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Abstract

In this paper we consider the hypersum polynomials, P
(m)
k (n) =

∑k+m+1
r=0 crk,mnr,

and give an explicit formula for the coefficients crk,m. We show that the crk,m’s satisfy
a generalized Akiyama-Tanigawa recurrence relation, thus extending some previous
results due to Inaba. We also give a number of identities involving the Stirling numbers
of the first and second kinds, as well as Bernoulli and harmonic numbers.

1 Introduction

Akiyama and Tanigawa, in the course of their investigation of multiple zeta values at non-
positive integers [1], found an algorithm to calculate the Bernoulli numbers in a manner
similar to Pascal’s triangle for binomial coefficients. The Akiyama-Tanigawa algorithm, as
reformulated by Kaneko [2] and Chen [3], is described by the sequence ak,m defined recursively
by

ak,m = (m+ 1)(ak−1,m − ak−1,m+1), k ≥ 1,m ≥ 0,

for a given initial sequence a0,m, m = 0, 1, 2, . . . . If we start with a0,m = 1/(m + 1), then
it can be shown [2] that the leading element ak,0 is the k-th Bernoulli number Bk (with
B1 =

1
2
).

Later, Inaba [4] considered hypersums of powers of integers and found that the coefficient
of the first-degree term in the hypersum polynomial coincides with the element ak,m of
the Akiyama-Tanigawa matrix. In this paper (Section 2) we give an explicit expression
for the coefficients of the hypersum polynomials in terms of the Stirling numbers of the
first and second kinds. Moreover, in Section 3, we derive a recursive relationship for the
hypersums. Based on this relationship, in Section 4 we show that the coefficients of the
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hypersum polynomials satisfy a generalized Akiyama-Tanigawa recurrence relation. Further,
in Section 5, as an illustration of the general theory, we give a detailed treatment of the
coefficient of the second-degree term in the hypersum polynomial, and provide the general
result for the third-degree term. We conclude in Section 6 with a brief historical account of
the work of Johann Faulhaber on power sums.

2 Hypersums of powers of integers

Using Inaba’s notation [4], the hypersums of powers of integers are defined recursively as

P
(m)
k (n) =

n
∑

j=1

P
(m−1)
k (j), m ≥ 1,

where P
(0)
k (n) is the sum of the first n positive integers each raised to the integer power

k ≥ 0, P
(0)
k (n) = 1k + 2k + 3k + · · · + nk. There exist several formulations for P

(0)
k (n) (see,

for instance, [5]). A convenient formula for our purposes is given in terms of the Stirling
numbers of the second kind S(k, i) (Sloane’s A008277 [6])

P
(0)
k (n) =

k
∑

i=1

i!

(

n+ 1

i+ 1

)

S(k, i), k ≥ 1,

with
(

n+1
i+1

)

= 0 for n < i. A detailed derivation of this formula appears, for example, in the
article [7]. For hypersums of arbitrary order m this formula generalizes to [4]

P
(m)
k (n) =

k
∑

i=1

i!

(

n+m+ 1

i+m+ 1

)

S(k, i), k ≥ 1. (1)

In addition, for k = 0, P
(m)
0 (n) turns out to be

P
(m)
0 (n) =

(

n+m

m+ 1

)

. (2)

From (1), it is readily seen that P
(m)
k (n) is a polynomial in n of degree k+m+1 with constant

term zero. This follows from the fact that each
(

n+m+1
i+m+1

)

can be expanded as a polynomial
in n of degree i+m+ 1, and that the maximum value taken by i is k. Further, from (1) we

get P
(m)
k (0) = 0 since

(

m+1
i+m+1

)

is zero for each 1 ≤ i ≤ k. Thus P
(m)
k (n) admits a polynomial

representation of the form

P
(m)
k (n) =

k+m+1
∑

r=0

crk,mn
r, (3)

with c0k,m = 0 for all k and m.
The following proposition gives us an explicit formula for the coefficients crk,m. From

now on, |s(r, t)| will denote the (unsigned) Stirling numbers of the first kind, also known
as Stirling cycle numbers. (The Stirling numbers of the first kind (signed) are given by
s(r, t) = (−1)r−t|s(r, t)|, see A008275 in [6].)
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Proposition 1. For k = 0 and 1 ≤ r ≤ m+ 1, we have

cr0,m =
1

(m+ 1)!
C(m, r), (4)

where

C(m, r) =
m+1
∑

t=r

(−1)m+1−t|s(m+ 1, t)|

(

t

r

)

mt−r. (5)

On the other hand, for k ≥ 1 and 1 ≤ r ≤ m+ k + 1, crk,m is given by

crk,m =
k
∑

i=max{1,r−m−1}

i!

(i+m+ 1)!
C(i,m, r)S(k, i), (6)

where

C(i,m, r) =
i+m+1
∑

t=r

(−1)i+m+1−t|s(i+m+ 1, t)|

(

t

r

)

(m+ 1)t−r. (7)

Proof. Let us first prove relation (6). For that, write the hypersum P
(m)
k (n) in (1) as

P
(m)
k (n) =

k
∑

i=1

i!

(i+m+ 1)!
[n+m+ 1]i+m+1S(k, i),

where [n]k denotes the falling factorial n(n − 1)(n − 2) · · · (n − k + 1). Considering n as a
variable, [n+m+1]i+m+1 can be regarded as a polynomial in n of degree i+m+1. Therefore,
to prove (6) it suffices to show that the coefficient of the r-degree term in [n+m+ 1]i+m+1

is equal to C(i,m, r). But, by definition of the Stirling numbers of the first kind in terms of
the falling factorial, [n+m+ 1]i+m+1 can be expressed as

[n+m+ 1]i+m+1 =
i+m+1
∑

t=1

(−1)i+m+1−t|s(i+m+ 1, t)|(n+m+ 1)t.

Furthermore, by the binomial theorem we have

(n+m+ 1)t =
t
∑

r=0

(

t

r

)

nr(m+ 1)t−r,

and then the r-degree coefficient in (n + m + 1)t is
(

t

r

)

(m + 1)t−r, from which we in turn
deduce that the r-degree coefficient in [n +m + 1]i+m+1 is just C(i,m, r). Moreover, since
C(i,m, r) = 0 for i+m+1 < r, we can restrict the summation in (6) to the values i = 1, . . . , k
if r −m ≤ 1, or else to the values i = r −m− 1, . . . , k if r −m ≥ 2.

Similarly, to prove (4), we first note that (2) can be written as

(

n+m

m+ 1

)

=
[n+m]m+1

(m+ 1)!
.
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As before, [n+m]m+1 can be expanded as

[n+m]m+1 =
m+1
∑

t=1

(−1)m+1−t|s(m+ 1, t)|(n+m)t.

Since the r-degree coefficient of (n+m)t is
(

t

r

)

mt−r we conclude that the r-degree coefficient
in [n+m]m+1 is equal to C(m, r), and hence the proof of (4) is done.

Next we give an alternative, closed formula for cr0,m that will be used later when we
discuss the generalized Akiyama-Tanigawa algorithm in Section 4.

Proposition 2. For 1 ≤ r ≤ m+ 1

cr0,m =
|s(m+ 1, r)|

(m+ 1)!
. (8)

Proof. This follows immediately when we write
(

n+m

m+1

)

as

(

n+m

m+ 1

)

=
[n]m+1

(m+ 1)!
,

where [n]k denotes the rising factorial n(n+1)(n+2) · · · (n+k−1). To prove the proposition
we have to show that |s(m + 1, r)| constitutes the r-degree term of [n]m+1. But, from the
algebraic definition of the (unsigned) Stirling numbers of the first kind in terms of the rising
factorial, we have that

[n]m+1 =
m+1
∑

r=1

|s(m+ 1, r)|nr,

and thus relation (8) is proved.

A direct consequence of (8) is that, for any given r, all the coefficients cr0,m (m = 0, 1, 2, . . .)
are non-negative. On the other hand, from (6) and (7) we quickly deduce the leading

coefficient of P
(m)
k (n),

ck+m+1
k,m =

k!

(k +m+ 1)!
, (9)

which applies to all k ≥ 0 and m ≥ 0. Note that, as expected, for m = 0 we retrieve the
well-known result ck+1

k,0 = 1
k+1

. In addition to ck+m+1
k,m , from (6) and (7) we can also obtain

closed-form expressions for the successive high-degree coefficients of P
(m)
k (n). Here we give
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the resultant formulas for the first five trailing coefficients next to ck+m+1
k,m :

ck+m
k,m =

k!

(k +m)!

m+ 1

2
, k ≥ 1,m ≥ 0,

ck+m−1
k,m =

k!

(k +m− 1)!

(m+ 1)(3m+ 2)

24
, k ≥ 2,m ≥ 0,

ck+m−2
k,m =

k!

(k +m− 2)!

m(m+ 1)2

48
, k ≥ 3,m ≥ 0, (10)

ck+m−3
k,m =

k!

(k +m− 3)!
(m+ 1)

15m3 + 15m2 − 10m− 8

5760
, k ≥ 4,m ≥ 0,

ck+m−4
k,m =

k!

(k +m− 4)!

m(m+ 1)2

11520
(3m2 −m− 6), k ≥ 5,m ≥ 0.

Likewise, for m = 0, from these formulas we readily get ckk,0 = 1
2
, ck−1

k,0 = k
12
, ck−2

k,0 = 0,

ck−3
k,0 = −k(k−1)(k−2)

720
, and ck−4

k,0 = 0.
In the following proposition we give an alternative formula for C(i,m, r), which is most

suitable for determining the low-degree coefficients of P
(m)
k (n).

Proposition 3. For 1 ≤ p ≤ m+ 2 and 1 ≤ q ≤ i,

C(i,m, r) =
∑

p+q=r+1

(−1)i−q|s(m+ 2, p)||s(i, q)|. (11)

Proof. We start from the equality [n +m + 1]i+m+1 = 1
n
[n]m+2[n]i. Now, putting [n]m+2 =

∑m+2
p=1 |s(m+ 2, p)|np and [n]i =

∑i

q=1(−1)i−q|s(i, q)|nq, we have

1

n
[n]m+2[n]i =

m+2
∑

p=1

i
∑

q=1

(−1)i−q|s(m+ 2, p)||s(i, q)|np+q−1.

From this expression it is clear that the r-degree coefficient in 1
n
[n]m+2[n]i is attained when-

ever p+q = r+1. Thus, recalling that C(i,m, r) denotes the coefficient of the r-degree term
in [n+m+ 1]i+m+1, the proposition follows.

For example, for the case r = 1 we must have p = q = 1 and then

C(i,m, 1) = (−1)i−1|s(m+ 2, 1)||s(i, 1)| = (−1)i−1(m+ 1)!(i− 1)!, (12)

where we have used the fact that |s(n, 1)| = (n− 1)!. Then, taking into account (8) and (6),
we find that

c10,m =
1

m+ 1
,

c1k,m =
k
∑

i=1

(−1)i−1(m+ 1)!(i− 1)!i!

(i+m+ 1)!
S(k, i), k ≥ 1.
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These relations were previously derived in [4, Prop. 2]. In Section 5 we shall obtain, using

relations (8), (6), and (11), the second and third-degree coefficients c2k,m and c3k,m of P
(m)
k (n).

Next we give a general expression for the leading elements crk,0 in terms of the Bernoulli
numbers.

Proposition 4. For 1 ≤ r ≤ k + 1,

crk,0 =
1

k + 1

(

k + 1

r

)

Bk+1−r. (13)

with B1 =
1
2
.

Proof. This expression readily follows from the well-known Bernoulli formula for the ordinary
power sums (see, for example, the articles [5] and [8]):

P
(0)
k (n) =

1

k + 1

k
∑

j=0

(

k + 1

j

)

Bjn
k+1−j,

where B1 is taken to be 1
2
. This can also be written as

P
(0)
k (n) =

1

k + 1

k+1
∑

r=1

(

k + 1

r

)

Bk+1−rn
r.

On the other hand, recalling that c0k,0 = 0, the polynomial (3) for m = 0 reads as

P
(0)
k (n) =

k+1
∑

r=1

crk,0n
r.

Thus, comparing like terms in the previous two expressions, we get (13).

From (13) we see at once that c1k,0 = Bk (cf. [2]). Now Proposition 4, in conjunction with
equation (6), yields the following identity.

Corollary 5. For 1 ≤ r ≤ k + 1 and k ≥ 1,

k
∑

i=max{1,r−1}

1

i+ 1

(

i+1
∑

t=r

(−1)i+1−t|s(i+ 1, t)|

(

t

r

)

)

S(k, i) =
1

k + 1

(

k + 1

r

)

Bk+1−r. (14)

Proof. Set m = 0 in (6) and identify the resulting expression with (13).

Putting r = 1 in (14) yields the following explicit formula for the Bernoulli numbers
(with B1 =

1
2
):

Bk =
k
∑

i=1

1

i+ 1

(

i+1
∑

t=1

(−1)i+1−t|s(i+ 1, t)|t

)

S(k, i), k ≥ 1.

6



Furthermore, putting m = 0 and r = 1 in (7) and equating the resulting expression to that
obtained in (12) for m = 0 gives

i+1
∑

t=1

(−1)i+1−t|s(i+ 1, t)|t = (−1)i−1(i− 1)!,

and then the previous expression for Bk reduces to the classical identity for the Bernoulli
numbers in terms of the Stirling numbers of the second kind.

Corollary 6.

Bk =
k
∑

i=1

(−1)i−1(i− 1)!

i+ 1
S(k, i), k ≥ 1.

with B1 =
1
2
.

3 A recursive relationship for the hypersums

In this section we derive a recursive relationship for the hypersums P
(m)
k (n) that shall consti-

tute the core of the generalized Akiyama-Tanigawa algorithm developed in Section 4. This
recurrence relation is presented in Theorem 8 below. To prove this theorem, we shall need
the following preliminary result.

Lemma 7.
n
∑

j=1

jP
(m)
k (j) = (n+ 1)P

(m+1)
k (n)− P

(m+2)
k (n). (15)

Proof. Set l = m + 1. Then, in view of (1), it is clear that proving (15) is tantamount to
proving the combinatorial identity

n
∑

j=1

j

(

j + l

i+ l

)

= (n+ 1)

(

n+ l + 1

i+ l + 1

)

−

(

n+ l + 2

i+ l + 2

)

. (16)

To prove (16), we shall repeatedly use the well-known identity

n
∑

j=0

(

j

i

)

=

(

n+ 1

i+ 1

)

,

with
(

j

i

)

= 0 for j < i. Another crucial ingredient is the absorption property

(i+ 1)

(

j + 1

i+ 1

)

= (j + 1)

(

j

i

)

, 0 ≤ i ≤ j,

which we rewrite in the form

j

(

j

i

)

= (i+ 1)

(

j + 1

i+ 1

)

−

(

j

i

)

. (17)
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With this in mind we have

n
∑

j=1

j

(

j + l

i+ l

)

=
n
∑

j=1

(j + l)

(

j + l

i+ l

)

− l

n
∑

j=1

(

j + l

i+ l

)

=
n+l
∑

s=i+l

s

(

s

i+ l

)

− l
n+l
∑

s=i+l

(

s

i+ l

)

=
n+l
∑

s=i+l

s

(

s

i+ l

)

− l

(

n+ l + 1

i+ l + 1

)

.

Now from relation (17) it follows that

n+l
∑

s=i+l

s

(

s

i+ l

)

= (i+ l + 1)
n+l+1
∑

s=i+l+1

(

s

i+ l + 1

)

−
n+l
∑

s=i+l

(

s

i+ l

)

= (i+ l + 1)

(

n+ l + 2

i+ l + 2

)

−

(

n+ l + 1

i+ l + 1

)

,

and then
n
∑

j=1

j

(

j + l

i+ l

)

= (i+ l + 1)

(

n+ l + 2

i+ l + 2

)

− (l + 1)

(

n+ l + 1

i+ l + 1

)

. (18)

Applying the absorption property once more, we get

(i+ l + 2)

(

n+ l + 2

i+ l + 2

)

= (n+ l + 2)

(

n+ l + 1

i+ l + 1

)

.

From this we obtain

(i+ l + 1)

(

n+ l + 2

i+ l + 2

)

= (n+ l + 2)

(

n+ l + 1

i+ l + 1

)

−

(

n+ l + 2

i+ l + 2

)

,

and then, substituting this into (18), we retrieve the identity (16) and thus the lemma is
proved.

The extended Akiyama-Tanigawa algorithm for hypersums of powers of integers is based
on the following recursive relationship for the hypersums, which is stated in the next theorem.

Theorem 8. The hypersums P
(m)
k+1(n), P

(m)
k (n), and P

(m+1)
k (n) are constrained to obey the

relation
P

(m)
k+1(n) = (m+ 1)

(

P
(m)
k (n)− P

(m+1)
k (n)

)

+ nP
(m)
k (n), k,m ≥ 0. (19)

Proof. Assume that k and n take fixed (but otherwise arbitrary) integer values k ≥ 0 and
n ≥ 1, and proceed by induction on m. First we prove the base case where m = 0. For this
case we must show that

(n+ 1)P
(0)
k (n) = P

(0)
k+1(n) + P

(1)
k (n).
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This is most easily seen by displaying (n+ 1)P
(0)
k (n) as the sum of the n+ 1 rows

1k + 2k + 3k + · · ·+ nk

1k + 2k + 3k + · · ·+ nk

...
1k + 2k + 3k + · · ·+ nk



















n+ 1,

and noting that this sum can be decomposed as the sum of the following two pieces

1k

1k + 2k

1k + 2k + 3k

...
1k + 2k + 3k + · · ·+ nk



























n +

1k + 2k + 3k + · · ·+ nk

2k + 3k + · · ·+ nk

3k + · · ·+ nk

...
nk



























n.

Clearly, summing the rows of the piece on the left gives P
(1)
k (n). On the other hand, the

entries in the i-th column of the piece on the right sum to ik+1, and so the sum of all these
columns amounts to P

(0)
k+1(n).

Next we take as the inductive hypothesis the assumption that, for any given m ≥ 1, it
happens that

P
(m−1)
k+1 (j) = m

(

P
(m−1)
k (j)− P

(m)
k (j)

)

+ jP
(m−1)
k (j), (20)

for arbitrary integers k ≥ 0 and j ≥ 1. The task is to derive (19) starting from (20). This is
rather immediate once we have established Lemma 7. Indeed, recalling that, by definition,

n
∑

j=1

P
(m−1)
k+1 (j) = P

(m)
k+1(n),

n
∑

j=1

P
(m−1)
k (j) = P

(m)
k (n), and

n
∑

j=1

P
(m)
k (j) = P

(m+1)
k (n),

from (20) we obtain that

P
(m)
k+1(n) = m

(

P
(m)
k (n)− P

(m+1)
k (n)

)

+
n
∑

j=1

jP
(m−1)
k (j).

From Lemma 7 we have

n
∑

j=1

jP
(m−1)
k (j) = (n+ 1)P

(m)
k (n)− P

(m+1)
k (n),

and then substituting this expression into the previous equation we get the recursion formula
(19). Having completed the base case and the inductive case, the overall proof of Theorem
8 is done.
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4 Generalized Akiyama-Tanigawa algorithm for hyper-

sums of powers of integers

The Akiyama-Tanigawa algorithm for computing Bernoulli numbers starts with the initial
row (the 0-th row) given by the sequence a0,m = 1/(m+ 1) (for m ≥ 0), and then generates
the row k (for k ≥ 1) by the rule [2, 3, 4]

ak,m = (m+ 1)(ak−1,m − ak−1,m+1). (21)

Then the leading element ak,0 of each row is seen to be the k-th Bernoulli number Bk with
B1 =

1
2
[2].

As noted in the Introduction, Inaba [4] showed that the coefficient of the first-degree

term in P
(m)
k (n), c1k,m, satisfies a recurrence relation given by (21), namely,

c1k,m = (m+ 1)(c1k−1,m − c1k−1,m+1), (22)

with the same initial condition c10,m = 1/(m + 1), and so we have in fact that c1k,m = ak,m.
Based on Theorem 8, we are going to show that, actually, relation (22) is just a particular
case of a more general relationship for the coefficients crk,m of the hypersum polynomials (3).
This is established in the following proposition, which constitutes one of the main results of
this paper.

Proposition 9 (Generalized Akiyama-Tanigawa algorithm). For 1 ≤ r ≤ k+m+ 1, k ≥ 1,
and m ≥ 0, we have the recurrence relation

crk,m = (m+ 1)
(

crk−1,m − crk−1,m+1

)

+ cr−1
k−1,m, (23)

with the starting sequence given by

cr0,m =
|s(m+ 1, r)|

(m+ 1)!
. (24)

Proof. Write the recursive relationship (19) for the hypersums as

P
(m)
k (n) = (m+ 1)

(

P
(m)
k−1(n)− P

(m+1)
k−1 (n)

)

+ nP
(m)
k−1(n).

Replacing P
(m)
k (n) for its polynomial expression (3) (with c0k,m = 0) we obtain

k+m+1
∑

r=1

crk,mn
r = (m+ 1)

(

k+m
∑

r=1

crk−1,mn
r −

k+m+1
∑

r=1

crk−1,m+1n
r

)

+
k+m
∑

r=1

crk−1,mn
r+1,

or, equivalently,

k+m+1
∑

r=1

crk,mn
r =

k+m+1
∑

r=1

(m+ 1)(crk−1,m − crk−1,m+1)n
r +

k+m+1
∑

r=1

cr−1
k−1,mn

r,

on the understanding that ck+m+1
k−1,m = 0. Thus, by equating like powers of n on both sides of

this equation we are finally left with relation (23). On the other hand, the proof of (24) is
given in Proposition 2.
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Clearly, for the case r = 1 relation (23) reduces to (22), as c0k−1,m = 0 for all k ≥ 1 and
m ≥ 0. Finally, one can check that the coefficients given in (10) in fact satisfy the recurrence
(23). So, for example, for k ≥ 5 and m ≥ 0, we have that

ck+m−3
k,m =

k!

(k +m− 3)!
(m+ 1)

15m3 + 15m2 − 10m− 8

5760
,

ck+m−3
k−1,m =

(k − 1)!

(k +m− 3)!

m(m+ 1)2

48
,

ck+m−3
k−1,m+1 =

(k − 1)!

(k +m− 3)!
(m+ 2)

15m3 + 60m2 + 65m+ 12

5760
,

ck+m−4
k−1,m =

(k − 1)!

(k +m− 4)!
(m+ 1)

15m3 + 15m2 − 10m− 8

5760
,

which satisfy the relation

ck+m−3
k,m = (m+ 1)

(

ck+m−3
k−1,m − ck+m−3

k−1,m+1

)

+ ck+m−4
k−1,m .

5 Second-degree coefficient of the hypersum polyno-

mial

In this section we examine explicitly the coefficient of the second-degree term in P
(m)
k (n),

c2k,m, by means of the generalized Akiyama-Tanigawa algorithm. For r = 2, recurrence (23)
becomes

c2k,m = (m+ 1)(c2k−1,m − c2k−1,m+1) + c1k−1,m, (25)

with initial sequence (the row 0)

c20,m =
|s(m+ 1, 2)|

(m+ 1)!
=

Hm

m+ 1
, (26)

where we have used that |s(n, 2)| = (n− 1)!Hn−1, Hn denoting the harmonic number Hn =
∑n

i=1 1/i, with H0 = 0. To obtain the sequence corresponding to row 1, c21,m, we feed (26)
into (25) and, recalling that c10,m = 1/(m+ 1), we get

c21,m =
Hm+1

m+ 2
.

Similarly, inserting this expression into (25), and noting that c11,m = 1/(m+ 2), we find the
elements of row 2

c22,m =
2 + (m+ 1)Hm+1

(m+ 2)(m+ 3)
.

Likewise, proceeding this way, we obtain the sequences for rows 3 and 4 as

c23,m =
(m+ 1)(6 +mHm+1)

(m+ 2)(m+ 3)(m+ 4)
,

c24,m =
(m+ 1)

(

4 + 14m+ (m− 4)(m+ 1)Hm+1

)

(m+ 2)(m+ 3)(m+ 4)(m+ 5)
,

11



k\m 0 1 2 3 4 5 · · ·
0 0 1/2 1/2 11/24 5/12 137/360 · · ·
1 1/2 1/2 11/24 5/12 137/360 7/20 · · ·
2 1/2 5/12 3/8 31/90 23/72 167/560 · · ·
3 1/4 1/4 29/120 7/30 227/1008 73/336 · · ·
4 0 1/20 3/40 113/1260 25/252 887/8400 · · ·
5 −1/12 −1/12 −11/168 −1/21 −23/720 −31/1680 · · ·
6 0 −5/84 −5/56 −127/1260 −13/126 −621/6160 · · ·
7 1/12 1/12 1/24 0 −53/1584 −31/528 · · ·
8 0 7/60 7/40 361/1980 65/396 162641/1201200 · · ·
...

...
...

...
...

...
... · · ·

Table 1: The Akiyama-Tanigawa matrix {c2k,m} for k = 0/8 and m = 0/5.

and so on.
In Table 1 we display the matrix for c2k,m that results for the first few values of k and m.

From (13), it follows that the sequence corresponding to the 0-th column, c2k,0, k = 1, 2, 3, . . . ,

is given by c2k,0 =
1
2
kBk−1, with c20,0 = 0.

We can deduce a general expression for c2k,m by first using Proposition 3 to get C(i,m, 2),
and then using (6). For r = 2 the allowed values of the ordered pair (p, q) are (1, 2) and
(2, 1), and then from (11) we get

C(i,m, 2) = (−1)i−2|s(m+ 2, 1)||s(i, 2)|+ (−1)i−1|s(m+ 2, 2)||s(i, 1)|.

Recalling that |s(n, 1)| = (n− 1)! and |s(n, 2)| = (n− 1)!Hn−1, this gives

C(i,m, 2) = (−1)i−2(m+ 1)!(i− 1)!Hi−1 + (−1)i−1(m+ 1)!Hm+1(i− 1)!

= (−1)i−1(m+ 1)!(i− 1)!
(

Hm+1 −Hi−1

)

.

Provided with C(i,m, 2), we can now use (26) and (6) to obtain c2k,m:

Proposition 10.

c2k,m =















Hm

m+ 1
, if k = 0,

k
∑

i=1

(−1)i−1(m+ 1)!(i− 1)!i!
(

Hm+1 −Hi−1

)

(i+m+ 1)!
S(k, i), if k ≥ 1.

The following corollary gives us an alternative explicit formula for the Bernoulli numbers
in terms of the Stirling numbers of the second kind and the harmonic numbers.

Corollary 11.

Bk =
2

k + 1

k+1
∑

i=1

(−1)i−1(i− 1)!
(

1−Hi−1

)

i+ 1
S(k + 1, i), k ≥ 0.

with B1 =
1
2
.

12



Proof. We already know that c2k,0 =
1
2
kBk−1 for k ≥ 1 or, equivalently, c2k+1,0 =

1
2
(k + 1)Bk

for k ≥ 0. Then put m = 0 in the second relation of Proposition 10 and shift k to k + 1.
Equal the resulting expression to 1

2
(k + 1)Bk, and hence the corollary follows.

In the same way, by applying relations (8), (6), and (11), one can determine the successive
low-degree coefficients c3k,m, c

4
k,m, . . . . In the following proposition we give the expression for

c3k,m (note that, in this case, we have c30,0 = c30,1 = c31,0 = 0.)

Proposition 12.

c3k,m =



















1

2(m+ 1)

(

(Hm)
2 −H(2)

m

)

, if k = 0,

k
∑

i=1

(−1)i−1(m+ 1)!(i− 1)!i!

2(i+m+ 1)!

(

(

Hm+1 −Hi−1

)2
−H

(2)
m+1 −H

(2)
i−1

)

S(k, i), if k ≥ 1,

where H
(2)
m =

∑m

i=1 1/i
2.

6 Concluding remarks

In his 1631 Academia Algebrae, the German mathematician and engineer Johann Faulhaber
(1580–1635) presented novel formulas for (in our notation) P

(0)
k (n) for values of k ranging

from k = 13 up to k = 23. (He had previously published formulas for P
(0)
k (n) up to k = 12).

These formulas were expressed for the first time in terms of the variable N = n(n + 1)/2.
Moreover, Faulhaber also produced remarkable formulas for sums of power sums. Indeed, as
Knuth explains in his comprehensive study of Faulhaber’s work on sums of powers [9], he

exhibited a totally correct 17-degree polynomial in n for the hypersum P
(10)
6 (n) (which in

Knuth’s notation is Σ11n6) that, in Knuth’s words, would have been quite difficult to obtain

by repeated summation. Here we argue that, in fact, P
(10)
6 (n) can be obtained by repeated

summation using the generalized Akiyama-Tanigawa algorithm described in equations (23)
and (24). Of course this entails a lot of work since one has to construct 17 tables of coefficients
crk,m, r = 1, 2, . . . , 17, and, for each of these tables, one has to determine, starting from (24)
and by repeated application of (23), the pair of elements cr5,10 and cr5,11. Once the values of
cr5,10 and cr5,11 have been ascertained for each r, a last application of (23) would allow us to
obtain the desired coefficients cr6,10.

Fortunately, 382 years after the time of publication of Academia Algebrae, we can rou-
tinely run a modern computer to perform the calculations in a fraction of a second. Fur-
thermore, besides relations (23) and (24), we can alternatively use the formulas (6) and (7)
to directly evaluate the coefficients we want to. So, putting k = 6 and m = 10 in (6) and
(7) yields

cr6,10 =
6
∑

i=max{1,r−11}

i!

(i+ 11)!

(

i+11
∑

t=1

(−1)i+11−t|s(i+ 11, t)|

(

t

r

)

11t−r

)

S(6, i).
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By means of, for example, a computer algebra system such as Mathematica, we can readily
compute this expression for r = 1, 2, . . . , 17. Next we quote the results as follows:

c16,10 = −96598656000/C, c26,10 = −203020963200/C,

c36,10 = 90994289760/C, c46,10 = 709177112512/C,

c56,10 = 1021675563656/C, c66,10 = 812536224500/C,

c76,10 = 423402217056/C, c86,10 = 155027658357/C,

c96,10 = 41338556974/C, c106,10 = 8177397800/C,

c116,10 = 1208226448/C, c126,10 = 132902770/C,

c136,10 = 10728564/C, c146,10 = 617100/C,

c156,10 = 23936/C, c166,10 = 561/C,

c176,10 = 6/C,

where C = 17!/5! = 2964061900800, in accordance with (9). We note that
∑17

r=1 c
r
6,10 = 1.

This is an instance of the general relation

k+m+1
∑

r=1

crk,m = 1,

which follows from the fact that P
(m)
k (1) = 1 for all k ≥ 0 and m ≥ 0.
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