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This issue of the International Journal of Epidemiology reprints a
seminal letter to the editor by Martijn Katan,1 which appears
to be the first description of the concept of ‘Mendelian random-
ization.’ In discussing the controversy over whether the associ-
ation between low serum cholesterol and cancer is causal or
might simply reflect an effect of the disease to lower cholesterol
levels (‘reverse causation’) or confounding by diet or other
factors, Katan proposed a test of causality by studying instead

the relationship between cancer and a genetic determinant
of serum cholesterol, the apolipoprotein A (APOE) gene. 
His rationale was that since alleles are allocated essentially at
random, such an association would not be subject to either
confounding or reverse causation. Thus, if a causal relationship
between APOE and serum cholesterol were clearly established,
then an association between APOE and cancer would provide
indirect evidence for the causality of the association between
serum cholesterol and cancer. Although Katan did not use the
term ‘Mendelian randomization’, the concept has been
attributed to him and subsequently developed by a number of
other authors.2–6 In particular, Davey Smith and Ebrahim2
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have shown how the magnitude of the estimated effects of 
a gene (G) on an intermediate phenotype (IP) and on disease
(D) can be combined to yield an estimate of the causal effect of
the intermediate phenotype on disease, as illustrated in the
following figure:

(where the dotted arrow from G to D represents the indirect
association assumed to be mediated entirely through IP).

Use of instrumental variables
in epidemiology
It may seem perverse to try to study the causality of a
relationship between IP and D through the relationship of
each with G, but there is merit in the idea. While its application
to molecular epidemiology is novel, the idea is more than
70 years old, apparently first introduced into the econometrics
literature by Wright7 and later adopted into the statistical
measurement error and causal inference literature under the
rubric of ‘instrumental variables’.8–10 The basic idea is that if a
causal pathway is correctly specified as in the above Figure
(including certain additional assumptions discussed in the
Appendix), then the causal effect of IP on D can be estimated by
the ratio of the coefficients for the regression of D on G and of
IP on G. (An exactly analogous argument applies in random-
ized controlled trials, where G would represent ‘intent to treat’
and IP the treatment actually received: although the IP–D
association could be biased various ways, the G–D association is
guaranteed by randomization to be unbiased and can be used to
recover an unbiased estimate of the IP–D relationship. Similarly,
in Berkson error models for measurement error,11–13 G might
represent an ‘applied exposure’ for a group, such as ambient air
pollution, and IP the unobserved true personal exposure; again,
the IP–D association can be estimated by observation of the G–D
association, although here there is no claim that the G–D
association would be unbiased unless exposure were applied
experimentally.) In any of these settings, the precision of
this estimate depends strongly upon how well G predicts IP.
Thompson et al.14 have shown that, even if the causal pathway
is correctly specified, the statistical uncertainties in the estimates
of the G–IP and G–D associations can combine to yield
extremely uncertain estimates of the IP–D relationship.

Complications
Direct effect of G on D not mediated through IP

One difficulty is that G could also have a direct effect on D.
A minor change in the figure shown above shows how it can be
used to represent confounding, by turning the G–D arrow into a
solid one representing a direct (causal) connection and turning
the IP–D arrow into a dashed one representing a non-causal

connection induced by confounding by G:

This would be a case of a ‘false-positive’ inference—an
incorrect conclusion that there is a causal connection between IP
and D when in fact none exists. Of course, negative confounding
could also lead to a false-negative conclusion—that there was no
association between IP and D when there really is one.

One way such a situation could come about is when a single
gene has pleiotropic effects. Suppose, for argument sake, that
the true causal picture were as follows:

where the solid arrows indicate causal connections and the
dashed arrow indicates a non-causal association induced by the
other associations.

For example, Davey Smith and Ebrahim2 provide an inter-
esting discussion of the role of folate, homocysteine, and the
methylenetetrahydrofolate reductase (MTHFR) gene in the
aetiology of coronary heart disease (CHD) and neural tube defects
(NTD). This is a very complex pathway, involving several feedback
loops. For CHD, we agree with their assessment that the similarity
of the direct estimate of the association between homocysteine
and CHD and the indirect estimate based on the associations of
each with MTHFR supports a causal interpretation. For NTD, on
the other hand, they find a similar concordance of the
estimates, but a causal interpretation seems less appropriate.
We think it more likely that the second picture applies here,
where IP1 might represent homocysteine and IP2 folate
availability.6,15,16 Nevertheless, whether homocysteine or
serum folate is the proximal cause of NTD, an intervention to
increase dietary folate could be an effective preventive measure.

Although G may be the ultimate determinant of IP, many
other factors can induce expression of G, so that associations
between IP and D could better reflect that proximal causal
relationship than the more distant G–D association. Davey
Smith and Ibrahim discuss the complications posed by the
phenomenon of ‘canalization,’ the buffering of effects of
genetic or environmental influences to maintain homeostatic
equilibrium, via such mechanisms as alternative metabolic
pathways, possibly regulated by different genes. On the other
hand, G remains constant over time and is generally measured
with a high degree of accuracy, whereas IP varies throughout
the aetiologically relevant period and a measurement at a
single point in time may subject to a large amount of
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measurement error (or even bias in the case of reverse
causation). These are well-known advantages of the
instrumental variables approach, which apply equally to
Mendelian randomization.

Gene—environment interactions

The diagrams we have considered so far do not include any
external environmental factors or gene—environment (G � E)
interactions. Such a model might be represented schematically
as follows:

where E represents exposure (e.g. dietary folate) and the two
arrows converging on IP could represent independent main
effects or a G � E interaction (different genetic sensitivities to E
or induction of the expression of G by E). In many, but not all,
circumstances, it may be reasonable to assume that G and E are
independently distributed in the population at risk, i.e. the
gene does not predispose one to become exposed. (Obvious
counterexamples might be a gene for addictive behaviour,
where E is the substance to which the gene makes one addicted,
or where a non-causal association between G and E is induced
by some confounding factor such as population stratification by
ethnicity or use of oral contraceptives being influenced by
family history of breast or ovarian cancer.) However, if G and E
are independently distributed in the source population and each
makes independent (additive) contributions to IP, then E can be
ignored in a linear model and the marginal G–D and G–IP
associations can still be used to estimate the effect of IP on D.
This may not apply in non-linear models, however (Appendix).
Furthermore, if the two factors are associated or have inter-
active effects, this distortion could be quite severe and could
lead to either false-positive or false-negative inferences. This
picture can become even more complicated when the archi-
tecture of competing pathways evolves over time in response
to developmental influences or exposures via adaptive
mechanisms (canalization).2

Even in linear models, it seems a stretch to conclude that:

the association of genotype with NTD risk … demonstrates that
an environmental intervention may benefit the whole
population, independently of the genotype of individuals
receiving the intervention2

—at least without good observational evidence about the associa-
tion of exposure and disease within genotype. One would also
want to see evidence that changes in exposure actually lead to
changes in disease risk, particularly in complex systems where
there are multiple points at which different genetic and environ-
mental perturbations may lead to various phenotypic outcomes.6

Clayton and McKeigue3 have argued that:

Despite current enthusiasm for study of gene—environment
interactions, the closely related issue of how to define and
interpret interaction between environmental factors remains

unresolved after two decades of debate. … We suggest
that epidemiologists should focus instead on use of genetic
associations to test hypotheses about causal pathways amenable
to intervention. … In this example [NAT and heterocyclic amines
in cooked meat], as with the MTHFR gene, there is a possible
biological interaction between genotype and dietary intake, but
testing for statistical interactions between genotype and dietary
intake would not contribute much to our understanding of these
biological interactions or to our ability to exploit them in disease
prevention. … The prospects for epidemiology in the post-
genome era depend on understanding how to use genetic
associations to test hypotheses about causal pathways, rather
than on modeling the joint effects of genotype and environment.

Part of their argument relies on the observation that power to
test main effects will often be much better than for interactions,
although there are exceptions.17 Hence the opportunity to
exploit Mendelian randomization to assess causality is a great
advantage of tests of pure genetic main effects. Indeed, the track
record of replication of reports of G � E interactions seems to be
even more dismal than for main effects of gene associations,18–20

perhaps in large part because such studies are frequently
underpowered, involve some data dredging, and are subject to
publication bias. We generally agree with their conclusion that:

A case-control study of the relation between the TT genotype
[of MTHFR] and risk of neural tube defect can be interpreted as
equivalent to a randomized trial of the effect on disease risk of
alteration of the availability of folate3 [emphasis added].

Gene—gene interactions

The same picture might apply if one were to replace E by
another gene, say H. It is quite conceivable that a second causal
variant may exist within the same candidate gene region and
be in linkage disequilibrium with G. The lack of independence
between H and G may lead to substantial bias in the estimation
of the G–D association.6 Furthermore, by the same line of
argument as above for non-linear models, if IP were determined
by two genes (either independently or in some interactive
manner), but one only assessed G, then the association between
IP and D estimated from the associations of each with G would
also be biased. In particular, a false-negative conclusion could
be reached if H were really the more relevant determinant of
IP and failure to account for it led to a null result for the
G–D association. As with G � E, failure to account for G � G
interactions could also lead to either false-positive or false-
negative inferences.

Population stratification

A reservation about the broad conclusion Mendelian
randomization is equivalent to a randomized trial is that G–D
associations from case-control studies are susceptible to distor-
tion by population stratification.6 Not only substantial genetic
differences in populations, but more subtle clustering of
genetically similar individuals within the population, can bias a
test of the G–D association.21 Although some have argued that
population stratification may not be a serious concern, at least in
Caucasian populations of European descent,22,23 this problem
can be overcome by appropriate design or analysis. The low
power of Mendelian randomization compared with direct tests of
association implies that very large sample sizes will be required.
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Unfortunately, the problem of inflation of Type I Error rates
by population stratification will only increase with increasing
sample size, as smaller and smaller biases will become significant.

To fully exploit the power of Mendelian randomization, one
should consider using the case-parent-triad design that is based
on the random transmission of alleles from parents to offspring
and is therefore robust to population stratification.24,25 Similar
properties are shared by other family-based association tests
(FBAT), such as a sib case-control design and those that exploit
both parents and siblings or even extended pedigrees.26–29

Conclusions
We conclude that the validity of the Mendelian randomization
approach to evaluating the causality of an association between
IP and D depends upon the correct specification of the causal
model. If G has multiple effects, at least one of which has a
causal effect on D through some pathway not involving IP, or if
the association between G and D is confounded by population
stratification or other genes it is in linkage disequilibrium with,
then the estimated association between IP and D will be dis-
torted. The method will be most efficient when the connection
between G and IP is strong, as noted by Davey Smith and
Ibrahim2 in comparing the usefulness of the beta-fibrinogen
and haptoglobin polymorphisms as predictors of plasma
fibrinogen and vitamin C respectively.

Biological pathways are extremely complex, so a simple
triangulation picture will almost certainly be wrong in most
situations. However, our understanding of these pathways will
doubtless continue to improve (and hence the pictures will get
more and more complicated), but on the other hand, prospects
for overcoming confounding and reverse causation in traditional
observational studies of the IP–D association are very limited. In
the long run, the concept of Mendelian randomization may prove
to be a valuable way for epidemiology to move ‘beyond its limits’.
Thus, the conditions for its validity deserve careful consideration.

Appendix
Validity and efficiency of the ‘instrumental
variables’ approach

Suppose we wish to estimate the slope of a regression of D on
IP and we have available a surrogate variable G for IP—that is,
G is a determinant of IP but is conditionally independent of D
given IP. We begin by assuming all the relationships are linear,
before turning our attention to the additional complications
that arise in non-linear models. Thus, we assume

E(D|IP) = �0 + �1IP, var(D|IP) = �2

E(IP|G) = �0 + �1G, var(IP|G) = τ2

Then,

E(D|G) = �0 + �1G, var(D|G) = �2

where �0 = �0 + �1�0, �1 = �1�1, and �2 = �2 + �1
2τ2. Thus, if

one had unbiased estimators of �1 and �1, then �1/�1 becomes
an unbiased estimator of �1 but its variance is complex (see ref.
14 for a derivation), and can be infinite in the event that the

variance of �1 is large in relation to its true value. Note also that
the parameter of interest, �1, is involved in var(D|G) and thus
ignoring this information will lead to a less than fully efficient
estimator. In particular, if var(IP|G) were not constant, then an
appropriately weighted estimator of � would be required. In any
event, the variance of a ratio can be quite unstable, depending
strongly upon τ2. Thus, if G were not a good predictor of IP,
then var(�1/�1) will be very large.

The derivation above assumes that the model is correctly
specified. In the main body of our article, we describe several
ways the model could be misspecified and the implications for
bias. For example, suppose G has a direct effect on D,
independent of IP, say E(D|IP) = �0 + �1IP + �2G. Then it is easy
to see that �1/�1 estimates �1 + �2/�1, and thus will yield a
biased estimate of the causal effect of IP on D. Alternatively,
suppose there is another factor that influences IP, say H, which
could be another gene or some environmental factor. Suppose
first that H has no direct effect on D other than through its
influence on IP, and G and H are independent and contribute
additively to IP, that is, E(IP|G,H) = �0 + �1G + �2H. Then even
if H is ignored, �1/�1 still estimates �1, although its variance will
be increased. However, if G and H are associated in the
population or if they have an interactive effect on IP, then both
�1 and �1 will be biased, but to the same extent, so their ratio
�1/�1 turns out to be a consistent estimator of �1 (assuming
there is no direct effect of G or H on D except through IP). To
see this, suppose E(H|G) = �0 + �1G. Then if E(IP|G,H) = �0 +
�1G + �2H, then E(IP|G) = �0 + �1G + �2E(H|G) = �0* + �1* G,
where �0

* = �0 + �2�0 and �1* = �1 + �2�1. Likewise, if
E(D|IP,G,H) = �0 + �1IP, then E(D|G) = �0 + �1E[IP|G,E(H|G)] =
�0* + �1*G, where �0* = �0 + �1(�0 + �2�0) and �1* = �1(�1 +
�2�1). Thus �1*/�1* = �1(�1 + �2�1)/(�1 + �2�1) = �1. This
also applies if G and H have an interactive effect on IP (but no
direct effects on D), provided the estimates of the GD and GIP
associations derive from the same dataset or studies with the
same joint distribution of G and H.

For dichotomous disease traits, the derivation is somewhat
more complex and the conditions for validity are more
restrictive. The most tractable situation is when IP ~ N(�0 +
�1G,τ2) and ln[Pr(D = 1|IP)] = �0 + �1IP for a rare disease. Then
it is easily shown that ln[Pr(D = 1|G)] = �0 + �1G, where �0 = �0
+ �1�0 + �1

2τ2/2 and �1 = �1�1, so �1/�1 is a consistent
estimator of �1, just as in the linear model. For a probit link, the
corresponding expression is �1 = �1/√(�1

2 � �1
2τ2), without

the need for a rare disease assumption, but now the ratio �1/�1
is only an approximate estimator of �1. Closed-form solutions
are not available for the logistic model, but qualitatively the
behaviour is similar.14 As before, a direct effect of G on D will
yield a biased estimator.

Unlike the linear model, however, if there is another factor H
influencing IP, then if G and H are not independent, the
estimators �1 and �1 are both biased, but these biases may no
longer cancel out exactly. Suppose that ln[Pr(D = 1|IP)] = �0 +
�1IP and IP ~ N(�0 + �1G + �2H, τ2). If H ~ N(�0 + �1G, �2)
and H is ignored, then IP ~ N(�0

* + �1
*G, τ2 + �2

2�2),
where �1

* = �1 + �2�1, and ln[Pr(D = 1|G)] = �0
* + �1

*G,
where �1

* = �1(�1 + �2�1), so in this case �1/�1 is indeed a
consistent estimator of �1. But now suppose instead that H
were dichotomous, with Pr(H = 1|G) = pG. Then �1

* = �1�1 +
ln[1 + p1 exp(�1�2)] � ln[1 + p0 exp(�1�2)] and �1

* = �1 +
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�2(p1 � p0). Thus �1
*/�1

* will not estimate �1 unless p1 = p0 or
�2 = 0 or �2 = 0.

In general, the validity of Mendelian randomization lies in
the equivalency of �1�1 = �1. That is, the association between
GIP and IPD is assumed to be equivalent to the GD relation. If
g(D|·) gives the functional relation between an exposure and the
disease outcome and h(IP|G) gives the relation between the gene
variant and the intermediate phenotype, then for Mendelian
randomization estimates to be valid, it must be possible to write
g(D|G,�1) = �g(D|IP,�1) h(IP|G,�1) d IP as g(D|G,�1�1). This holds
if h(·) is conjugate to g(·).
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