Crux

Published by the Canadian Mathematical Society.

<http://crux.math.ca/>

The Back Files

The CMS is pleased to offer free access to its back file of all issues of Crux as a service for the greater mathematical community in Canada and beyond.

Journal title history:

- ➢ The first 32 issues, from Vol. 1, No. 1 (March 1975) to Vol. 4, No.2 (February 1978) were published under the name *EUREKA*.
- ➢ Issues from Vol. 4, No. 3 (March 1978) to Vol. 22, No. 8 (December 1996) were published under the name *Crux Mathematicorum*.
- ➢ Issues from Vol 23., No. 1 (February 1997) to Vol. 37, No. 8 (December 2011) were published under the name *Crux Mathematicorum with Mathematical Mayhem*.
- ➢ Issues since Vol. 38, No. 1 (January 2012) are published under the name *Crux Mathematicorum*.

r

% l ^ Mafhematicorum

VOLUME 14 * NUMBER 1 JANUARY 1988

Table of Contents

A PUBLICATION OF THE CANADIAN MATHEMATICAL SOCIETY UNE PUBLICATION DE LA SOCIETE MATHEMATIQUE DU CANADA 577 KING EDWARD AVENUE,, OTTAWA, ONTARIO, CANADA KIN 6N5

Founding Editors: Léopold Sauvé, Frederick G.B. Maskell

GENERAL INFORMATION

Crux Mathematicorum is a problem-solving journal at the senior secondary and university undergraduate levels for those who practice or teach mathematics. Its purpose is primarily educational, but it serves also those who read it for professional, cultural or recreational reasons.

Problem proposals, solutions and short notes intended for publication should be sent to the Editor:

> Dr. G.W. Sands Department of Mathematics and Statistics University of Calgary Calgary, Alberta Canada T2N 1N4.

SUBSCRIPTION INFORMATION

Crux is published monthly (except July and August). The 1988 subscription rate for ten issues is \$15.00 for members of the Canadian Mathematical Society and \$30.00 for non-members. Back issues: \$3.00 each. Bound volumes with index: volumes 1&2 (combined) and each of volumes 3-10: \$10.00. All prices quoted are in Canadian dollars. Cheques and money orders, payable to the CANADIAN MATHEMATICAL SOCIETY, should be sent to the Managing Editor:

> K.S. Williams Canadian Mathematical Society 577 King Edward Ottawa, Ontario Canada KIN 6N5

ACKNOWLEDGEMENT

The support of the Departments of Mathematics and Statistics of the University of Calgary and Carleton University, and of the Department of Mathematics of the University of Ottawa, is gratefully acknowledged.

© Canadian Mathematical Society, 1988

Published by the Canadian Mathematical Society Printed at Carleton University

Second Class Mail Registration Number 5432

- 1 - THE OLYMPIAD CORNER

No. 91

R.E. WOODROW

All *communications* about this *column* should he sent to *Professor* R.E. Woodrow, Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta, *Canada, T2N INk.*

This column marks the first anniversary of my taking over this Corner from Murray Klamkin. I am painfully aware of some of the errors that have crept through, but I hope, with the continued contributions from the readership, to carry on providing interesting Olympiad problems and solutions. I would particularly like to thank those who submitted problem sets and solutions this past year, even though we haven't yet published all the contributions. The list of contributors includes H. Abbott, H. Alzer, P. Andrews,, B. Arbel, Francisco Bellot, Aage Bondesen, Curtis Cooper, George Evagelopoulos, Chris Fisher, J.T. Groenman, R.K. Guy, Walther Janous, Murray Klamkin, Andy Liu, M. Molloy, Sister J. Monk, John Morvay, Richard Nowakowski, Bob Prielipp, Josef Rita i Coura, Daniel Ropp, Cecil Rousseau, M. Selby, Robert E. Shafer, Bruce Shawyer, D.J. Smeenk, Dan Sokolowsky, Dim. Vathis, and Edward T.H. Wang.

 \star \star \star

We begin with five sets of problems forwarded to us by Andy Liu. These are problems from the Kürschak Competitions, Hungary, for the years 1982 to 1986. This competition is an annual four hour "open book" contest.

1982.1. A cube of integral dimensions is given in space so that all four vertices of one of the faces are lattice points. Prove that the other four vertices are also lattice points.

1982.2. Prove that for any integer $k > 2$, there exist infinitely many positive integers *n* such that the least common multiple of

 $n,n + 1,n + 2,...,n + k - 1$

is greater than the least common multiple of

 $n + 1, n + 2, \ldots, n + k.$

1982.3. The set of integers is coloured with 100 colours in such a way that all the colours are used and the following is true: for any choice of intervals $[a,b]$ and $[c,d]$ of equal length and with integral endpoints, if a

and c have the same colour and b and d have the same colour, then the intervals $[a,b]$ and $[c,d]$ are identically coloured, in that for any integer x, $0 \le x \le b - a$, the numbers $a + x$ and $c + x$ are of the same colour. Prove that -1982 and 1982 are of different colours.

 $-2 -$

¥

1983.1. Let x , y , and z be rational numbers satisfying $x^3 + 3y^3 + 9z^3 - 9xyz = 0.$

Prove that $x = y = z = 0$.

1983.2. Prove that $f(2) \geq 3^n$ where the polynomial $f(x) = x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + 1$

has non-negative coefficients and *n* real roots.

1983.3. Given are $n + 1$ points P_1, P_2, \ldots, P_n and Q in the plane, no three collinear. For any two different points P_i and P_j , there is a point P_k such that the point Q lies inside the triangle $P_i P_j P_k$. Prove that *n* is an odd number.

'j

 \star

1984.1. Writing down the first four rows of Pascal's triangle in the usual way and then adding up the numbers in vertical columns, we obtain seven numbers as shown below. If we repeat this procedure with the first 1024 rows of the triangle, how many of the 2047 numbers thus obtained will be odd?

1 1 1 1 2 1 1 3 3 1 1 1 4 3 4 1 1

1984.2. $A_1B_1A_2$, $B_1A_2B_2$, $A_2B_2A_3$, ..., $B_1A_1A_1B_1$, $A_1A_2B_1A_1$, and $B_1A_1B_1$ are equilateral rigid plates that can be folded along the edges A_1B_1 , B_1A_2 , A_2B_2,\ldots , $A_{14}B_{14}$, and $B_{14}A_1$, respectively. Can they be folded so that all 28 plates lie in the same plane?

1984.3. Given are n integers, not necessarily distinct, and two positive integers p and q. If the *n* numbers are not all distinct, choose two equal ones. Add p to one of them and subtract *q* from the other. If there are still equal ones among the *n* numbers, repeat this procedure. Prove that after a finite number of steps, all n numbers are distinct.

*

1985.1. The convex $(n+1)$ -gon $P_0P_1 \ldots P_n$ is partitioned into $n-1$

triangles by $n - 2$ non-intersecting diagonals. Prove that the triangles can be numbered from 1 to $n-1$ such that for $1 \leq i \leq n-1$, P_i is a vertex of the triangle numbered i.

1985.2. Let *n* be a positive integer. For each prime divisor p of n, consider the highest power of p which does not exceed n . The sum of these powers is defined to be the power-sum of n. Prove that there exist infinitely many positive integers which are less than their respective power-sums.

1985.3. Let each vertex of a triangle be reflected across the opposite side. Prove that the area of the triangle determined by the three points of reflection is less than 5 times the area of the original triangle.

1986.1. Prove that three rays from a given point contain three face diagonals of a cuboid if and only if the rays include pairwise acute angles such that their sum is $180^\circ.$

1986.2. Let n be an Integer greater than 2. Find the maximum value for h and the minimum value for H such that for any positive numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$

$$
h \leq \frac{a_1}{a_1 + a_2} + \frac{a_2}{a_2 + a_3} + \ldots + \frac{a_n}{a_n + a_1} \leq H.
$$

1986.3. A and B play the following game. They arbitrarily select *k* of the first 100 positive integers. If the sum of the selected numbers is even, then A wins. If their sum is odd, then B wins. For what values of k is the game fair? [Editor's *note'* In this form the question is not completely clear. Do A and B each independently choose *h* numbers? All at once, or one at a time? Are repetitions allowed, and If so, how are they handled?]

 \star \star \star

We return to solutions to problems from past years submitted in 1987.

1. [1985: 168] *198k Dutch* Olympiad.

Two circles C_1 and C_2 with radii r_1 and r_2 , respectively, are tangent to the line p at point P. All other points of *C[±]* are inside C_2 . Line q is perpendicular to p at point S, is tangent to C_1 at point R, and intersects C_2 at points M and N , with N between *R* and S, as shown in the figure.

 \overline{p}

 $- 3 -$

(a) Prove that *PR* bisects ZMPN.

(b) Compute the ratio r_1 : r_2 if, moreover, it is given that PN bisects ∠RPS.

Solution hy Daniel Ropp, Washington *University,* St. Louis, MO, U.S.A.

(a) Let $0₁$ denote the center of circle $C₁$. Then

$$
\angle OPS = \angle PSR = \angle SRO_1 = 90^\circ.
$$

Thus $0. PSR$ is a square and $\angle RPS = \angle PRS = 45^\circ$. Also, $\angle PMS$ and $\angle NPS$ are equal since p is tangent to C_2 at P and $\angle PMS$ is subtended by the arc PN. Now

$$
\angle RPN = \angle RPS - \angle NPS = 45^\circ - \angle NPS;
$$

\n
$$
\angle MPR = 180^\circ - \angle PMR - \angle PRM
$$

\n
$$
= 180^\circ - \angle PMS - 135^\circ = 45^\circ - \angle NPS.
$$

Thus \angle RPN = \angle MPR, or PR bisects \angle MPS.

(b) If PN bisects \angle RPS, then \angle NPS = \angle PMS = 22.5°. Also MN is a chord of C_2 at distance r_1 from the center of C_2 (and hence C_1) and so

$$
MN = 2\sqrt{r_2^2 - r_1^2} \ .
$$

Hence,

$$
NS = PS \tan 22.5^{\circ} = r_1(\sqrt{2} - 1)
$$

\n
$$
MS = MN + NS = 2\sqrt{r_2^2 - r_1^2 + r_2(\sqrt{2} - 1)}
$$

\n
$$
= PS \tan 67.5^{\circ} = r_1(\sqrt{2} + 1).
$$

Thus

$$
\frac{r_1}{r_2} = \frac{\sqrt{2}}{2} .
$$

1. [1985: 170] 34th Bulgarian Mathematical Olympiad (3rd Stage). If k and n are positive integers, prove that

 $(n^4 - 1)(n^3 - n^2 + n - 1)^k + (n + 1)n^{4k-1}$

is divisible by $n^5 + 1$.

Solution by Daniel *Ropp9 Washington University,* St. Louis, MO, U.S.A.

The given expression is a polynomial in n, say $f_k(n)$, with integer coefficients. Since $x^5 + 1 = 0$ has distinct complex roots it suffices to show that if $x^5 + 1 = 0$ then $f_k(x) = 0$. Now

 $x^5 + 1 = (x + 1)(x^4 - x^3 + x^2 - x + 1).$

Since $f_k(-1) = 0$ by inspection, we suppose that

 $x^4 - x^3 + x^2 - x + 1 = 0.$

Then $x^4 = x^3 - x^2 + x - 1$ and so

$$
f_k(x) = (x^4 - 1)(x^4)^k + (x + 1)x^{4k-1} = x^{4k-1}(x^5 + 1) = 0.
$$

 $-4 -$

This completes the proof.

Editor's note: Edward T.H. Wang of Wilfrid Laurier University pointed out a more straightforward proof by induction.

4. [1985: 170] 34th Bulgarian Mathematical Olympiad (3rd Stage).

Let a_n and b_n be positive integers satisfying the relation

$$
a_n + b_n \sqrt{2} = (2 + \sqrt{2})^n, \quad n = 1, 2, 3, \ldots
$$

Prove that $\lim(a_n/b_n)$ exists, and find this limit. $n\rightarrow\infty$

Solution by Daniel Ropp, Washington Uniuersity, St. Louis, MO, U.S.A. By expanding $(2 + \sqrt{2})^n = a_n + b_n \sqrt{2}$, since a_n , b_n are integers, we see that

$$
a_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} 2^{n-2k} (\sqrt{2})^{2k}
$$

$$
b_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k+1} 2^{n-2k-1} (\sqrt{2})^{2k}
$$

where $\lceil x \rceil$ is the greatest integer less than or equal to x, and we set the convention that $\begin{bmatrix} n \\ n+1 \end{bmatrix} = 0$. From this it follows that

$$
a_n - b_n \sqrt{2} = (2 - \sqrt{2})^n.
$$

Thus

$$
a_n = \frac{1}{2}[(2 + \sqrt{2})^n + (2 - \sqrt{2})^n],
$$

\n
$$
b_n = \frac{1}{2\sqrt{2}}[(2 + \sqrt{2})^n - (2 - \sqrt{2})^n].
$$

Therefore

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \sqrt{2} \left[\frac{1 + \left[\frac{2 - \sqrt{2}}{2 + \sqrt{2}} \right]^n}{1 - \left[\frac{2 - \sqrt{2}}{2 + \sqrt{2}} \right]^n} \right] = \sqrt{2}
$$

since $2 - \sqrt{2}$ $2 + \sqrt{2}$ $\langle 1.$

6. [1985: 170] *3kth Bulgarian Mathematical Olympiad* (3rd Stage).

Five given points in the plane have the following property: of any four of them, three are the vertices of an equilateral triangle.

(a) Prove that four of the five points are the vertices of a rhombus with an angle equal to 60° .

(b) Find the number of equilateral triangles having their vertices among the given five points.

Solution by Daniel Ropp, Washington Uniuerstty, *St.* Louis, MO, U.S.A.

(a) Label the points A, B, C, D, E. Some three of the points, say A, B, C, form an equilateral triangle. If neither D nor E is the vertex of an equilateral triangle together with vertices A and B , B and C , or C and A , then by consideration of the three sets of four points $\{D, E, A, B\}$, $\{D, E, B, C\}$, and $\{D, E, C, A\}$, we see that two of the three triangles DEA, DEB, DEC are equilateral. Without loss suppose that ADEA and ADEB are equilateral. Then A, D, B, E form the vertices of a rhombus with an angle of 60°. On the other hand, if either D or E , say D , is the third vertex of an equilateral triangle with A and B then ADBC is a rhombus with interior angle 60° .

(b) By relabelling if necessary, we may assume that ADBC is a rhombus with $\angle ADB = 60^\circ$ = $\angle ACB$. Notice that $\triangle ABE$ cannot be equilateral as then $E = C$ or $E = D$. Consider now ${B, C, D, E}$. Since ACDB is not equilateral we must have some one of $\triangle BDE$, $\triangle BCE$ or $\triangle CDE$ equilateral. In the first two cases we may (by relabelling) assume that $\triangle BDE$ is equilateral to obtain Figure 1. But then there is no equilateral triangle for $\{A, C, D, E\}$. Thus we conclude that ACDE is equilateral to give the configuration of Figure 2, after relabelling if necessary. Inspection shows that there are three equilateral triangles AABC, AABD and ACDE. It is also clear that such a configuration satisfies the conditions of the problem.

that

JL [1985: 212] 16th Austrian Mathematical Olympiad *(Final Round).* Determine all quadruples (a,b,c,d) of nonnegative integers such

$$
a^2 + b^2 + c^2 + d^2 = a^2b^2c^2.
$$

₩

Solution by Daniel *Ropp,* Washington (iniuersily. *St. Louis,* MO. *and independently hy John Morvau,* Dallas, Texas, U.S.A.

Let (a,b,c,d) be such a quadruple. If all three of a , b , c are odd, then

 $\alpha^2 \equiv b^2 \equiv c^2 \equiv 1$ mod 8, since the residues of x^2 modulo 8 are 0, 1 and 4. But then $d^2 \equiv 1-1-1-1 \equiv 6 \mod 8$, which is impossible. Thus we may suppose that a is even. Then $a^2 \equiv 0$ mod 4, and so $b^2 + c^2 + d^2 \equiv 0$ mod 4. This is impossible if any of b, c or d are odd. Thus a, b, c, d are all even.

We now prove that $a/2^n$, $b/2^n$, $c/2^n$, $d/2^n$ are all integers for $n \geq 1$ by induction. From this it is immediate that $(a,b,c,d) = (0,0,0,0)$ is the only solution to the problem.

That the four quotients are integers for $n = 1$ was shown in the first paragraph. Suppose then that $a/2^n$, $b/2^n$, $c/2^n$ and $d/2^n$ are integers. The equation $a^2 + b^2 + c^2 + d^2 = a^2b^2c^2$ is equivalent to

 $(a/2^{n})^{2} + (b/2^{n})^{2} + (c/2^{n})^{2} + (d/2^{n})^{2} = 2^{4n} (a/2^{n})^{2} (b/2^{n})^{2} (c/2^{n})^{2}.$

Thus

 $(a/2^{n})^{2} + (b/2^{n})^{2} + (c/2^{n})^{2} + (d/2^{n})^{2} \equiv 0 \mod 8.$

As before, we deduce that $a/2^n$, $b/2^n$, $c/2^n$ and $d/2^n$ are all even. This gives $a/2^{n+1}$, $b/2^{n+1}$, $c/2^{n+1}$ and $d/2^{n+1}$ all integers to complete the induction step.

2. [1985*. 212] 16th Austrian Mathematical Olympiad (Final *Round).* For $n = 1, 2, 3, ...$ let $f(n) = 1ⁿ + 2ⁿ⁻¹ + 3ⁿ⁻² + ... + (n - 1)² + n.$

Determine

$$
\min_{n\geq 1}\frac{f(n+1)}{f(n)}.
$$

Solution by Daniel Ropp, Washington Unluerslty, St. Louis, MO, U.S.A. We calculate

and suspect that

$$
\min_{n\geq 1}\frac{f(n+1)}{f(n)}=\frac{f(3)}{f(2)}=\frac{8}{3}.
$$

To show this it suffices to show that $\frac{f(n+1)}{f(n)} \geq 3$ for $n \geq 5$. *tin)*

Now

$$
f(n + 1) = \sum_{k=1}^{n+1} k^{n+2-k}
$$

\n
$$
\geq 1 + 2^{n} + 3^{n-1} + 4^{n-2} + 5^{n-3} + \sum_{k=6}^{n} 3k^{n+1-k}
$$

(if $n \geq 5$), and since

$$
3f(n) = 3 + 3 \cdot 2^{n-1} + 3 \cdot 3^{n-2} + 3 \cdot 4^{n-3} + 3 \cdot 5^{n-4} + \sum_{k=0}^{n} 3k^{n+1-k},
$$

it suffices to show that for $n \geq 5$,

 $1 + 2^{n} + 3^{n-1} + 4^{n-2} + 5^{n-3} \geq 3 + 3 \cdot 2^{n-1} + 3 \cdot 3^{n-2} + 3 \cdot 4^{n-3} + 3 \cdot 5^{n-4}$ or equivalently

$$
4^{n-3} + 2 \cdot 5^{n-4} \geq 2^{n-1} + 2.
$$

But $2n - 6 \ge n - 1$ and $n - 4 > 0$ for $n \ge 5$, so

$$
4^{n-3} + 2 \cdot 5^{n-4} = 2^{2n-6} + 2 \cdot 5^{n-4} > 2^{n-1} + 2,
$$

completing the proof.

3. [1985: 212] 16th Austrian Mathematical Olympiad (Final *Round),*

A line intersects the sides (or sides produced) *BG,* CA, AB of a triangle ABC in the points A_1 , B_1 , C_1 , respectively. The points A_2 , B_2 , C_2 are symmetric to A_1 , B_1 , C_1 with respect to the midpoints of BC, CA , AB , respectively. Prove that A_2 , B_2 , and C_2 are collinear.

Solution by Daniel Ropp, Washington University, St. Louis, MO, U.S.A.

For any point P in the plane of triangle ABC, we let P denote the vector whose head is at P and whose tail is at C. Since A_1 , B_1 , C_1 lie on BC , CA , AB, respectively,

$$
A_1 = c_1B
$$

\n
$$
B_1 = c_2A
$$

\n
$$
C_1 = A + c_3(B - A)
$$

for some constants c_1 , c_2 , c_3 . Since any 3 points P, Q, R are collinear if and only if

$$
(R - P) \times (Q - P) = 0
$$

we must have

$$
0 = (B_1 - A_1) \times (C_1 - A_1)
$$

= $(c_2A - c_1B) \times [(1 - c_3)A + (c_3 - c_1)B]$
= $[c_2(c_3 - c_1) + c_1(1 - c_3)](A \times B)$
= $(c_1 - c_1c_2 - c_1c_3 + c_2c_3)(A \times B).$ (1)

The midpoints of AB, BC, CA are points whose corresponding vectors are $(A + B)/2$, $B/2$, $A/2$, respectively. By definition

$$
A_2 = B - A_1 = (1 - c_1)B
$$

\n
$$
B_2 = A - B_1 = (1 - c_2)A
$$

\n
$$
C_2 = A + B - C_1 = c_3A + (1 - c_3)B.
$$

Now A_2 , B_2 , C_2 are collinear if and only if

$$
(B2 - A2) \times (C2 - A2) = 0
$$

$$
\iff [(1 - c2)A - (1 - c1)B] \times [c3A + (c1 - c3)B] = 0
$$

n

$$
\Leftrightarrow [(1 - c_2)(c_1 - c_3) + (1 - c_1)c_3](A \times B) = 0
$$

$$
\Leftrightarrow (c_1 - c_1c_2 - c_1c_3 + c_2c_3)(A \times B) = 0.
$$

Since this last condition is just (1), A_2 , B_2 , C_2 are indeed collinear.

4. [1985" 212] 16th Austrian Mathematical Olympiad (Final *Round),* Determine all natural numbers n such that the equation

$$
a_{n+1}x^2 - 2x^2 + a_2^2 + \dots + a_{n+1}^2 + a_1 + a_2 + \dots + a_n = 0
$$

has real solutions for all real a_1, a_2, \dots, a_{n+1} .

Solution by Daniel Ropp, Washington Uniuersity, *St. Louis,* MO, U.S.A. If $a_{n+1} = 0$, the given equation has the real solution

$$
x = \frac{\sum_{i=1}^{n} a_i}{2\begin{bmatrix} n+1\\ \sum a_i\\ i=1 \end{bmatrix}^{1/2}}.
$$

unless this denominator is zero, in which case each $a_i = 0$ and any real x is a solution.

If $a_{n+1} \neq 0$, the equation will have a real solution just in case the discriminant is nonnegative, or equivalently,

$$
\begin{array}{c}\nn+1 & n \\
\sum \alpha_i^2 \geq a_{n+1} \sum \alpha_i, \\
i=1 & i=1\n\end{array}
$$

that is,

$$
\left[a_{n+1} - \frac{1}{2} \sum_{i=1}^{n} \alpha_i\right]^2 + \sum_{i=1}^{n} \alpha_i^2 - \frac{1}{4} \left[\sum_{i=1}^{n} \alpha_i\right]^2 \geq 0.
$$

This holds for all real a_1, \ldots, a_{n+1} , $a_{n+1} \neq 0$, if and only if

$$
\sum_{i=1}^{n} a_i^2 - \frac{1}{4} \left[\sum_{i=1}^{n} a_i \right]^2 \geq 0.
$$
 (*)

In particular, $(*)$ must hold for $(a_1, \ldots, a_n) = (1, \ldots, 1)$, so

$$
n-\frac{1}{4}n^2\geq 0.
$$

Necessarily then, $n \leq 4$. Conversely, if $n \leq 4$, Cauchy's inequality gives

$$
\begin{bmatrix} n \\ \sum a_i \\ i = 1 \end{bmatrix}^2 \le \begin{bmatrix} n \\ \sum 1^2 \\ i = 1 \end{bmatrix} \begin{bmatrix} n \\ \sum a_i^2 \\ i = 1 \end{bmatrix} \le 4 \sum a_i^2 \\ i = 1
$$

for all a_1, \ldots, a_n . This is evidently equivalent to (\divideontimes) , so the values are $n = 1, 2, 3, 4.$

5. [1985: 212] 16th *Austrian Mathematical Olympiad (Final Round).* Let $\{a_n\}$ be a sequence of natural numbers satisfying

$$
a_n = \sqrt{(a_{n-1}^2 + a_{n+1}^2)/2}
$$

for all $n \geq 1$. Prove that the sequence is a constant one.

Solution by *Daniel Ropp, Washington University,* St. Louis, *MO, U.S.A.*

We square both sides of the equation and rearrange terms to obtain

$$
a_{n+1}^2 - a_n^2 = a_n^2 - a_{n-1}^2.
$$

Thus

$$
\alpha_n^2 - \alpha_0^2 = \sum_{i=0}^{n-1} (\alpha_{n-i}^2 - \alpha_{n-i-1}^2) = \sum_{i=0}^{n-1} (\alpha_1^2 - \alpha_0^2),
$$

or

 $a_n^2 = n(a_1^2 - a_0^2) + a_0^2.$ (*)

If $a_1^2 \lt a_0^2$, then $a_n^2 \lt 0$ for *n* sufficiently large, a contradiction.

If $a_1^2 > a_0^2$, we have $a_{n+1}^2 > a_n^2$. Since each a_i is an integer we have then $a_{n+1} \ge a_n + 1$, and so (a_n) is a strictly increasing, unbounded sequence of integers. But the inequality $a_{n+1} \ge a_n + 1$ implies

$$
1 + 2a_n \le a_{n+1}^2 - a_n^2 = a_1^2 - a_0^2
$$

for all n, contradicting the unboundedness of (a_n) .

Hence $a_1^2 = a_0^2$, and so by (\ast) $a_n = a_0$ for all n.

6. [1985: 213] 16th Austrian Mathematical Olympiad (Final *Round).* Determine all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying the functional equation $x^2 f(x) + f(1 - x) = 2x - x^4$

for all $x \in \mathbb{R}$.

Solution by Daniel Ropp, Washington Uniuersity, *St. Louis, MO, U.S.A.*

Suppose f is such a function. Replace x by $1 - x$ in the equation to obtain

 $(1 - x)^2 f(1 - x) + f(x) = 2(1 - x) - (1 - x)^4$.

We add this equation to $[-(1 - x)^2]$ times the given equation, finding

$$
(1 - x2(1 - x)2)f(x) = 2(1 - x) - (1 - x)4 - (1 - x)2(2x - x4)
$$

= (x - 1)(x + 1)(x² - x + 1)(x² - x - 1).

The left-hand side of this equation is $(1 + x - x^2)(1 - x + x^2)f(x)$ and so $(1 + x - x^2)(1 - x + x^2)(f(x) + x^2 - 1) = 0.$

Now $1 - x + x^2 \neq 0$ for $x \in \mathbb{R}$, thus $f(x) = 1 - x^2$ unless $1 + x - x^2 = 0$, i.e. unless $x = \frac{1 \pm \sqrt{5}}{2}$. Setting $x = \frac{1 + \sqrt{5}}{2}$ or $x = \frac{1 - \sqrt{5}}{2}$ in the original equation yields

$$
\left[\frac{3+\sqrt{5}}{2}\right]f\left[\frac{1+\sqrt{5}}{2}\right] + f\left[\frac{1-\sqrt{5}}{2}\right] = \frac{-5-\sqrt{5}}{2} .
$$
 (1)

 $1 \pm \sqrt{5}$ Conversely, suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies $f(x) = 1 - x$ for $x \neq -\frac{2}{2}$ and also satisfies equation (1). Then, if $x \neq \frac{1 \pm \sqrt{5}}{2}$, also $1 - x \neq \frac{1 \pm \sqrt{5}}{2}$, and the functional equation is satisfied since

$$
x^2(1-x^2) + [1-(1-x)^2] = 2x-x^4.
$$

If $x = \frac{1 \pm \sqrt{5}}{2}$, the given equation holds, by (1). Thus, any such f will indeed solve the problem.

 $*$ $*$

In the next Issue we hope to finish the solutions that we have received for problems posed in 1985 and publish a list of problems whose solutions have not yet been discussed. The next Corner will also mark the return to a mixture of solutions submitted some time ago and those submitted recently. Keep those solutions coming!

 $*$ $*$ $*$

PROBLEM S

tynoblem pnofcodald and dolatlond should he dent to the editor, whode address appears on the front page of this issue. Proposals should, whenever *fxoddlhle, he accompanied hy, a solution, referenced*, *and other Indlyhtd which are likely, to he of help to the editor. sin adterldk* (*) *after a number Indicated a problem dubmltted without a dotation.*

Original problems are particularly sought. Sut other interesting prohlemd may- aldo he acceptable provided they, ale not too well known and references are given as to their provenance. Ordinarily, if the originator of a problem can he located, It should not he dubmltted by, (somebody, elde wlthoat hid or hen, permlddlon.

2To *facilitate theln, consideration, goar dotations, tgpewrltten on neatly handwritten on signed, separate sheets, should preferably be mailed to the editor before dugudt 1,* 1988, *although dolatlond received after that date will aldo he condldered until the time when a dotation Id pablldhed.*

1301. *Proposed* by George Szekeres, *University of New South* Wales, *Kensington, Australia.*

Given a positive rational number $q = \alpha/b$ and an odd positive integer n, find a polynomial, with integer coefficients written in a simple closed form, that has $q^{1/n} + q^{-1/n}$ as a root. (See Crux 1187 [1988: 30].)

1302. *Proposed* by Mihaly Bencze, Brasou, Romania.

 \mathbf{n}_\odot Suppose $\alpha_k > 0$ for $k = 1, 2, ..., n$ and Σ tanh² $\alpha_k = 1$. Prove that k=l $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

1303. Proposed by George Tsintsifas, Thessaloniki, Greece.

Let ABC and $A_1B_1C_1$ be two triangles with sides a, b, c and a_1 , b₁, c_1 and inradii r and r_1 , and let P be an interior point of AABC. Set AP = x, $BP = y$, $CP = z$. Prove that

 $\sum_{h=1}^{\infty}$ sinh $\alpha_k \stackrel{\text{def}}{=} \sum_{h=1}^{\infty} \cosh^2 \alpha_k$.

$$
\frac{a_1x^2 + b_1y^2 + c_1z^2}{a + b + c} \geq 4rr_1.
$$

1304. Proposed by M.S. *Klamkin, University of Alberta, Edmonton, Alberta.* If *p, q, r* are the real roots of

$$
x^3 - 6x^2 + 3x + 1 = 0,
$$

determine the possible values of

$$
p^2q + q^2r + r^2p
$$

and write them in a simple form.

1305. *Proposed* by *J.T. Groenman,* Arnhem, *The Netherlands.*

Let $A_1A_2A_3$ be an acute triangle with circumcenter 0. Let P_1 , Q_1 $(Q_1 \neq A_1)$ denote the intersection of A_1O with A_2A_3 and with the circumcircle, respectively, and define P_2 , Q_2 , P_3 , Q_3 analogously. Prove that

(a)
$$
\frac{\overline{OP_1} \cdot \overline{OP_2} \cdot \overline{OP_3}}{P_1Q_1 \cdot P_2Q_2 \cdot P_3Q_3} \ge 1;
$$

\n(b)
$$
\frac{\overline{OP_1}}{P_1Q_1} + \frac{\overline{OP_2}}{P_2Q_2} + \frac{\overline{OP_3}}{P_3Q_3} \ge 3;
$$

\n(c)
$$
\frac{\overline{A_1P_1} \cdot \overline{A_2P_2} \cdot \overline{A_3P_3}}{P_1Q_1 \cdot P_2Q_2 \cdot P_3Q_3} \ge 27.
$$

1306. Proposed by K.S. *Luthar, University of* Wisconsin Center, Janesville, Wisconsin. Ellipses

$$
\frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1 , \qquad i = 1, 2, ..., n,
$$

all satisfy the condition

$$
\frac{1}{a_1^2} + \frac{1}{b_1^2} = 3.
$$

Prove that the ellipses all pass through the same point.

1307. *Proposed by Jordi Bou, Barcelona,* Spain.

Let A' , B' , C' be the intersections of the bisectors of triangle ABC with the opposite sides, and let A' , B' , C' be the midpoints of $B'C'$. C'A', A'B' respectively. Prove that AA'', BB'', CC'' are concurrent.

1308. *Proposed* by Seung-Jin *Bang, Seoul, Korea.* Find $f(x,y)$ and $g(x,y)$ such that

(i)
$$
\frac{\partial f}{\partial x} = \frac{1}{g} \frac{\partial g}{\partial y}
$$
, (ii) $\frac{\partial f}{\partial y} = \frac{1}{g} \frac{\partial g}{\partial x}$,

and

$$
(iii) g(x,y) \sin f(x,y) = x
$$

all hold.

1309. *Proposed* by Clark *Kimberling, University of* Euansuille, Euansuille, *Indiana.*

Let ABC be a triangle with circumcircle *T,* and let BEF be the triangle formed by the lines tangent to Γ at Λ , B , C . Call a triangle $A'B'C'$ a *circumcevian triangle* if for some point P, A' Is the point other than A where the line AP meets Γ , and similarly for B' and C' . Prove that DEF is perspective with every circumcevian triangle.

1310. *Proposed* by *Robert E. Shafer, Berkeley, California.*

Let

$$
1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \frac{N_n}{D_n}
$$

where N_n and D_n are positive integers having no common divisor. Find all primes $p \geq 5$ such that $p|N_{p-4}$.

 \mathbf{v} **M X** ***

SOLUTIONS

Mo fyiob-lem ta e^ea *fceimafientlty closed, fhe. edltoi will always, he pleaded* to consider for publication new solutions or new insights on past problems.

1110* [1986: 13; 1987: 170] *Proposed* by M.S. *Klomkin, University of* Alberta.

How may different polynomials $P(x_1, x_2,...,x_m)$ of degree *n* are there for which the coefficients of all the terms are O's or 1's and

 $P(x_1, x_2,...,x_m) = 1$ whenever $x_1 + x_2 + ... + x_m = 1$?

•I. Partial solution by *Len Bos and Bill Sands, University of Calgary, Calgary,* Alberta.

Let $f(n,m)$ be the required number of polynomials. We will investigate the case $m = 2$ and will show that

$$
f(n,2) \geq \frac{1}{n+1} \binom{2n}{n}
$$

the nth Catalan number.

Let $P(x,y)$ be a polynomial of degree n with the required properties. Then $P(x,y) = 1$ whenever $x + y = 1$, so it must be true that

$$
P(x,y) = (x + y - 1)q(x,y) + 1 \qquad (1)
$$

for some polynomial $q(x,y)$ with integer coefficients. We shall count all those possible $q(x,y)$ whose coefficients are also all 0 or 1.

Let q be such a polynomial. Then its terms are monomials of the form $x^i y^j$ where $i, j \in \{0, 1, ..., n - 1\}$ and $i + j \leq n - 1$. We will identify the collection of these monomials with the corresponding subset of lattice points $R_q = \{(i, j) | x^i y^j \text{ is a monomial in } q \}.$

Thus R_q is a subset of $\{(i,j) \in \mathbb{Z}^2 \mid 0 \leq i, 0 \leq j, i + j \leq n - 1\}$ and contains at least one (i, j) with $i + j = n - 1$. The next two lemmas establish important properties of R_q .

Lemma 1. If $(i, j) \in R_q$ where $i + j \ge 0$, then either $(i - 1, j) \in R_q$ or $(i, j - 1) \in R_q$ (or both). In particular, if $(i, 0) \in R_q$ then $(i - 1, 0) \in R_q$ for $i > 0$, and similarly for $(0, j)$.

Proof. If $(i, j) \in R_q$ and $i + j \geq 0$ then $x^l y^j$ is a monomial in q. Thus $(x + y - 1)q(x,y)$, when multiplied out, will contain a term $-x^i y^j$. By (1), it must therefore also contain at least one term $+x^i y^j$, which can only happen if $x^{i-1}y^{j}$ or $x^{i}y^{j-1}$ were monomials in q, that is, if $(i-1,j)$ or $(i-\frac{1}{2},j)$ (i,j) $(i, j - 1) \in R_q$. 0

In terms of lattice points, this lemma says that if a lattice point is $(i, j-1)$ in R_q , then at least one of its neighbours to the left of or below it must also be in R_{q} .

Our other lemma is a sort of converse.

Lemma 2. If $(i-1,j) \in R_q$ and $(i,j-1) \in R_q$, then $(i,j) \in R_q$.

Proof. We have that $x^{i-1}y^j$ and x^iy^{j-1} are both monomials in q. Then $(x + y - 1)q(x, y)$ when multiplied out will contain two terms x^ly $By (1), it$ must also contain a term $-x^l y^j$, which implies that $(i,j) \in R_q$. U

Now suppose $(i, j) \in R_q$. By applying Lemma 1 repeatedly, we obtain a descending path of lattice points in R_q from (i,j) to $(0,0)$. By always moving left from a lattice point rather than down, whenever we have a choice, we

obtain what we call the left path of (i,j) . Similarly by moving down instead of left whenever possible, we obtain the *right* path of (i,j). The diagram shows a possible left path of (4,3). All lattice points on the path are in R_q , but the position of the path tells us that (2,3) and $(2,2)$ are *not* in R_q .

Clearly the left path and right path of (i,j) do not cross, although they may meet (and do, at their endpoints at least).

Let (i, j) and (k, ℓ) be in R_q , where we assume that $i \lt k$ and $j \gt \ell$. Consider the left path of (i, j) and the right path of (k, l) . Extend them to paths beginning at (k, j) by adding horizontal and vertical edges, respectively. The extended paths then enclose a region of lattice points.

Claim: Every lattice point inside this region is in R_q .

This follows by repeated applications of Lemma 2, starting at the bottom left of the region and working up and to the right.

Now it can easily be seen that R_q must coincide with the region of lattice points bounded by the left and right paths of some lattice point (i, j) , where $i + j = n - 1$. Furthermore we claim that any such region corresponds to a polynomial $q(x,y)$ such that $P(x,y)$, defined by (1), is a polynomial satisfying the problem. We need only show that $P(x, y)$ has coefficients 0 or 1. Multiplying out $(x + y - 1)q(x,y)$, we need only show that any negative term $-x^i y^j$, $i + j \ge 0$, is offset by at least one term $+x^i y^j$, and that if two terms $x^i y^j$ occur then also a term $-x^i y^j$ will occur. But this follows from the construction of the region much as in the proofs of Lemmas 1 and 2.

Thus to count all the polynomials $q(x,y)$ we must count the number of pairs of lattice paths P_{ℓ} and P_r from $(0,0)$ to (i,j) , $i + j = n - 1$, which do moving path P_r one unit to the right and one unit down, adding in new common endpoints as shown, and moving both paths to start at $(0,0)$ again, $(0,0)$. $(0,0)$ we see that such pairs of paths correspond to those pairs of paths

from $(0,0)$ to (i,j) , where $i + j = n + 1$, which do not meet (except at their endpoints), and which have length $n + 1$. The number of such pairs of paths, over all choices of i, j satisfying $i \geq 0$, $j \geq 0$, $i + j = n + 1$, is known to be the Catalan number

$$
\frac{1}{n+1}\begin{bmatrix} 2n \\ n \end{bmatrix}
$$

(see J. Levine, Note on the number of pairs of non-intersecting routes, Scripta *Mathematica* 24 (1959) 335-338). This number is then a lower bound for $f(n,2)$. Unfortunately it is not the exact answer, since putting

 $q(x,y) = 1 + x + y + 2xy + x^2y + xy^2 + x^2y^2$

(which has a coefficient not equal to 0 or 1) into (1) yields

 $P(x,y) = x^2 + y^2 + x^2y + xy^2 + x^3y + xy^3 + x^2y^2 + x^3y^2 + x^2y^3$, a polynomial with all coefficients 0 or 1. We do believe, however, that $f(n,2)$ can be calculated, and, as a possible first step, make the following conjecture:

any $q(x,y)$ suitable for (1) has all coefficients 0, 1, or 2.

II. Partial solution by P. *Penning,* Delft, *The Netherlands.* (Adapted by the editor to refer to I above.)

We show that

$$
f(n,m) \geq m^{n-1},
$$

thus answering the editor's request [1987: 170] for a proof that $f(n,m) \geq 1$ for each n and m.

A special case of the allowable "regions" in part I is that of a single path from $(0,0)$ to (i,j) , where $i + j = n - 1$. A similar argument to that in I shows more generally that if P is a path of length $n-1$ from $(0,0,\ldots,0)$ to *m* (i_1,i_2,\ldots,i_m) in \mathbb{Z}^m , where Σ $i_j = n-1$, then the lattice points on P will *3=1*

correspond to monomials whose sum is a polynomial $q(x_1, \ldots, x_m)$ such that

$$
P(x_1,...,x_m) = (x_1 + ... + x_m - 1)q(x_1,...,x_m) + 1
$$

has all coefficients 0 or 1. To construct such a path, we merely choose a sequence of $n - 1$ elements from x_1, \ldots, x_m , repetition allowed, each

corresponding to one of the *m* "directions" the path can take (starting at $(0,\ldots,0))$. The number of these sequences is \mathfrak{m}^{n-1} .

Example: $m = 5$, $n = 4$. Choose sequence x_2 , x_4 , x_3 . Then

$$
q(x_1,x_2,x_3,x_4,x_5) = 1 + x_2 + x_2x_4 + x_2x_4x_3,
$$

so

$$
P(x_1,...,x_5) = (1 + x_2 + x_2x_4 + x_2x_4x_3)(x_1 + x_2 + x_3 + x_4 + x_5 - 1) + 1
$$

= x₁ + x₃ + x₄ + x₅ + x₂(x₁ + x₂ + x₃ + x₅)
+ x₂x₄(x₁ + x₂ + x₄ + x₅) + x₂x₃x₄(x₁ + x₂ + x₃ + x₄ + x₅).

Examples showing $f(n,m) \geq 1$ for all n and m were also received from LEN B0S9 Untuersity of Calgary; *and the proposer,*

1174. [1986: 205] Proposed by Clark Kimberling, University of Evansuille, Evansuille, Indiana.

Suppose ABC is an acute triangle. Prove that there is a point P inside ABC and points D, E on BC; F, G on CA; and H, I on AB such that GPH, *IPD*, and *EPF* are congruent equilateral triangles.

Solution by Walther Janous, Orsultnengymnastum, *Innsbruck,* Austria.

Let's go the other way round. Suppose we have a point P and three congruent, possibly overlapping equilateral triangles GPH, IPD, and EPF , making the $(directed!)$ angles $\angle HPI = 2\varphi$, $\angle DPE = 2\psi$, $\angle FPG = 2\omega$.

Case 1. φ , ψ , $\omega \geq 0$.

Then

 $\angle PHI = \angle PHI = 90^\circ - \varphi$, etc., and thus

 $\frac{1}{26}$

$$
\angle
$$
AHG = 180^o - 60^o - (90^o - φ) = φ + 30^o = \angle BID, etc.

Finally,

$$
\angle A = 180^{\circ} - (\omega + 30^{\circ}) - (\varphi + 30^{\circ}) = 120^{\circ} - \omega - \varphi
$$

$$
\angle B = 120^{\circ} - \varphi - \psi
$$

$$
\angle C = 120^{\circ} - \psi - \omega,
$$
 (1)

yielding

$$
\varphi = \mathcal{L} - 30^{\circ}, \quad \psi = \mathcal{L}A - 30^{\circ}, \quad \omega = \mathcal{L}B - 30^{\circ}. \tag{2}
$$

Thus in this case we must have $min\{\angle A,\angle B,\angle C\} \geq 30^\circ$. Then if we construct the three equilateral triangles as above, using φ , ψ , ω defined in (2), and extend edges DE, FG, HI to form a triangle, by (1) we obtain a triangle similar to

 λ

AABC. Hence the required points will exist for AABC.

Case 2. One of φ , ψ , ω is ζ 0. Let $\varphi \leq 0$. Then \angle *IPH* = 2φ ', φ ' = $-\varphi$ > 0. As in Case 1, $\angle PHI = \angle HIP = 90^{\circ} - \varphi'$ and thus

 $\angle GHA = 30^\circ - \varphi^* = 30^\circ + \varphi = \angle BID$. Hence (1) and (2) again hold, and $\frac{1}{B}$ <u>B</u> we are done as in Case 1.

А $2\overline{0}$

Case 3. Two of φ , ψ , ω are $\langle 0$.

If say $\omega \leq 0$ and $\varphi \leq 0$, then \angle DPE > 180°, and P would be outside $\triangle ABC$. However, $\angle A$ $>$ 120 $^\circ$ from (1), so $\triangle ABC$ would not be acute.

II. *Comment* by *Clifford Gardner,* Austin, Texas and *Jack* Garfunkel, Flushing, *N.Y.*

We were intrigued by this point P , and suspected that it may have some special property. Our suspicion was justified. The point P turns out to be the Miquel point associated with any equilateral triangle inscribed in triangle ABC. Let Q, R, S be the midpoints of DE, FG, HI respectively; then the proof that P is this Miquel point depends on showing that $QR = RS = SQ$. Proofs of this abound. For instance, the problem was given as Bl of the 1967 Putnam examination, and a proof using complex numbers can be found on page 737 of the 1968 American Mathematical *Monthly.*

We conclude with a final comment. One of the reasons why Morley's Theorem is so popular is the surprise element. An equilateral triangle "mysteriously" emerges by drawing angle trisectors. A similar element of surprise exists here. The Miquel point which is the result of drawing three intersecting circles turns out to be the same point from which congruent equilateral triangles are drawn to the sides of a triangle.

Also *solved by J0SDI* D00, *Barcelona, Spain;* J.T. GR0ENMAN, Arnhem, *The Netherlands;* CLIFFORD GARDNER, Austin, Texas *and JACK* GARFUNKEL, Flushing, W.Y.; *B.J. SMEENK,* Zaltbommel, *The Netherlands; GE0BGE TSIWTSIFAS, Thessaloniki*, Greece; and *the proposer.*

Seueral soluers *noted that the* result holds *for any triangle with no* angle $> 120^\circ$. Tsintsifas also showed that P is the Miquel point for *equilateral triangles inscribed in* AABC, but *credited the conjecture to Garfunkel.*

M ***€ ***

1175. [1986: 205] *Proposed* by *J.T. Groenman,* Arnhem, *The* Netherlands.

Prove that If α , β , γ are the angles of a triangle.

 $-2 \langle \sin 3\alpha + \sin 3\beta + \sin 3\gamma \rangle \leq \frac{3}{2}\sqrt{3}.$

Comment by M.S. Klamkln, Uniuerslty *of* Alberta.

I had set the same problem for the 1981 U.S.A. Mathematical Olympiad (see [1981: 141]). Incidentally, the lower bound is easy to obtain. At least one angle, say α , is $\leq 60^\circ$. Then since sin $3\alpha \geq 0$, sin $3\beta \geq -1$, and sin $3\gamma \geq -1$, we obtain the lower bound -2 . There is equality only for the degenerate triangle 0° , 90° , 90° . For the upper bound, including more general results where 3α is replaced by $n\alpha$, etc., see Crux 715 and its solutions [1983: 58-62].

Also *solved* by GEORGE EVAGEL0P0UL0S, Athens, Greece; RICHARD I. HESS, *Rancho Palos* Verdes, California; WALTHER JANOUS, Ursullnengymnaslum, *Innsbruck,* Austria; EDWIN M. KLEIN, Uniuerslty *of Wisconsin, Whitewater,* Wisconsin; KEE-WAI LAU, Hong Kong; J. WALTER LYNCH, Georgia *Southern College,* Statesboro,, Georgia; D.S. MITRINOVIC *and* J.E. PECARIC, Uniuerslty *of Belgrade,* Yugoslavia; V.N. MURTY, Penn State University, Middletown, Pennsylvania; M. PARMENTER, Memorial Uniuerslty *of Newfoundland, St. John's; BOB PRIELIPP, University of* WlsconsIn-Oshkosh; and *the proposer.*

The editor apologizes for including this problem when (as also pointed *out* by seueral *of the above) it had appeared before.*

*** * ***

1176. [1986: 205] *Proposed* by *Kenneth* S. Williams, Carleton Uniuerslty, Ottawa, Ontario. (Dedicated to Léo Sauvé.)

Let n be squarefree such that

$$
n = r^2 + s^2 = t^2 + u^2
$$

where r , s , t , u are positive integers. Prove that

$$
2n(n + rt + su)
$$

is a square if and only if $r = t$ and $s = u$.

Solution by Kee-wai Lau, Hong Kong.

Denote the positive integer $2n(n + rt + su)$ by m. Clearly if $r = t$ and $s = u$, m equals the square $(2n)^2$.

We now suppose that *m* Is a square. We first note that

$$
m \geq 2n^2. \tag{1}
$$

Since $n = r^2 + s^2 = t^2 + u^2$ we see that

$$
m = n[4n - (r - t)^2 - (s - u)^2].
$$
 (2)

Because n is squarefree, m is a square if and only if

$$
4n - (r - t)^2 - (s - u)^2 = k^2n \tag{3}
$$

where *k* is a positive integer. From (2) and (3) we get

$$
\mathbf{m} = \mathbf{k}^2 \mathbf{n}^2 \tag{4}
$$

From (1) and (4) we deduce that

$$
k \geq 1. \tag{5}
$$

Now (3) can be rewritten as

$$
n(4-k^2) = (r-t)^2 + (s-u)^2. \tag{6}
$$

Since the right hand side of (6) is non-negative, it follows from (5) that $k = 2$. Thus from (6) $r = t$ and $s = u$ as required.

Also *solved by J.T.* GROENMM, Arnhem, *The Netherlands;* WALTHER JANOUS, *Ursulinengymnasitm, Innsbruck, Austria;* FRIEND H. KIERSTEAD JR., Cuyahoga Falls, Ohio; MIKE PARMENTER, Memorial *University of Newfoundland, St. John's; and the proposer. One incorrect solution was received.*

M ** *

1177. [1986: 205] *Proposed by George Tsintsifas, Thessalonihi, Greece.*

ABC is a triangle and M an interior point with barycentric coordinates $(\lambda_1, \lambda_2, \lambda_3)$. Lines HMD, JMF, EMI are parallel to AB, BC, CA respectively as shown. The centroids of triangles *DHE9* FMH, *IMJ* are denoted *Gl9* G2, *G3* respectively. Prove that

 $[G_1 G_2 G_3] = \frac{(\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1) [\text{ABC}]}{(\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1) [\text{ABC}]}$

where [X] stands for the area of figure X.

Solution by C. Festraets-Hamoir, **Brussels, Belgium.**

Let K_1 , K_2 , K_3 be the centroids of the triangles A *JF*, $B E I$, $C D H$ respectively.

The medians *FK1*, *MG3*, *EK2* drawn respectively in the homothetic triangles AFJ, IMJ, IEB are parallel. $Similary$, $JK_1\|\overline{MG}_2\|\overline{DK}_3$ and IK_2 IIMG₁IIHK₃. Thus MG₃K₁G₂, MG₂K₃G₁, and *MG±K2G3* are parallelograms, and *^*

 $-20 -$

$$
[G_{1}G_{2}G_{3}] = \frac{1}{2}[G_{1}K_{2}G_{3}K_{1}G_{2}K_{3}]
$$

\n
$$
= \frac{1}{2}([ABC] - ([JK_{1}A] + [AK_{1}F] + [HK_{3}C] + [CK_{3}D] + [EK_{2}B] + [BK_{2}I])
$$

\n
$$
+ [IG_{3}J] + [HG_{2}F] + [EG_{1}D]\}
$$

\n
$$
= \frac{1}{2}([ABC] - \frac{2}{3}([AJF] + [CHD] + [BEL]) + \frac{1}{3}([MJI] + [MHF] + [MED])
$$

\n
$$
= \frac{1}{2}([ABC] - \frac{2}{3}((1 - \lambda_{1})^{2} + (1 - \lambda_{3})^{2} + (1 - \lambda_{2})^{2})[ABC]
$$

\n
$$
+ \frac{1}{3}(\lambda_{3}^{2} + \lambda_{2}^{2} + \lambda_{1}^{2})[ABC]).
$$

 $-21 -$

Now, using $\lambda_1 + \lambda_2 + \lambda_3 = 1$,

$$
[G_1 G_2 G_3] = \frac{1}{6} [ABC] (1 - \lambda_1^2 - \lambda_2^2 - \lambda_3^2)
$$

= $\frac{1}{6} [ABC] (1 - (\lambda_1 + \lambda_2 + \lambda_3)^2 + 2\lambda_1 \lambda_2 + 2\lambda_2 \lambda_3 + 2\lambda_3 \lambda_1)$
= $\frac{1}{3} [ABC] (\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1).$

Also *solved* by *J.T.* GROENMAN, *krnhem, The Netherlands;* RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; MURRAY S. KLAMKIJV, University *of* Alberta; and the *proposer.*

As pointed out by *one reader, the question* should perhaps *have read* "normalized barycentric coordinates".

 \star \star \star

1178. [1986: 206] *Proposed* by Gary Gisiason, University *of* Alaska, Fairbanks, Alaska, and M.S. Klamkin, University of Alberta, Edmonton, Alberta. (Dedicated to Léo Sauvé.) Determine pairs of functions (F, G) such that

$$
(F \circ G)' = F \circ G' + F' \circ G
$$

where \circ denotes composition and ' denotes differentiation.

I. Solution by Waither *Janous,* Ursuiinengymnasium, Innsbruck, Austria. The given relation can also be written in the form

$$
F'(G(x))G'(x) = F(G'(x)) + F'(G(x)),
$$

i.e.

$$
F'(G(x))[G'(x) - 1] = F(G'(x)).
$$
 (1)

Thus, e.g.,

 $G(x) = x + a$, F differentiable with $F(1) = 0$, where $\alpha \in \mathbb{R}$, satisfy (1). Or:

 $F(x) = \alpha x - \alpha$, G arbitrary,

where $a \in \mathbb{R}$, $a \neq 0$, satisfy (1).

II. Solution by *the* proposers.

Assuming $F'(\alpha)$ has an inverse function $H(\alpha)$, we give an implicit parametric representation for G and x in terms of G' .

By hypothesis,

$$
F'(G) = F(G')/(G' - 1).
$$

Thus

$$
G = H[F(G')/(G'-1)]. \qquad (1)
$$

Since G is differentiable, we obtain

$$
G' = H' [F(G')/(G'-1)] \left[\frac{(G'-1)F'(G')dG'/dx - F(G')dG'/dx}{(G'-1)^2} \right]
$$

Then

$$
x = \int \frac{H' [F(G')/(G'-1)][(G'-1)F'(G') - F(G')]}{G'(G'-1)^2} dG.
$$
 (2)

(1) and (2) give the parametric representation for G and x .

For example, when $F(x) = e^x$ we get

$$
G = G' - \ln(G' - 1), \quad x = \ln(G'^2/(G' - 1)),
$$

and so

other.

$$
G(x) = \frac{e^{x} \pm \sqrt{e^{2x} - 4e^{x}}}{2} - ln\left[\frac{e^{x} \pm \sqrt{e^{2x} - 4e^{x}}}{2} - 1\right]
$$

Also solued by GLEN E. MILLS, Colonial *Senior High,* Orlando, Florida. *Both Mills and the proposers gave Janous* second example.*

*# x *&*

1179. [1986: 206] Proposed by Jack Garfunkel, Flushing, New York.

Squares are erected outwardly on each side of a quadrilateral ABCD. (a) Prove that the centers of these squares are the vertices of a quadrilateral A'B'C'D' whose diagonals are equal and perpendicular to each

 (b) ^{*} If squares are likewise erected on the sides of $A'B'C'D'$, with centers A' , B' , C' , D'' , and this procedure is continued, will quadrilateral $A^{(n)}B^{(n)}C^{(n)}D^{(n)}$ tend to a square as n tends to infinity?

Solution by M.S. Kiomkin, Uniuersity *of Alberta, Edmonton, Alberta.*

(a) This is an old theorem of von Aubel [Editor's aside: does anyone have a reference?]. For completeness, we include a proof (see also [1] or [2]). Let A, B, C, D be complex number representations of the vertices. Then it follows easily that

$$
2A' = A + B + i(A - B), \quad \text{etc.}
$$

Thus

$$
2(A' - C') = A + B - C - D + i(A + D - B - C)
$$

and

$$
2(B' - D') = B + C - A - D + i(A + B - C - D),
$$

so that

$$
B' - D' = i(A' - C'),
$$

which proves the theorem.

As noted by Kelly in $\lceil 1 \rceil$, ABCD need not be simple or convex, as long as one uses the same sense of rotation throughout the construction.

(b) We will show the answer is in the affirmative in a more general context. Let $A_1(0), A_2(0), \ldots, A_n(0)$ be complex numbers in a plane representing the n vertices of a given n -gon, simple or not, convex or not. For simplicity, our origin will be the centroid of the vertices, so that

 $A_1(0) + A_2(0) + \ldots + A_n(0) = 0.$ For each edge $A_i(0)A_{i+1}(0)$, let $M_i(0)$ be its midpoint. Then a new vertex $A_i(1)$ Is constructed so that

$$
\overline{M_i(0)A_i(1)} = \tan \frac{\pi}{n} \overline{M_i(0)A_i(0)}
$$

and such that ray $M_i(0)A_i(1)$ is along ray $M_i(0)A_i(0)$ after it has been rotated

 $^{\circ}$. 90 counterclockwise about Mt(0) (we could just as well use a clockwise rotation).

It is to be noted that if the initial polygon was regular, then the new one $A_1(1),A_2(1),\ldots,A_n(1)$ will also be regular and symmetrically circumscribed about P. We claim that in any case, if this procedure is continued, n -gon $A_1(m)$, $A_2(m)$, ..., $A_n(m)$ will approach a regular n-gon as m tends to infinity.

Since

$$
M_j(m) = \frac{A_j(m) + A_{j+1}(m)}{2}
$$

it follows from the above construction that

$$
2A_j(m + 1) = A_j(m) + A_{j+1}(m) + i\lambda(A_j(m) - A_{j+1}(m))
$$
 (1)

for $j = 1, 2, ..., n$ $(A_{n+1} = A_1)$, where $\lambda = \tan(\pi/n)$. Incidentally, by adding all the equations (1) from $j = 1$ to n, it follows that the centroids of all the Iterated polygons are the same. We now make the transformations

 $A_j(m) = \omega^{j-1} (1 + i\lambda)^m B_j(m)$, $j = 1, 2, ..., n$, (2)

where $\omega = e^{2\pi i/n}$. Equations (1) now simplify to

 $2(1 + i\lambda)B_j(m + 1) = (1 + i\lambda)B_j(m) + \omega(1 - i\lambda)B_{j+1}(m)$

$$
- 24 -
$$

\n
$$
B_j(m + 1) = \frac{B_j(m) + B_{j+1}(m)}{2}
$$
\n(3)

since $1 + i\lambda = \omega(1 - i\lambda)$. Adding up all the equations (2) over j, we get that $n \hspace{2.5cm} n$ right $n \hspace{2.5cm} n$ $\sum B_j(m + 1) = \sum B_j(m) = \text{constant} = \sum B_j(0).$ **j=l J=l J=l**

Since (3) is a contraction mapping (just take the real parts and imaginary parts separately), each $B_j(m)$ approaches the same limit $\sum B_j(0)/n = L$. Then from (2), $A_j(m)/(1 + i\lambda)^m$ approaches the regular polygon with vertices $\omega^{j-1}L$, $j = 1, 2, \ldots, n$. Hence the polygon $A_1(m), A_2(m), \ldots, A_n(m)$ approaches a regular polygon, in the sense that its shape approaches regularity. The given problem corresponds to the special case when $n = 4$.¹

Reference'

- [1] P.J. Kelly, Von Aubel's quadrilateral theorem, Mathematics Magazine 39 (1966) 35-37.
- [2] J. MacNeill, A vector method, Math. Gazette no.456 (June 1987) 143-144.

Also soiued (both parts) by *JORDI* DOU, Barcelona, Spain; *DANIEL B.* SHAPIRO, Ohio State Uniuersity, Columbus, Ohio; *and* G. SZEKERES, Uniuersity *of New South* Wales, *Kensington,* Australia. Part (a) (only) soiued by *J.T. GROENMAN, Arnhem, The Netherlands;* RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER *JANOUS,* Ursulinengymnasium, Innsbruck, Austria; DAN *PEDOE, University of* Minnesota; and *the proposer.*

Other references to part (a) giuen by soiuers *were:* A. Schiid, On some *properties of the quadrangle, in* Two-year College Mathematics Readings, MAA, 1981, pp. *k0~k7; J.R. Musselman, solution of Advanced problem* 4034, Amer. Math. Monthly 50 *(19k3)* 459; *and exercise* 8.1, p. *kk of* D. *Pedoe,* A Course of Geometry for Colleges and Universities, *Dover.*

M * *x*

1180. [1986: 206] *Proposed* by J.R. *Pounder, University of Alberta,* Edmonton, Alberta. (Dedicated to Léo Sauvé.)

(a) It is well known that the Simson line of a point P on the circumcircle of a triangle T envelopes a deltoid ("Steiner's hypocycloid") as P varies. Show that this is true for an oblique Simson line as well. (An *oblique* Simson line of $T = ABC$ is the line passing through the points A_1 , B_1 , C_1 chosen on edges BC, CA, AB respectively so that the lines PA_1 , PB_1 , PC_1 make equal angles (say θ), in the same sense of rotation, with BC, CA, AB

 1 [And is therefore, the editor feels compelled to say, a 4-gon conclusion.]

respectively. The usual Simson line occurs when $\theta = 90^\circ$.)

 (b) ^{*} Given such an "oblique" deltoid for T, locate a triangle T' similar to T such that the "normal" deltoid for T' and the oblique deltoid for T coincide.

Solution *of* (a) by the *proposer.* For completeness let us first establish directly that any point P on the circumcircle of a given triangle ABC has an oblique Simson line. Given angle θ , draw line $A_1B_1C_1$ so that $\angle PA_1C = \angle PB_1A = \theta$. Since P, A_1 , C, B_1 are concyclic we have

$$
\angle PB_1A_1 = \angle PCA_1 = \angle PAB = \angle PAC_1,
$$

so that P, A, C_1 , B_1 are concyclic, and hence $\angle PC_1A = \angle PB_1A = \theta$.

Thus $A_1B_1C_1$ is an oblique Simson line for $\triangle ABC$.

Next we show that $A_1B_1C_1$ is a "normal" Simson line with respect to a certain triangle different from AABC but having two of its sides along CA and CB, its third side being determined uniquely by θ . At A_1 and *B±* draw perpendiculars to BC and AC respectively, meeting at P'. The circle through A_1 , B_1 , C contains both P and P'. Hence $\angle CPP' = 90^\circ$ and $\angle PP'C = \theta$, i.e., CP' is obtained from CP by a rotation through

the fixed angle 90[°] - θ and a magnification in the fixed ratio csc θ . The locus of P' is therefore the image under this dilatation of the circumcircle Γ of $\triangle ABC$, $A_1B_1C_1$ being the normal Simson line of P' with respect to a triangle A'B'C' that is completely determined.

Remark. For (b), it is easy to show that the orientations of the oblique and normal deltoids for the same triangle differ by $(90^\circ - \theta)/3$, but I have no geometrically simple recipe for the centre of the dilatation required to make them coincide.

* *€ *

1181. [1986: 241] *Proposed* by D.S. Mitrinouic and *J.E. Pecaric,* Uniuersity *of Belgrade, Belgrade, Yugoslavia.* (Dedicated to Leo Sauve.)

Let x , y , z be real numbers such that

$$
xyz(x + y + z) > 0,
$$

and let a , b , c be the sides, m_a , m_b , m_c the medians and F the area of a triangle. Prove that

(a) $|yza^2 + zxb^2 + xyc^2|$ > $4F\sqrt{xyz(x + y + z)}$.

(b) $|yzm_a^2 + zxm_b^2 + xym_c^2|$ > 3F $\sqrt{xyz(x + y + z)}$.

Solution by G. Tsintsifas, Thessaloniki, Greece.

The formula of Leibniz

 $(\lambda_1 + \lambda_2 + \lambda_3)^2 R^2 \ge \lambda_2 \lambda_3 a^2 + \lambda_3 \lambda_1 b^2 + \lambda_1 \lambda_2 c^2$

(see item 14.1 of 0. Bottema et al. Geometric Inequalities), for

$$
\lambda_1 = yza^2, \quad \lambda_2 = zxb^2, \quad \lambda_3 = xyz^2,
$$

together with the well-known fact

$$
F = \frac{abc}{4R} \quad ,
$$

gives part (a). For the triangle with sides m_a , m_b , m_c , taking in mind that its area is 3F/4, the above formula (a) is transformed to (b).

Also solued by *WALTHER* JANOUS, *Ursulinengymnasium, Imisbruch, Austria;* MURRAY S. KLAMKIN, University *of* Alberta; *and* the *proposers.*

 \star \star \star

1182. [1986: 241] *Proposed* by *Peter Andrews and Edward T.H.* Wang, Wilfrid *Laurier University, Waterloo,* Ontario. (Dedicated to Leo Sauve.)

Let a_1, a_2, \ldots, a_n denote positive reals where $n \geq 2$. Prove that

$$
\frac{\pi}{2} \leq \tan^{-1} \frac{a_1}{a_2} + \tan^{-1} \frac{a_2}{a_3} + \ldots + \tan^{-1} \frac{a_n}{a_1} \leq \frac{(n-1)\pi}{2}
$$

and for each inequality determine when equality holds.

Solution by *Peter Watson-Hurthig^t Columbia College, Burnabg,* B.C. If $n = 2$ then

$$
\frac{\pi}{2} = \tan^{-1} \frac{a_1}{a_2} + \tan^{-1} \frac{a_2}{a_1} = \frac{(2-1)\pi}{2}
$$

since the two terms in the sum are complementary angles.

For $n > 2$, set $a_{n+1} = a_1$ and $a_{n+2} = a_2$. Because the sum is composed of at least three positive terms, for the sum to be less than $\pi/2$ it is obviously necessary that the sum of each pair of consecutive terms

$$
S_{i} = \tan^{-1} \frac{a_{i}}{a_{i+1}} + \tan^{-1} \frac{a_{i+1}}{a_{i+2}},
$$

 $1 \leq i \leq n$, be less than $\pi/2$. But because \tan^{-1} is an increasing function,

$$
S_i \le \tan^{-1} \frac{a_i}{a_{i+1}} + \tan^{-1} \frac{a_{i+1}}{a_i} = \frac{\pi}{2}
$$

if and only if $a_i \lt a_{i+2}$, for $1 \leq i \leq n$. Therefore if n is odd we have

 $a_1 \leq a_3 \leq \ldots \leq a_n \leq a_{n+2} = a_2 \leq \ldots \leq a_{n-1} \leq a_{n+1} = a_1$

and if n is even we have similarly

 $a_1 \leq a_3 \leq \ldots \leq a_{n-1} \leq a_{n+1} = a_1$

both of which are impossible. Therefore $S_i \geq \pi/2$ for at least one i, so the sum must be strictly greater than $\pi/2$ if $n > 2$.

For the second inequality (where $n > 2$) consider the following three cases:

(i) If two or more of the terms $\tan^{-1}(a_t/a_{t+1})$ are less than $\pi/4$, then since

$$
0 \leq \tan^{-1} \frac{a_i}{a_{i+1}} \leq \frac{\pi}{2}, \quad 1 \leq i \leq n,
$$

we have

$$
\sum_{i=1}^{n} \tan^{-1} \frac{a_i}{a_{i+1}} < \frac{(n-2)\pi}{2} + \frac{2\pi}{4} = \frac{(n-1)\pi}{2}
$$

(ii) If only one of the terms, say $\tan^{-1}(a_n/a_1)$, is less than $\pi/4$ and all the other terms are greater than or equal to $\pi/4$, then we would have

$$
a_n \langle a_1 \rangle a_2 \rangle \ldots \rangle a_n
$$

and therefore

$$
\tan^{-1}\frac{a_n}{a_1} + \tan^{-1}\frac{a_1}{a_2} \le \tan^{-1}\frac{a_n}{a_1} + \tan^{-1}\frac{a_1}{a_n} = \frac{\pi}{2}
$$

(since $a_2 \ge a_n$ and tan⁻¹ is increasing), and once again the sum will be less than $(n - 1)\pi/2$.

(iii) If all the terms are greater than or equal to $\pi/4$ then

 $a_1 \geq a_2 \geq \ldots \geq a_n \geq a_1$

which means that

$$
a_1 = a_2 = \ldots = a_n,
$$

and the sum is $n\pi/4$ which is less than $(n - 1)\pi/2$ if $n > 2$.

Therefore both inequalities hold strictly for all *n* > 2 and are equalities when $n = 2$.

Also *solved* by *J.T.* GROEMAN, Arnhem, The Netherlands; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; M.S. KLAMKIN and A. MEIR, University *of* Alberta; KEE-WAI LAO, *Eong Kong; and the* proposers.

*** *€ ***

1183. [1986: 241] *Proposed* by Roger Izard, Dallas, Texas.

Let ABCD be a convex quadrilateral and let points E, G lie on *BD* and F, H lie on AC such that AE, *BF,* CG, DH bisect angles DAB, ABC, *BCD,* CDA respectively. Suppose that $AE = CG$ and $BF = DH$. Prove that ABCD is a parallelogram.

Solution by *the* proposer.

We first claim that if $AD \cdot DC = AB \cdot BC$ or $BA \cdot AD = BC \cdot CD$ then $ABCD$ is a **parallelogram. Suppose for** \mathcal{C}_{0}^{0} Đ

instance that

 $AD \cdot DC = AB \cdot BC$.

Then since CG and *AE* **are bisectors,**

$$
\frac{DG}{GB} = \frac{DC}{CB} = \frac{BA}{AD} = \frac{BE}{ED} \quad (=\lambda)
$$

and thus *BE* **= GB. The two circles of Apollonius deter-**

mined by base BD (or DB) and ratio λ have equal radii and have chords AE and **CG which by assumption are equal in length. Also BD is normal to both circles,** and thus $\angle AED = \angle BCC$. Therefore $\triangle AED \equiv \triangle BCC$, and so $AD = BC$. From $AD\cdot DC = AB\cdot BC$ we have $AB = CD$, so ABCD is a parallelogram.

Thus we only have to prove that $AD \cdot DC = AB \cdot BC$ or that $BA \cdot AD = BC \cdot CD$. **Suppose without loss of generality that**

$$
BA \cdot AD \le BC \cdot CD \tag{1}
$$

and

$$
AB \cdot BC \le AD \cdot DC. \tag{2}
$$

It is well-known that if a triangle has sides a, b, c, then the bisector from angle A has length t satisfying

$$
t^2 = bc \left[1 - \frac{a^2}{(b+c)^2} \right]
$$

Thus from $AE = CG$ and $BF = DH$ we obtain

$$
BA \cdot AD \cdot \left[1 - \frac{(BD)^2}{(BA + AD)^2}\right] = BC \cdot CD \cdot \left[1 - \frac{(BD)^2}{(BC + CD)^2}\right] \tag{3}
$$

and

$$
AB \cdot BC \cdot \left[1 - \frac{(AC)^2}{(AB + BC)^2}\right] = AD \cdot DC \cdot \left[1 - \frac{(AC)^2}{(AD + DC)^2}\right].
$$
 (4)

From (1) and (3) follows

$$
BA + AD > BC + CD \tag{5}
$$

and from (2) and (4) we obtain

$$
AB + BC > AD + DC. \tag{6}
$$

Adding (5) and (6),

2AB + BC + AD > 2CD + BC + AD,

so

- 28 -

But this implies $AD \le BC$ by (1) and $BC \le AD$ by (2), which is a contradiction.

*** K *€**

1184. [1986: 242] *Proposed* by *J.T.* Groenmon, **Amhem,** *The Netherlands.*

Let ABC be a nonequilateral triangle and let $0, I, H, F$ denote the circumcenter, incenter, orthocenter, and the center of the nine-point circle, respectively. Can either of the triangles OIF or **IFH** be equilateral?

Comment by *Stanley* Rabinowitz, Alliont *Computer Systems Corp.*, Littleton, Massachusetts.

In 1968 I proposed essentially the same problem, that no three of the four points $0, I, H, F$ can form an equilateral triangle. See problem E2139 of the *American Math. Monthly* (solution in vol. 76 (1969), p.1066).

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; *D.J. SMEENK,* Zaltbommel, *The Netherlands; and the proposer.*

M *€ X

1186. [1986: 242] *Proposed by Svetoslav Bilchev, Technical University and Emilia Velihova,* Mathematlcalgymnastum, Russe, Bulgaria.

If a , b , c are the sides of a triangle and s, R, r the semiperimeter, circumradius, and Inradius, respectively, prove that

$$
\Sigma(b + c - a)\sqrt{a} \geq 4r(4R + r)\sqrt{\frac{4R + r}{3Rs}}
$$

where the sum is cyclic over a , b , c .

Combination *of* solutions by falther *Janous, Ursulinengymnasium, Innsbruck, Austria and Murray S. Klamkin, University of Alberta.*

We first prove the inequality

$$
\sqrt{3} \sum \cos A \ge \frac{2F}{R^2} \tag{1}
$$

where F is the area of the triangle. Indeed, as Σ cos $A = \frac{R + r}{R}$,

and **F** = **rs, (1) reads equivalently**

$$
s \leq \frac{\sqrt{3}R(R+r)}{2r} ,
$$

which is true since

$$
s \leq \frac{3\sqrt{3}R}{2}
$$

(see 5.3 of Bottema et al, Geometric Inequalities) and $3 \leq (R + r)/r$, i.e. $2r \le R$. Now (1) can be read as

$$
\sqrt{3} \sum \frac{b^2 + c^2 - a^2}{2bc} \geq \frac{2F}{R^2}.
$$

 $-30 -$

i.e., using $4RF = abc$.

$$
\sqrt{3} \ \Sigma (b^2 + c^2 - a^2) a \ge \frac{16F^2}{R}
$$
 (2)

Again using $4RF = abc$ and

$$
16F^2 = 2 \sum b^2 c^2 - \sum a^4,
$$

(2) becomes

$$
\sqrt{3} \ \Sigma (b^2 + c^2 - a^2) a \ \geq \ \frac{(2 \ \Sigma \ b^2 c^2 - \Sigma \ a^4)^{3/2}}{abc} \ . \tag{3}
$$

Since \sqrt{a} , \sqrt{b} , \sqrt{c} are the sides of a triangle, (3) implies

$$
\sqrt{3} \Sigma (b + c - a) a \geq \frac{(2 \Sigma bc - \Sigma a^2)^{3/2}}{\sqrt{abc}}.
$$
 (4)

Now we have the known relation

$$
\Sigma bc = r(4R + r) + s^2 = r(4R + r) + \frac{\Sigma a^2 + 2 \Sigma bc}{4}
$$

so that

 $2 \sum bc = 4r(4R + r) + \sum a^2$.

Thus (4) becomes

$$
\sqrt{3} \Sigma(b + c - a)a \geq 4r(4R + r)\sqrt{\frac{4r(4R + r)}{abc}}
$$

which with $abc = 4Rrs$ yields the result.

Also solued by RICHARD I. HESS, *Rancho* Paios Verdes, California; *and the proposers*.

The stronger inequality (2) aboue *was obtained* by both *Jaaous and Klamkin.*

 \star M \star M \star M \star M \star M \star

1187. [1986^ 242] *Proposed* by Stanley Rabinoioitz, Digital Equipment *Corp.* , Nashua, Neu> Hampshire.

Find a polynomial with integer coefficients that has $2^{1/5} + 2^{-1/5}$ as a root.

I. *Solution hy Bruce Shawyer*, Memorial *University of Newfoundland, St. John'* s.

Let $x = 2^{1/5} + 2^{-1/5}$ so that

 $x^3 = 2^{3/5} + 2^{-3/5} + 3(2^{1/5} + 2^{-1/5}) = 2^{3/5} + 2^{-3/5} + 3x,$

or

$$
2^{3/5} + 2^{-3/5} = x^3 - 3x.
$$

Also

$$
x^{5} = 2 + 2^{-1} + 5(2^{3/5} + 2^{-3/5}) + 10(2^{1/5} + 2^{-1/5})
$$

= 5/2 + 5(x³ - 3x) + 10x,

whence $2^{1/5}$ + $2^{-1/5}$ is a root of

$$
P(x) = 2x^5 - 10x^3 + 10x - 5.
$$

It is easy to adapt this argument to find a polynomial with integer coefficients that has $q^{1/n} + q^{-1/n}$ as a root, where q is a nonzero rational and n is an odd positive Integer.

II. Generalization by *Murray* S. *Klamkin, University of* Alberta, *Edmonton,* Alberta.

Let m and n be positive integers. Obviously, $t = m^{1/n}$ is a solution of $t^{n} + t^{-n} = m + 1/m.$ (1)

Therefore the transformation

$$
x = t + 1/t \tag{2}
$$

will turn (1) into a polynomial with $m^{1/n} + m^{-1/n}$ as a root. From (2) we have

$$
t=\frac{x\pm\sqrt{x^2-4}}{2}\;,
$$

so (1) becomes

$$
\frac{(x+\sqrt{x^2-4})^n}{2^n}+\frac{2^n}{(x+\sqrt{x^2-4})^n}=\sqrt{n}+\frac{1}{m}
$$

or

$$
(x + \sqrt{x^2 - 4})^n + (x - \sqrt{x^2 - 4})^n = 2^n(m + \frac{1}{m})
$$

or

$$
x^{n} + \binom{n}{2} x^{n-2} (x^{2} - 4) + \binom{n}{4} x^{n-4} (x^{2} - 4)^{2} + \ldots = 2^{n-1} (m + \frac{1}{m}).
$$

Multiplying by m, we obtain a polynomial with integer coefficients having $m^{1/n}$ + $m^{-1/n}$ as a root. The given problem corresponds to the case $m = 2$, $n = 5.$

For a related problem see 86-3 and its solution in Math. Intelligencer 8 (1986) 31, 33.

Also solued by JACK GARFUNKEL, Flushing, *N.Y.; J.T. GROENMAN,* Arnhem, *The Netherlands; RICHARD* I. HESS, *Rancho* Palos Verdes, California; WALTHER *JANOUS, Ursulinengymnasium, Innsbruck,* **Austria;** *MICHAEL JOSEPHY, Universidad* **de Costa** Rica, San Jose, Costa Rica; FRIEND fl. KIERSTEAD JR., Cuyahoga Falls, Ohio; **KEE-WAI LAW,** *Hong Kong; } . WALTER LYNCH, Georgia Southern College, Statesboro, Georgia; J.A. MCCALLUM, Medicine Hat,* **Alberta; LEROY F.** *MEYERS, The Ohio State University; M.M. PARMENTER, Memorial University of Newfoundland, St. John's;* GEORGE SZEKERES, Uniuersity *of New South* Wales, Kensington, Australia; *EDWARD* T.H. WANG, Wilfrid Laurter University. Waterloo, Ontario; *KENNETH M.* WILKE,

Topeha, Kansas; and the *proposer.* All soluers obtained *the same* solution, by uiriually *the same method.*

One solver noted that such a polynomial must exist, since the sum of algebraic numbers is algebraic. *Two solvers noted that the polynomial* P(x) giuen aboue has *no rational roots* by Eisensiein's criterion.

Szekeres *found a polynomial with integer coefficients (given in a simple* closed form) which has $a^{1/n} + a^{-1/n}$ as a root, where a is a given positive *rational and n an odd positive integer.* This has been *included* as problem 1301 in this issue.

 $\mathbb H$

1188. [1986: 242] *Proposed* by Dan Sohoioioshy, Williamsburg, Virginia. Given a circle K and distinct points A , B in the plane of K ,

construct a chord PQ of K such that B lies on the line PQ and $\angle PAQ$ = 90° .

Solution by George Tsintsifas, Thessaioniki, Greece.

Let K have centre 0 and radius R. If PQ is the required chord and *M* is its midpoint, then the power of the point B with respect to K is

$$
\overline{BO}^2 - R^2 = \overline{BP} \cdot \overline{BQ} \\
= (\overline{BM} - \overline{AM})(\overline{BM} + \overline{AM}) \\
= \overline{BM}^2 - \overline{AM}^2,
$$

so

$$
\overline{AM}^2 + \overline{OM}^2 = R^2. \tag{1}
$$

From (1) we conclude that M lies on the circle $(N,\frac{1}{2}\sqrt{2R^2 - \overline{OA}^2})$, where N is the midpoint of the segment 0A. Also M obviously lies on the circle of diameter OB. The intersection of these two loci gives the position of *M* and hence the solution.

Also solued by JORDI DOU, Barcelona, Spain; *J .T.* GROENMAN, Arnhem, The Netherlands; *BAN* PEDOE, Minneapolis, Minnesota; *D.J.* SMEENK, Zaitbommel, *The Netherlands; and the proposer.*

Two readers pointed out that (as can be seen *from the above solution) the construction* is *not always possible.*

•!!!!! SPECIAL OFFER !!!!!

WHILE SUPPLIES LAST, BOUND VOLUMES OF CRUX MATHEMATICORUM ARE AVAILABLE AT THE FOLLOWING REDUCED PRICES:

\$10.00 per volume (regularly \$ 20.00)

\$75.00 per complete set (volumes 1-10) (regularly \$150.00)

PLEASE SEND CHEQUES MADE PAYABLE TO THE CANADIAN MATHEMATICAL SOCIETY TO:

Canadian Mathematical Society 577 King Edward Avenue Ottawa, Ontario Canada KIN 6N5

Total de votre remise

PUBLICATIONS

The Canadian Mathematical Society 577 King Edward, Ottawa, Ontario KIN 6N5 is pleased to announce the availability of the following publications;

1001 Problems in High School Mathematics

Collected and edited by E.J. Barbeau, M.S. Klamkin and W.O.J. Moser.

The First Ten Canadian Mathematics Olympiads

Problems set in the first ten Olympiads (1969-1978) together with suggested solutions. Edited by E.J. Barbeau and W.O.J. Moser. 89 pages (\$5.00)

> **Prices are in Canadian dollars and include handling charges. Information on other CMS publications can be obtained by writing to the Executive Director at the address given above.**