, c2, c3. Since any 3 points P, Q, R are collinear if 

and only if 

(R - P) x (Q - P) = 0 

we must have 

0 = (Bt - At) x (C± - At) 

= (c2A - ClB) x [(1 - c3)A + (c3 - cJB] 

= [c2(c3 - ct) + ct(l - c3)](A x B) 

= (c± - c±c2 - c±c3 + c2c3)(A x B). (1) 

The midpoints of AB, BC, CA are points whose corresponding vectors are 

(A + B)/2, B/2S A/2, respectively. By definition 

A2 = B - Ai = (1 - Cl)B 

B2 = A - Bt = (1 - c2)A 

C2 = A + B .- Ct = c3A + (1 - c3)B. 

Now A2, B2, C2 are collinear if and only if 

(B2 - A2) x (C2 - A2) = 0 

<=> [(1 - c2)A - (1 - Cl)B] x [c3A + (Cl - c3)B] = 0 
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[(1 - c2)(Cl - c3) + (1 - c1)c3](A x B). = 0 

(ct ~ CiC2 ~ CiC3 + c2c3)(A x B) = O. 

Since this last condition is just (1), A2, B2. C2 are indeed collinear. 

4. [1985" 212] 16th Austrian Mathematical Olympiad (Final Round), 

Determine all natural numbers n such that the equation 

a-rn-i*2 ~ 2x̂ laf + al + ... + afj+i + at + a2 + . . . + aR = 0 

has real solutions for all real a1,a2 aR+1. 

Solution by Daniel Ropp, Washington Uniuersity, St. Louis, MO, U.S.A. 

If aa+1 = 0, the given equation has the real solution 
n 
2 a t 

1=1 
x = 

i/2 n-f-1 

2 a? 

unless this denominator is zero, in which case each at = 0 and any real x is a 

solution. 

If an+1 F* 0, the equation will have a real solution just in case the 

discriminant is nonnegative, or equivalently„ 
n+1 n 
2 a? > aR+1 2 at, 
1=1 1=1 

that is, 

1 n 
O-R+1 ~ g 2 a t 

^ i=l 

n 
+. 2 a ? -
t=l 

n 
2 at 
1=1 

> 0. 

n 
2 a? -

i=l 

1 
" 4 

n 1 
2 at 

.1=1 J 

This holds for all real a1,...,aR+l9 aa+1 / 09 if and only if 

. 2 

> 0. (*) 

In particular, (*) must hold for (als...,aa) = (!,...,!), so 

n - 4i2 > 0. 
4 

Necessarily then, n < 4. Conversely, if n < 4, Cauchy's inequality gives 
2 

n 
14 2 a? 

1=1 
for all al9...\an. This is evidently equivalent to (*), so the values are 

n = 1,2,3,4. 

n 
2 at 

U=i J 
< 

n 1 
2 l 2 

[i=l J 

f 1 

n 2 a? 
U=l J 
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5. [1985: 212] 16th Austrian Mathematical Olympiad (Final Round). 

Let {aa} be a sequence of natural numbers satisfying 

cta = nag-t + a£+1)/2 

for all n > 1. Prove that the sequence is a constant one. 

Solution by Daniel Ropp, Washington University, St. Louis, MO, U.S.A. 

We square both sides of the equation and rearrange terms to obtain 

aa+i "~ a a = a a "~ &a-i-

Thus 
n-1 n-1 

al - a£ = 2 (a^t - ag.t-i) = '2 (af - a§), 
i=0 i=0 

or 

a2 = n(af - a§) + a2,. (*} 

If af < ag, then a2 < 0 for n sufficiently large, a contradiction. 

If af > a2,, we have a2
 + 1 > a

2. Since each at is an integer we have then 

&a+i ^ aa + 1» ŝ d so (aa) Is a strictly increasing, unbounded sequence of 

integers. But the inequality aa+1 > an + 1 implies 

1 + 2aa < ag+1 - aR = af - a
2, 

for all n, contradicting the unboundedness of (aa). 

Hence af = ao, and so by (*) aR = aQ for all n. 

6. [1985: 213] 16th Austrian Mathematical Olympiad (Final Round). 

Determine all functions f: R ->R satisfying the functional equation 

x2f(x) -f f(l - x) = 2% - x4 

for all x € R. 

Solution by Daniel Ropp, Washington Uniuersity, St. Louis, MO, U.S.A. 

Suppose f Is such a function. Replace x by 1 - x In the equation to 

obtain 

(1 - x)2f(l - x) + f(x) = 2(1 - x) - (1 - x) 4. 

We add this equation to [-(1 - x)2] times the given equation, finding 

(1 - x2(l - x)2)f(x) = 2(1 - x) - (1 - x) 4 - (1 - x)2(2x - x4) 

= (x - l)(x -f l)(x2 - x + l}(x2 - x - 1). 

The left-hand side of this equation is (1 + x - x2)(l - x + x2)f(x) and so 

(1 + x - x2)(l •'- x + x2)(f(x) + x2 - 1) = 0. 

Now 1 - x + x2 / 0 for x € R, thus f(x) = 1 - x2 unless 1 4- x - x2 = 0 , 

1 ± ̂ > 1" + v?> 1 - V& 
i.e. unless x = ———-. Setting x = —~-—- or x - — - ^ in the original 

equation yields 
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N^MH^'M-^- <'> 
i ± vS" 

Conversely, suppose f: IR -» 1 satisfies f(x) = 1 - x2 for x / —•=—- and also 

satisfies equation (1). Then, if x ^ • - also 1 - x / —^ , and the 

functional equation is satisfied since 

x2(l - x2) + [1 - (1 - x)2] = 2x - x4. 

If x = — ~ , the given equation holds, by (1). Thus, any such f will Indeed 

solve the problem. 

* *# * 

In the next Issue we hope to finish the solutions that we have received 

for problems posed in 1985 and publish a list of problems whose solutions have 

not yet been discussed. The next Corner will also mark the return to a 

mixture of solutions submitted some time ago and those submitted recently. 

Keep those solutions coming! 

** M * 

P R O B L E M S 

tynoblem pnofcodald and dolatlond should he dent to the editor, whode 
addnedd afyfcean,d on the gloat t>ag,e of thld Iddae. &n,of>odald dhoald, whenever 
fxoddlhle, he accompanied hy, a solution, referenced, and other Indlyhtd which 
are likely, to he of help to the editor. sin adterldk (*) after a number 
Indicated a problem dubmltted without a dotation. 

Original problemd ale particularly, doug-ht. ?kit other Interedtlng 
prohlemd may- aldo he acceptable provided they, ale not too well known and 
referenced ate given ad to their provenance. Ordinarily,, If the originator of 
a problem can he located, It should not he dubmltted by, (somebody, elde wlthoat 
hid or hen, permlddlon. 

2To facilitate theln, consideration, goar dotations, tgpewrltten on neatly 
handwritten on dlgned, depurate dheetd, dhoald preferably he malted to the 
editor before dugudt 1, 1988, although dolatlond received after that date will 
aldo he condldered until the time when a dotation Id pablldhed. 

1301. Proposed by George Szekeres, University of New South Wales, 

Kensington, Australia. 

Given a positive rational number q = a/b and an odd positive 

integer n, find a polynomial, with integer coefficients written in a simple 

closed form, that has q1/R + q"i/a as a root. (See Crux 1187 [1988: 30].) 
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1302. Proposed by Mihaly Bencze, Brasou, Romania. 
n 

Suppose a& > 0 for k = l,2,...,n and 2 tanh2afe = 1. Prove that 
k=l 

-. 1 x ~ sinh ai> 
, <. sinh afe ~ , i coshrafc, 

1303. Proposed by George Tsintsifas, Thessalonifei, Greece. 

Let ABC and A^fCf be two triangles with sides a, b, c and aA, bt, 

Ci and inradii r and rlt and let P be an interior point of AABC. Set AP = x, 

BP = y, CP = z. Prove that 

a + b + c " 

1304. Proposed by M.S. Klamkin, University of Alberta, Edmonton, Alberta. 

If p, q, r are the real roots of 

x3 - 6x2 + 3x + 1 = 0, 

determine the possible values of 

p2q + q2r 4- r2p 

and write them in a simple form. 

1305. Proposed by J.T. Groenman, Arnhem, The Netherlands. 

Let A1A2A3 be an acute triangle with circumcenter 0. Let Pl9 Q± 

(QA # At) denote the intersection of AtO with A2A3 and with the cireumcircle, 

respectively, and define P2, Q2, P3. Q3 analogously. Prove that 

t . OP^OPs^OPn x t 

(a) — * * 3 > 1 ; 
PiQi-P2Q2-P 3 Q3 

(b) ^ + ^ + ^ = > 3 ; 
PiQi P2Q2 P3Q3 

(c) A^P^AgPg^AaP^ y 2 7 

P^QT-P^QT-P^QT 

1306. Proposed by K.S. Luthar, University of Wisconsin Center, 

Jonesuiiie, Wisconsin. 

Ellipses 

x2 if2 
•—2 + r-2 = 1 . i = l,2,...,n, af b? 

all satisfy the condition 

a? + bf "3-
Prove that the ellipses all pass through the same point. 
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1307. Proposed by Jordi Bou, Barcelona, Spain. 

Let As
s B', C

9 be the intersections of the bisectors of triangle 

ABC with the opposite sides, and let A' \ B'\ C ' be the midpoints of B'C\ 

C'A'9 A'B' respectively. Prove that AA88
f BB* ' , OC8 9 are concurrent. 

1308. Proposed by Seung-Jin Bang, Seoul, Korea. 

Find f (x,y) and y(x,y) such that 

v ' 9x g dy * dy g dx * 

and 

(iii) g(x,y)sin f(x,y) = x 

all hold. 

1309. Proposed by Clark Kimberling, University of Euansuille, Euansuille, 

Indiana. 

Let ABC be a triangle with circumcircle T, and let BEF be the 

triangle formed by the lines tangent to F at A, Bs C. Call a triangle A'B'C 

a circumcevian triangle if for some point P, A' Is the point other than A 

where the line AP meets F, and similarly for B' and C . Prove that DEF is 

perspective with every circumcevian triangle. 

1310. Proposed by Robert E. Shafer, Berkeley, California. 

Let 

i + i + I + + 1=5* 
• 2 3 " " n Dn 

where Na and Da are positive integers having no common divisor. Find all 

primes p > 5 such that pINp„4. 
M X * 

S O L U T I O N S 

Mo fyiob-lem ta e^ea fceimafientlty closed, fhe. edltoi will always, he pleaded 
to con&idei fton, fcakllcatloa new &olutLon,& oa new ln&lg,ht& on pabt fyxoklemb. 

1110* [1986: 13; 1987: 170] Proposed by M.S. Klomkin, University of 

Alberta. 

How may different polynomials P(x±,x2,...,xm) of degree n are there 

for which the coefficients of all the terms are O's or 1's and 

P(xt,x2,...,xm) = 1 whenever x± + x2 +...+ xm = 1? 

•I. Partial solution by Len Bos and Bill Sands, University of Calgary, 

Calgary, Alberta. 
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Let f(n,m) be the required number of polynomials. We will investigate 

the case m = 2 and will show that 

f(n.2) > * 
2R 

n n + 1 

the nth Catalan number. 

Let P(x9y) be a polynomial of degree n with the required properties. 

Then P(x9y) =• 1 whenever x + y = 1, so it must be true that 

P(x,y) = (x + y - l)q(x,y) + 1 (1) 

for some polynomial q(x,y) with integer coefficients. We shall count all 

those possible q(xsy) whose coefficients are also all 0 or 1. 

Let q be such a polynomial. Then its terms are monomials of the form 

xly3 where i,j € {0,1,...fn - 1} and t + j < n - 1. We will identify the 

collection of these monomials with the corresponding subset of lattice points 

Rq = {(i, j) [x̂ y** is a monomial in q}. 

Thus Rq is a subset of {(i,j) C Z2|0 < i, 0 < j, i + j < n - 1} and contains 

at least one (i,j) with i +'j = n - 1. The next two lemmas establish 

important properties of Rq. 

Lemma 1. If (i.j) € Rq where i + j > 0, then either (i.- l.j) ̂  Rq or 

(i,j - 1) € Rq (or both). In particular, if (1,0) € Rq then (i - 1,0) € Rq 

for i > 0, and similarly for (0,j). 

Proof. If (i,j) € Rq and i + j > 0 then xty<' is a monomial in q. Thus 

(x + y - l)q(x,y), when multiplied out, will contain a term ~xiy. By (1), it 

must therefore also contain at least 

one term +xiyJ, which can only happen 

if xi"1y3 or xiy3"1 were monomials 

in q, that is, if (t - l.J) or • ('-"i'J") (i-J) 

(t.j - 1) € Rq. D 

In terms of lattice points, this • 

lemma says that if a lattice point is v «J ) 

in Rq, then at least one of its neigh- • • '• 

bours to the left of or below it must 

also be in Rq. 

Our other lemma is a sort of converse. 

Lemma 2. If (i - 1,j) € Rq and (i.j - 1) € Rq, then (i,j) '€ Rq. 

Proof. We have that x1""1^7 and % V _ 1 are both monomials in q. Then 

(x + y - 1 )q(x,y) when multiplied out will contain tu>o terms xlyJ . By (1), It 

must also contain a term -xly^\ which implies that (i,j) £ Rq. U 
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Now suppose (t, j) € Rq<. By applying Lemma 1 repeatedly, we obtain a 

descending path of lattice points In Rq from (i,j) to (0,0). By always moving 

left from a lattice point rather than down, whenever we have a choice, we 

obtain what we call the left path of 

(i,j). Similarly by moving down in

stead of left whenever possible, we 

obtain the right path of (i,j). The 

diagram shows a possible left path 

of (4,3). All lattice points on the 

path are in Rq, but the position of 

the path tells us that (2,3) and 

(2,2) are not In Rq. 

B © 

i 0 

(2.3) 

© 

(2,2) 

© 0 

® 

• 

(4.3) 

(0.0) 

Clearly the left path and right path of (i*j) do not cross, although they 

may meet (and do, at their endpoints at least). 

Let (1,j) and (h,£) be in Rq, 

where we assume that i < h and j > I. 

Consider the left path of (1,j) and 

the right path of (fe,£). Extend them 

to paths beginning at (k,j) by adding 

horizontal and vertical edges, res

pectively. The extended paths then 

enclose a region of lattice points. 

(0.0) 

« « > © « 

» ® 

© 

9 

r1 • ' 
« 9 < 

» • 

! 
i 

• • ! 
i 
i 

» « • 

1 
• • 

(fe.J) 

i(fc.«) 

Claim: Euery lattice point inside this region is in Rq. 

This follows by repeated applications of Lemma 2, starting at the bottom 

left of the region and working up and to the right. 

Now it can easily be seen that Rq must coincide with the region of 

lattice points bounded by the left and right paths of some lattice point 

(i,j), where i + j = n - 1. Furthermore we claim that any such region 

corresponds to a polynomial q(x,y) such that P(xty), defined by (1), is a 

polynomial satisfying the problem. We need only show that P(xty) has 

coefficients 0 or 1. Multiplying out (x + y - l)q(%9y)» we need only show 

that any negative term -xlyj
 9 i + j > 0, is offset by at least one term -f-xLyJ, 

and that if two terms xtyi occur then also a term -xlyJ will occur. But this 

follows from the construction of the region much as in the proofs of Lemmas 1 

and 2. 

Thus to count all the polynomials q(x9y) we must count the number of 

pairs of lattice paths Pi and Pr from (0,0) to (t ,'j), I + j = n - 1, which do 
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« 

« 
P{ 

• 

.J) 

Pr 

.(Hi). not cross and have length n - 1. By 

moving path Pr one unit to the right 

and one unit down, adding in new 

common endpoints as shown, and moving 

both paths to start at (0,0) again, (0,0)—J —' (0,0) 

we see that such pairs of paths 

correspond to those pairs of paths 

from (0,0) to (i,j), where i.+ j = n + 1, which do not meet (except at their 

endpoints), and which have length n + 1. The number of such pairs of paths, 

over all choices of t, j satisfying 1 > 0, j > 0, i + j = n + 1, is known to 

be the Catalan number 

1 fen] 
n + 1 [ nj 

(see J. Levine, Note on the number of pairs of non-intersecting routes, 

Scripta Mathematica 24 (1959) 335-338). This number is then a lower bound for 

f(n,2). Unfortunately it is not the exact answer, since putting 

q(x9y) = 1 + x + y + 2xy + x2y + xy2 + x2y2 

(which has a coefficient not equal to 0 or 1) into (1) yields 

P(x,y) = x2 +• y2 + x2y + xy2 + x3y + xy3 + x2y2 + x3y2 + x2y3, 

a polynomial with all coefficients 0 or 1. We do believe, however, that 

f(n,2) can be calculated, and, as a possible first step, make the following 

conjecture: 

any q(x>y) suitable for (1) has all coefficients 0, 1, or 2. 

II. Partial solution by P. Penning, Delft, The Netherlands. (Adapted 

by the editor to refer to I above.) 

We show that 

f(n.m) > m^-1, 

thus answering the editor's request [1987: 170] for a proof that f(n,m) > 1 

for each n and m. 

A special case of the allowable "regions" in part I is that of a single 

path from (0,0) to (t9j)9 where i + j = n - 1. A similar argument to that in 

I shows more generally that if P is a path of length n - 1 from (0,0,...,0) to 
m 

(i±,i2,...,im) in Z
m, where 2 ij = n - 1, then the lattice points on P will 

3=1 

correspond to monomials whose sum is a polynomial q(oc±, . . . 9xM) such that 

P(xlf...,xm) = (xj + ... + xm - l)q(Xi xm) + 1 

has all coefficients 0 or 1. To construct such a path, we merely choose a 

sequence of n - 1 elements from x±,... 9xm , repetition allowed, each 
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corresponding to one of the m "directions9' the path can take (starting at 

(0.....0)). The number of these sequences is MI11"1.' 

Example: m = 5, n = 4. Choose sequence x2, x4, x3. Then 

Q(xi >X29X39X49XB) = 1 + x2 + x2x4 4- x2x4x39 

so 

P(x1,...,xB) = (1 + x2 + x2x4 -i- x2x4x3)(x1 + x2 + x3 + x4 + x5 - 1) + 1 

= X± .+ X 3 4- X 4 4- X B + X 2(x t 4- X 2 4- X 3 + X 5) 

+ XzX4(x± 4- X 2 4- % 4 -4- x 5) 4- XsjXsX^Xi 4- X 2 4- X 3 + X 4 4- x 5) . 

Examples showing f(nfm) > 1 for all n and m mere also recetued from LEN 

B0S9 Untuersity of Calgary; and the proposer, 

1174. [1986: 205] Proposed by Clark Kimberling9 Untuersity of 

Euansutlle, Euansuilie9 Indiana. 

Suppose ABC is an acute triangle. Prove that there is a point P 

inside ABC and points D, E on &2i F, G on CA; and H9 I on AB such that GPH, 

IPD9 and EPF are congruent equilateral triangles. 

Solution by Walther Janous, Orsultnengymnastum, Innsbruck, Austria. 

Let's go the other way round. Suppose we have a point P and three 

congruent, possibly overlapping 

equilateral triangles GPHS IPD, and 

EPF9 making the (directed!) angles 

zHPI = 2<p9 ZDPE = 2^9 zFPG = 2o>. 

Case 1. <p, >|/9 CJ > 0. 

ZPHI = ZPII 

and thus 

Then 

= 90° <p9 etc. , 

Finally, 

ZAHG = 1 8 0 - 60 - (90 - <p) = f 4- 30 = zBID 9 etc. 

ZA = 180 - (a) 4- 30 ) - (<p 4- 30 ) = 120 - GJ - <p 

ZB = 120° - <p - $ 

A: = 120° - $ - &), 

yielding 

<p = ZC - 30° 9 ^ = ZA - 30°. cij = ZB 30 

(1) 

(2) 

Thus in this case we must have min{zA 8zB 9zC} > 30 . Then if we construct the 

three equilateral triangles as above, using <p9 \p9 G) defined in (2), and extend 

edges DE 9 FG 9 HI to form a triangle, by (1) we obtain a triangle similar to 
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AABC. Hence the required points will exist for AABC. 

Case 2. One of <p, $, &) is < 0. 

Let <p < 0. Then 

ZIPH = 2*'. <p' = V > 0. 

As in Case 1, 

ZPHI = ZffXP = 90° -. <p* 

and thus 

^GHA = 30° - <p* = 30° + <p •= zBID. 

Hence (1) and (2) again hold, and B D E 

we are done as in Case 1. 

Case 3. Two of <j>, ̂ , (*) are < 0. 

If say (D < 0 and <p < 0, then ZDPE > 180°, and P would be 
o 

outside AABC. However, ZA > 120 from (1), so AABC would not be acute. 

II. Comment by Clifford Gardner, Austin, Texas and Jack Garfunkel, 

Flushing, N.Y. 

We were intrigued by.this point P, and suspected that it may have some 

special property. Our suspicion was justified. The point P turns out to be 

the Miquel point associated with any equilateral triangle inscribed in 

triangle ABC. Let Q, R, S be the midpoints of DE, FG9 EI respectively; then 

the proof that P is this Miquel point depends on showing that QR •=. RS = SQ. 

Proofs of this abound. For instance, the problem was given as Bl of the 1967 

Putnam examination, and a proof using complex numbers can be found on page 737 

of the 1968 American Mathematical Monthly. 

We conclude with a final comment. One of the reasons why Morley's 

Theorem is so popular is the surprise element. An equilateral triangle 

"mysteriously" emerges by drawing angle trisectors. A similar element of 

surprise exists here. The Miquel point which is the result of drawing three 

intersecting circles turns out to be the same point from which congruent 

equilateral triangles are drawn to the sides of a triangle. 

Also solved by J0SDI D00, Barcelona, Spain; J.T. GR0ENMAN, Arnhem, The 

Netherlands; CLIFFORD GARDNER, Austin, Texas and JACK GARFUNKEL, Flushing, 

W.Y.; B.J. SMEENK, Zaltbommel, The Netherlands; GE0BGE TSIWTSIFAS, 

Thessaloniki, Greece; and the proposer. 

Seueral soluers noted that the result holds for any triangle with no 
o 

angle > 120 . Tsintsifas also shoioed that P is the Miquel point for 

equilateral triangles inscribed in AABC, but credited the conjecture to 

Garfunkel. 

M *€ * 
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1175. [1986: 205] Proposed by J.T. Groenman, Arnhem, The Netherlands. 

Prove that If a. J3, nr are the angles of a triangle. 

-2 < sin 3a -4- sin 3p + sin 3T £ |v#. 

Comment by M.S. Klamkln, Uniuerslty of Alberta. 

I had set the same problem for the 1981 U.S.A. Mathematical Olympiad (see 

[1981: 141]). Incidentally, the lower bound is easy to obtain. At least one 
o 

angle, say a, Is < 60 . • Then since sin 3a > 0, sin 3|3 > -1, and sin 3i > -1, 

we obtain the lower bound -2. There Is equality only for the degenerate 
o o o 

triangle 0 , 90 , 90 . For the upper bound, including more general results 

where 3a Is replaced by na, etc. , see Crux 715 and Its solutions [1983: 

58-62]. 

Also solved by GEORGE EVAGEL0P0UL0S, Athens, Greece; RICHARD I. HESS, 

Rancho Palos Verdes, California; WALTHER JANOUS, Ursullnengymnaslum, 

Innsbruck, Austria; EDWIN M. KLEIN, Uniuerslty of Wisconsin, Whitewater, 

Wisconsin; KEE-WAI LAU, Hong Kong; J. WALTER LYNCH, Georgia Southern College, 

Statesboro,, Georgia; D.S. MITRINOVIC and J.E. PECARIC, Uniuerslty of Belgrade, 

Yugoslaula;; V.N. MUKTY, Penn State Uniuerslty, Mlddletowi, Pennsyluanla; M. 

PARMENTER, Memorial Uniuerslty of Newfoundland, St. John's; BOB PRIELIPP, 

University of WlsconsIn-Oshkosh; and the proposer. 

The editor apologizes for including this problem itfien (as also pointed 

out by seueral of the above) it had appeared before. 

* * * 

1176. [1986: 205] Proposed by Kenneth S. Williams, Carleton Uniuerslty, 

Ottauxx, Ontario. (Dedicated to Leo Sauve.) 

Let n be squarefree such that 

n = r2 + s2 = t2 + u2 

where r, s, t, u are positive integers. Prove that 

2n(n -f- rt + su) 

Is a square if and only if r = t and s = u. 

Solution by Kee-iaal Lou, Hong Kong. 

Denote the positive integer 2n(n + rt + su) by m. Clearly if r = t and 

s = u, m equals the square (2n)2. 

We now suppose that m Is a square. We first note that 

m > 2n2. (1) 

Since n = r2 + s2 = t2 + u2 we see that 

m = n[4n - (r - t) 2 - (s - u)2]. (2) 
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(3) 

(4) 

(5). 

Because n is squarefree, m is a square if and only if 

4n - (r - i) 2 - (s - u ) 2 = k2n 

where k is a positive integer. From (2) and (3) we get 

m = fe2n2. 

From (1) and (4) we deduce that 

k > 1. 

Now (3) can be rewritten as 

n(4 - k2) = (r - t ) 2 -i- (s - u} 2. (6) 

Since the right hand side of (6) is non-negative9 it follows from (5) that 

k = 2. Thus from (6) r - t and s = u as required. 

Also solved by J.T. GROENMM, Arnhem, The Netherlands; WALTHER JANOUS, 

Ursulinengymnasitm, Innsbruck, Austria; FRIEND H. KIERSTEAD JR., Cuyahoga 

Falls, Ohio; MIKE PARMENTER, Memorial University of Newfoundland, St. John's; 

and the proposer. One incorrect solution was received. 

M ** * 

1177. [1986: 205] Proposed by George Tsintsifas, Thessalonihi, Greece. 

ABC is a triangle and M an 

interior point with barycentric 

coordinates (k±,X29\3). Lines HMD, 

JMF, EMI are parallel to AB, BC9 CA 

respectively as shown. The centroids 

of triangles DHE9 FMH, IMJ are denoted 

Gl9 G2, G3 respectively. Prove that 

[GiG2G3] = (
Xtx^ * x^ x3 + M O [ABC] ̂  

where [X] stands for the area of figure X. 

Solution by C. Festraets-Hamoir, Brussels, Belgium. 

Let K±, K2, K3 be the centroids 

of the triangles AJF, BEI, C M 

respectively. 

The medians FK1, MG3, EK2 drawn 

respectively in the homothetic 

triangles AFJ, IMJ9 IEB are parallel. 

Similarly, JK±\mG2\\BK3 and 

IKallMGJIHKa. Thus MG3K1G2s MG2K3Gt, 

and MG±K2G3 are parallelograms, and ^ 
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[G1G2G3J = ^CG1K2G3K1G2K3] 

= |{[ABC] - ([JKtA] 4- [AK.F] + [HK3C] + [CK3D] 4- [EK2B] + [BK2I]) 

+ EIG3J] + [HG2F] + [BGtD]} 

= |{[ABC] - |([AJF] + [CBD] 4- [BEI]) + |([MJI] + [JIHF] + [MED]} 

= |{[ABC] - |((1 - X t )
2 + (1 - A 3 )

2 + (1 - X2)
2)[ABC] 

+ ^{x! + xi + X?)[ABC]}. 

Now9 using X* + X2 + A3 = 1, 

[G!G2G3] = g[ABC](l - X? - XI - X§) 

= g[ABC]{l - (X± + X2 4- X 3 )
2 + 2X±X2 4- 2X2X3 + 2X3XJ 

= |[ABC](X1X2 + X2X3 + X3Xi). 

Also solved by J.T. GROENMAN, krnhem, The Netherlands; RICHARD I. HESS, 

Rancho Paios Verdes, (California; WALTHER JANOUS, Ursuiinengymnasium, 

Innsbruck, Austria; MURRAY S. KLAMKIJV, University of Alberta; and the 

proposer. 

As pointed out by one reader, the question should perhaps have read 

"normalized barycentric coordinates". 

* M • * 

1178. [1986: 206] Proposed by Gary Gisiason, University of Alaska, 

Fairbanks, Alaska, and M.S. Klauikin, University of Alberta, 

Edmonton, Alberta. (Dedicated to Leo Sauve.) 

Determine pairs of functions (F,G) such that 

(FoG)' = FoG' 4- F'oG 

where o denotes composition and ' denotes differentiation. 

I. Solution by Waither Janous, Ursuiinengymnasium, Innsbruck, Austria. 

The given relation can also be written in the form 

F'(G(x))G'(x) = F(G'(x)) 4- F'(G(x)). 

i.e. 

F,(G(x))[G'(x) - 1] =F(G'(x)). (1) 

Thus, e.g., 

G(x) = x 4- a, F differentiable with F(l) = 0, 

where a € 1R, satisfy (1). Or: 

F(x) = ax - a, G arbitrary, 
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where a € R, a / 0, satisfy (1). 

II. Solution by the proposers. 

Assuming F'(x) has an inverse function H(x), we give an implicit 

parametric representation for G and x in terms of G'. 

By hypothesis, 

F8(G) = F(G')/(G' - 1). 

Thus 

G = H[F(G,)/(Gi ~ 1)]. (1) 

Since G is differentiable, we obtain 

G' = H 9 [F (G ' ) / (G ' - 1 ) ] f(G' - l )F'(G')dG'/dx - F(G')dG'/dx\ 

(G' - l ) 2 j 
Then 

x = BTF(G')/(C - mrrcy - DFTGM - F(G->I 
G'fG1 - l ) 2 

(1) and (2) give the parametric representation for G and x. 

For example, when F(x) = ex we get 

G = G\ - £n(G' " 1) • * = to(G'V(G' - 1)), 

and so 

dG. 

G(x) = e * % 2S_ _ «n 
ex ± ,|e2X _ 4e> 

- 1 

(2) 

Also solued by GLEN E. MILLS, Colonial Senior High, Orlando, Florida. 

Both Mills and the proposers gave Janous* second example. 

*# x & 

1179. [1986: 206] Proposed by Jack Garfunkel, Flushing, ]fe# Ydrfe.. 

Squares are erected outwardly on each side of a quadrilateral ABCD. 

(a) Prove that the centers of these squares are the vertices of a 

quadrilateral A'B'C'D' whose diagonals are equal and perpendicular to each 

other. 

(b) If squares are likewise erected on the sides of A'B'C'D', with 

centers A' ' , B' ' , C1 ' , Df ' , and this procedure is continued, will 

quadrilateral AcroBcri,CCFl,Dc,l,: tend to a square as n tends to infinity? 

Solution by M.S. Kiomkin, Uniuersity of Alberta, Edmonton, Alberta. 

(a) This is an old theorem of von Aubel [Editor's aside: does anyone 

have a reference?]. For completeness, we include a proof (see also [1] or 

[2]). Let A, B, C, D be complex number representations of the vertices. Then 

it follows easily that 
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2A' = A + B + t(A - B). etc. 

Thus 

and 

so that 

2(A' - C ' ) = A + B - C - D + i ( A + D - B - C ) 

2(B' - D1) = B + C - A - D + l(A+ B - C - D). 

B8 - D8 = l(A8 - C ) , 

which proves the theorem. 

As noted by Kelly In [1], ABCD need not be simple or convex, as long as 

one uses the same sense of rotation throughout the construction. 

(b) We will show the answer is in the affirmative in a more general 

context. Let A±(0),A2(0),...,AR(0) be complex numbers In a plane representing 

the n vertices of a given n-gonf simple or not, convex or not. For 

simplicity, our origin will be the centroid of the vertices, so that 

At(0) + A2(0) + ... + Aa(0) = 0. 

For each edge At(0)At+1(0), let Mt(0) be 

Its midpoint. Then a new vertex A$,(l) 

Is constructed so that 

A,{1) 

7T Mt(0)At(l) = tan ̂ .Mt(0)At(0) 
WQ)> 

n 
and such that ray Mt(0)At(l) is along • 

® 

ray Mt(0)At(0) after it has been rotated 
o 

90 counterclockwise about Mt(0) (we could just as well use a clockwise 
rotation). 

It is to be noted that if the Initial polygon was regular, then the new 

one A1(1),A2(1),.-..Aa(l) will also be regular and symmetrically circumscribed 

about P. We claim that in any case, If this procedure Is continued, n-gon 

A1(m),A2(ni) AR(IR) will, approach a regular n-gon as m tends to infinity. 

Since 

It follows from the above construction that 

2Aj(m + 1) = Aj(m) + Aj + 1(m) + iX(Aj(m) - Aj + 1(r?i)) (1) 

for j = 1,2,... ,n (Aa+1 = Ai), where A = tan(7r/n). Incidentally, by adding 

all the equations (1) from j = 1 to ns It follows that the centrolds of all 

the Iterated polygons are the same. We now make the transformations 

Aj(m) = w'-^l + i\)mBj(m)9 j = 1.2,....n, (2) 

where, o) = e2ir . Equations (1) now simplify to 

2(1 + i\)Bj(m + 1) = (1 + iX)Bj(m) + w(l - i\)Bj+±(m) 

or 



- 24 -

B j ( m + i) = B,f(m) + ^ ( " 0 (3) 

since 1 + iA = w(l - iA). Adding up all the equations (2) over j, we get that 
n ri n 
2 Bj(m + 1) = 2 Bj(fFi) = constant = 2 Bj(0). 
j=l J=l J=l 

Since (3) is a contraction mapping (just take the real parts and imaginary 

parts separately), each Bj(m) approaches the same limit 2 Bj(0)/n = L. Then 

from (2)9 Aj(m)/(1 + iX)
m approaches the regular polygon with vertices G)J~1L, 

j = 1,2,... 9n. Hence the polygon A±(m),A2(m)9 ... 9AK(m) approaches a regular 

polygon, in the sense that its shape approaches regularity. The given problem 

corresponds to the special case when n = 4.1 

Reference' 

[1] P.J. Kelly, Von Aubel's quadrilateral theorem, Mathematics Magazine 39 

(1966) 35-37. 

[2] J. MacNeill, A vector method, Math. Gazette no.456 (June 1987) 143-144. 

Also soiued (both parts) by JORDI DOU, Barcelona, Spain; DANIEL B. 

SHAPIRO, Ohio State Uniuersity, Columbus, Ohio; and G. SZEKERES, Uniuersity of 

New South Wales, Kensington, Australia. Part (a) (only) soiued by J.T. 

GROENMAN, Arnhem, The Netherlands; RICHARD I. HESS, Rancho Palos Verdes, 

California; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; DAN PEDOE, 

University of Minnesota; and the proposer. 

Other references to part (a) giuen by soiuers were: A. Schiid, On some 

properties of the quadrangle, in Two-year College Mathematics Readings, MAAS 

1981, pp. k0~k7; J.R. Musselman, solution of Advanced problem 4034, Amer. 

Math. Monthly 50 (19k3) 459; and exercise 8.1, p. kk of D. Pedoe, A Course of 

Geometry for Colleges and Universities, Dover. 

M * x 

1180. [1986: 206] Proposed by J.R. Pounder, University of Alberta, 

Edmonton, Alberta. (Dedicated to Leo Sauve.) 

(a) It is well known that the Simson line of a point P on the 

circumcircle of a triangle T envelopes a deltoid ("Steiner's hypocycloid") as 

P varies. Show that this is true for an oblique Simson line as well. (An 

oblique Simson line of T = ABC is the line passing through the points A±, B±, 

C± chosen on edges BC, CA, AB respectively so that the lines PA±, PB±, PC± 

make equal angles (say 8), in the same sense of rotation, with BC, CA, AB 

*[And is therefore, the editor feels compelled ' to say, a 4-gon conclusion.] 



- 25 -

respectively. The usual Simson line occurs when 8 = 90 .) 

(b) Given such an "oblique" deltoid for T, locate a triangle T' similar 

to T such that the "normal" deltoid for T* and the oblique deltoid for. T 

coincide. 

Solution of (a) by the proposer. 

For completeness let us first 

establish directly that any point P on 

the circumcircle of a given triangle 

ABC has an oblique Simson line. Given 

angle 0, draw line A^iC* so that 

ZPA±C = zPB±A = 6. Since P. Alf C, B± 

are concyclic we have 

ZPB±A± = zPCAi = ZPAB = zPACi 

so that P, A, Cl9 Bi are concyclic, and hence 

zPCiA = zPBtA = 9. 

Thus A1B1C1 is an oblique Simson line for AABC. 

Next we show that A±B±C± is a "normal" 

Simson line with respect to a certain 

triangle different from AABC but having two 

of Its sides along CA and CB9 its third 

side being determined uniquely by 8. At A± 

and B± draw perpendiculars to BC and AC 

respectively, meeting at P'. The circle 

through Alf Blf C contains both P and Ps. 

Hence A2PP' = 90° and ZPP'C = 9, i.e., CP' 

is obtained from CP by a rotation through 

the fixed angle 9 0 - 0 and a magnification in the fixed ratio esc 0. The 

locus of P' is therefore the image under this dilatation of the circumcircle F 

of AABC, AiBiCt being the normal Simson line of P' with respect to a triangle 

A'B'C that is completely determined. 

Remark. For (b), It Is easy to show that the orientations of the oblique 

and normal deltoids for the same triangle differ by (90 - 6)/3, but I have no 

geometrically simple recipe for the centre of the dilatation required to make 

them coincide. 

* *€ * 

1181. [1986: 241] Proposed by D.S. Mitrinouic and J.E. Pecaric, 

Uniuersity of Belgrade, Belgrade, Yugoslavia. (Dedicated to Leo 
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Sauve.) 

Let x, y9 z be real numbers such that 

xyz(x + y + z) > 0, 

and let a, b, c be the sides, ma, nt*,, mc the medians and F the area of a 

triangle. Prove that 

(a) |yza2 + zxb2 4- xyc2 I > 4Fv5q/z(x + y + z). 

(b) [yzmg + zxmf; + xym2 | > 3FVxyz(x + y + z)-. 

Solution by G. Tstntsifas, Tfoessaioraifei, Greece. 

The formula of Leibniz 

(Ai + A2 + A3)
2R2 > A2A3a

2 + K^b2 + X±\2c
2 

(see item 14.1 of 0. Bottema et al9 Geometric Inequalities), for 

A! = yza2, A2 = xxb2, A3 = xyc
2, 

together with the well-known fact 

t ~ 4R ' 

gives part (a). For the triangle with sides irta, nib, ̂ c taking in mind that 

its area is 3F/4, the above formula (a) is transformed to (b). 

Also solued by WALTHER JANOUS, Ursulinengymnasium, Imisbruch, Austria; 

MURRAY S. KLAMKIN, University of Alberta; and the proposers. 

* x * 

1182. [1986: 241] Proposed by Peter Andrews and Edward T.H. Wang, 

Wilfrid Laurier University, Waterloo, Ontario. (Dedicated to Leo 

Sauve.) 

Let alfa25...,an denote positive reals where n > 2. Prove that 

v s *. -ia± . *. ~±a2 . . *. -iota • (n - l)ir ?r < tan 1-A- + tan 1-̂ - + . . . + tan 1-JL < A — ^ — L -z a2 a3 a 4 ~ z 

and for each inequality determine when equality holds. 

Solution by Peter Watson-Hurthigt Columbia College, Burnabg, B.C. 

If n = 2 then 

?r = tan 1-A- + tan 1-̂ - = •*—s;—L~ 
z a2 a± z 

since the two terms in the sum are complementary angles. 

For n > 2, set aa+1 = a± and aa+2 =
 a2- Because the sum is composed of 

at least three positive terms, for the sum to be less than ir/2 it is obviously 

necessary that the sum of each pair of consecutive terms 

St = tan"
1-^-+ tan- 1^^, 
a t + 1 a t+2 

1 < i < n, be less than TT/2. But because tan"1 is an increasing function, 

Si < tan"'-**- + tan-»SLt±l. = E 
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If and only If at < at*2> for 1 < i < n. Therefore if n is odd we have 

a± < a3 < . . . < a a < aR4.2 =.a2 < ... < aa.i < a a + i = at, 

and if n is even we have similarly 

a± < a 3 < ... < an„± < a a + 1 = a±, 

both of which are impossible. Therefore St > ir/2 for at least one 1, so the 

sum must be strictly greater than ir/2 if n > 2. 

For the second inequality (where n > 2) consider the following three 

cases: 

(i) If two or more of the terms tan"1(at/at*i) are less than TT/4, then 

since 

0 < tan" 1-^- < i , 1 < 1 < ns 
a-t + i z 

we have 

l = 1 a1 + 1 2 4 2 

(ii) If only one of the terms, say tan"1(aa/a1), is less than TT/4 and 

all the other terms are greater than or equal to ir/4, then we would have 

an ^ ai ^ a 2 ^ • • • ^ a a 

and therefore 

t a n - 1 ^ + t a n - 1 ^ < t a n " 1 ^ + tan"1^- = £ 
&± &2 CL± CtR Z 

(since a2 > a a and tan"
1 Is Increasing), and once again the sum will be less 

than (n - l)ir/2. 

(ill) If all the terms are greater than or equal to ir/4 then 

a± > a 2 y . . . y cta > a4 

which means that 

cti = a 2 = « - . = aa, 

and the sum is rur/4 which is less than (n - l)ir/2 if n > 2. 

Therefore both inequalities hold strictly for all n > 2 and are 

equalities when n = 2. 

Also solved by J.T. GROEMAN, Arnhem, The Netherlands; WALTHER JANOUS, 

Ursulinerigymnasium, Innsbruck, Austria; M.S. KLAMKIN and A. MEIR, Uniuerstty 

of Alberta; KEE-WAI LAO, Eong Kong; and the proposers. 

* *€ * 

1183. [1986: 241] Proposed by Roger Izard, Dallas, Texas. 

Let ABCD be a convex quadrilateral and let points E, G lie on BD 

and F, H lie on AC such that AE, BF, CG, DH bisect angles DAB, ABC, BCD, CDA 

respectively. Suppose that AE = OG and BF = DH. Prove that ABCD is a 

parallelogram. 
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Solution by the proposer. 

We first claim that if AD-DC = AB-BC or BA-AD = BC-CD then ABCD is a 

parallelogram. Suppose for 

instance that 

AD-DC = AB-BC. 

Then since CG and AE are 

bisectors, 

D G _ D C _ B A _ B E , _,. 
GB " CB ~ AD " ED l~ } 

and thus BE = GB. The two 

circles of Apollonius deter

mined by base BB (or BB) and ratio X have equal radii and have chords AE and 

CG which by assumption are equal in length. Also BD is normal to both 

circles, and thus zAEB = zBGC. Therefore AAED = ABOC, and so AD = BC. From 

AD-DC = AB-BC we have AB = CD, so ABCD is a parallelogram. 

Thus we only have to prove that AD-DC = AB-BC or that BA-AD = BC-CD. 

Suppose without loss of generality that 

BA-AD < BC-CD (1) 

and 

AB-BC < AD-DC. (2) 

It is well-known that if a triangle has sides a, b, c, then the bisector from 

angle A has length t satisfying 

t2 = be 1 - a 
(b + c): 

Thus from AE = CG and BF = BE we obtain 

(BB)2 

and 

BA-AD-

AB-BC-

1 -

1 -

(BA + AD)2 

(AC)2 

= BC-CD- 1 - imi 
(BC + CB)' 

= AD-DC- 1 - 1M: 
(AB + BC)2 

From (1) and (3) follows 

BA + AD > BC + CD 

and from (2) and (4) we obtain 

AB + BC > AD + DC. 

Adding (5) and (6), 

2AB + BC + AD > 2CD + BC + AD, 

so 

AB > CD. 

(AD + DC)2J 

(3) 

(4) 

(5) 

(6) 
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But this implies AD < BC by (1) and DC <. AD by (2), which is a contradiction. 

* K *€ 

1184. [1986: 242] Proposed by J.T. Groenmon, Amhem, The Netherlands. 

Let ABC be a nonequilateral triangle and let 0, I, E9 F denote the 

circumcenter, incenter, orthocenter, and the center of the nine-point circle, 

respectively. Can either of the triangles OIF or IFH be equilateral? 

Comment by Stanley Rabinowitz, Alliont Computer Systems Corp., Littleton, 

Mas sachuse 11 s. 

In 1968 I proposed essentially the same problem, that no three of the 

four points 09 I, H, F can form an equilateral triangle. See problem E2139 of 

the American Math. Monthly (solution in vol. 76 (1969), p.1066). 

Also solued by WALTHER JAM3US, Ursulinengymnasium, Innsbruck, Austria; 

D.J. SMEENK, Zaltbommel, The Netherlands; and the proposer. 

M *€ X 

1186. [1986: 242] Proposed by Svetoslav Bilchev, Technical University 

and Emilia Velihova, Mathematlcalgymnastum, Russe, Bulgaria. 

If a, b, c are the sides of a triangle and s, R, r the semiperi-

meter, circumradius, and Inradius, respectively, prove that 

2(b + c - a)v£ I 4r(4R + r)J^R*
 r 

where the sum is cyclic over a, b, c. 

Combination of solutions by falther Janous, Ursulinengymnasium, 

Innsbruck, Austria and Murray S. Klamkin, University of Alberta. 

We first prove the inequality 

V§"2 cos A > — , (1) 
R2 

where F is the area of the triangle. Indeed, as 

v A R + r 2 cos A = — s — . 

and F = rs, (1) reads equivalently 

v5R(R + r) 
s S 2r 

which is true since 

s *T-
(see 5.3 of Bottema et al, Geometric Inequalities) and 3 < (R + r)/r, i.e. 

2r < R. Now (1) can be read as 
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>2 , ^2 _ „2 

i.e., using 4RF = abc, 

K- V b2 + c2 - a2 2F 
V3 Z 2bc * R2 ' 

J§ 2(b2 + c2 - a2)a > ~ ~ ~ . (2) 

Again using 4RF = abc and 

16F2 = 2 2 b2c2 - 2 a4, 

(2) becomes 

v§" 2(b2 + c2 - a2)a > ̂ 2 2 b * ^ ~ 2 a 4 ) 3 / 2 . (3) 

Since vST, vlb, VE" are the sides of a triangle, (3) implies 

/5" wi. . <* x (2 2 be - 2 a 2 ) 3 ' 2 ... 
\G 2(b + c - a)a > \ ~ZZ —" • (4) 

/abc 

Now we have the known relation 

2 be = r(4R + r) + s2 = r(4R 4- r) + —^ * * 2 bc 

so that 

2 2 bc = 4r(4R + r) + 2a 2. 

Thus (4) becomes 

V§" 2(b + c - a)a > 4r(4R'+ r)J 4 r^ b^ ^ 

which with abc = 4Rrs yields the result. 

Also solued by RICHARD I. HESS, Rancho Paios Verdes, California; and the 

proposers. 

The stronger inequality (2) aboue was obtained by both Jaaous and 

Klamkin. 

* M * 

1187. [1986^ 242] Proposed by Stanley Rabinoioitz, Digital Equipment 

Corp. , Nashua, Neu> Hampshire. 

Find a polynomial with integer coefficients that has 2 1 / 5 + 2"1'5 

as a root. 

I. Solution hy Bruce Shawyer, Memorial University of Newfoundland, St. 

John' s. 

Let x = 2 1 / 5 + 2"1/5 so that 

x3 = 2 3 / S + 2-3'5 + 3(2i/5 + 2'1/5) = 23'5 + 2~3/5 + 3x, 

or 

23^5 + 2-3^6 = x 3 ~ 3X. 

Also 
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x5 = 2 + 2"1 + 5(23/5 + 2"3/5) + 10(21/5 + 2"1/5) 

= 5/2 + 5(x3 - 3x) + 10xs 

whence 2 1 / 5 4- 2~1/5 is a root of 

P(x) = 2x5 - 10x3 + lOx - 5. 

It is easy to adapt this argument to find a polynomial with integer 

coefficients that has qlyn + q"i/a as a root, where q is a nonzero rational 

and n is an odd positive Integer. 

II. Generalization by Murray S. Klamkin, University of Alberta, 

Edmonton, Alberta. 

Let m and n be positive Integers. Obviously, t = mi/R Is a solution of 

tn +" t"R = m + 1/m. (1) 

Therefore the transformation 

x = t +'l/t (2) 

will turn (1) into a polynomial with ini'ri + nC1'71 as a root. From (2) we have 

_ x * ̂ 2 """ 4 

t - 2 

so (1) becomes 

(x + v£2~^~l[)a 2 R ^ 1 

2 a (x +• v£2 - 4) R ^ 

or 

(x + v k 2 " ^ ) * 1 + (x - V^ 2 " ^ T ) a = 2li(m + -) 

or 

xa + xR-2(x2 - 4) + H*--(x2 - 4) 2 + ... = 2n-1(» + ~) 

Multiplying by m, we obtain a polynomial with integer coefficients having 

m1"1 + m"1"1 as a root. The given problem corresponds to the case m = 2, 

n =. 5. . 

For a related problem see 86-3 and its solution in Math. Intelligencer 8 

(1986) 31, 33. 

Also solued by JACK GARFUNKEL, Flushing, N.Y.; J.T. GROENMAN, Arnhem, The 

Netherlands; RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER JANOUS, 

Ursulinengymnasium, Innsbruck, Austria; MICHAEL JOSEPHY, Universidad de Costa 

Rica, San Jose, Costa Rica; FRIEND fl. KIERSTEAD JR., Cuyahoga Falls, Ohio; 

KEE-WAI LAW, Hong Kong; } . WALTER LYNCH, Georgia Southern College, Statesboro, 

Georgia; J.A. MCCALLUM, Medicine Hat, Alberta; LEROY F. MEYERS, The Ohio State 

University; M.M. PARMENTER, Memorial University of Newfoundland, St. John's; 

GEORGE SZEKERES, Uniuersity of New South Wales, Kensington, Australia; EDWARD 

T.H. WANG, Wilfrid Laurter University. Waterloo, Ontario; KENNETH M. WILKE, 
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Topeha, Kansas; and the proposer. All soluers obtained the same solution, by 

uiriually the same method. 

One solver noted that such a polynomial must exist, since the sum of 

algebraic numbers is algebraic. Two solvers noted that the polynomial P(x) 

giuen aboue has no rational roots by Eisensiein's criterion. 

Szekeres found a polynomial with integer coefficients (given in a simple 

closed form) lohich has a1/R + a~i'a as a root, where a is a giuen positiue 

rational and n an odd positive integer. This has been included as problem 

1301 in this issue. 

M * *-

1188. [1986: 242] Proposed by Dan Sohoioioshy, Williamsburg, Virginia. 

Given a circle K and distinct points A, B in the plane of K, 
o 

construct a chord PQ of K such that B lies on the line PQ and ZPAQ = 90 . 

Solution by George Tsintsifas, Thessaioniki, Greece. 

Let K have centre 0 and radius R. If 

PQ is the required chord and M is its mid

point, then the power of the point B with 

respect to K is 

BO2 - R2 = W»BQ 

= (If - AM)(BM + AM) 

= BI2 - AM2, 

so 

AM2 + Of2 = R2. (1) 

From (1) we conclude that M lies on the circle (N,~>l2R2 - 0A2), where N is the 

midpoint of the segment 0A. Also M obviously lies on the circle of diameter 

OB. The intersection of these two loci gives the position of M and hence the 

solution. 

Also solued by JORDI DOU, Barcelona, Spain; J .T. GROENMAN, Arnhem, The 

Netherlands; BAN PEDOE, Minneapolis, Minnesota; D.J. SMEENK, Zaitbommel, The 

Netherlands; and the proposer. 

Two readers pointed out that (as can be seen from the above solution) the 

construction is not always possible. 
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