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Abstract

The count pi_2(x) of the number of twin-prime pairs <= x, as well as the count pi(x) of the
number of primes <= x, was tabulated by means of a computer search for values of x up to
1e14, at intervals of 1e9. The floating point sum of the reciprocals was also calculated,
resulting in an improved estimate for Brun's constant of 1.9021605778, with a standard
deviation of 0.00000 00021. An algorithm for estimating the standard deviation of such
calculations is described. In the course of the computation a flaw was discovered in the
hardware divider of the floating point unit of Intel Corporation's Pentium microprocessor.
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Introduction

The set {(3, 5), (5, 7), (11, 13), ...} of twin-prime pairs (q, q+2) has been studied by Brun
(1919), Hardy and Littlewood (1923), Selmer (1942), Fröberg (1961), Weintraub (1973),
Bohman (1973), Shanks and Wrench (1974), and Brent (1975, 1976). Currently M. Kutrib
and J. Richstein (1996, 1997) are completing a study similar to the present one.

Although it is still not known if the set is infinite, Brun (1919) proved that in any case the
sum of the reciprocals

(1)        B = (1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) + (1/17 + 1/19) + ...

is convergent, in contrast to the divergent sum of the reciprocals of the individual primes;
thus B is known as Brun's constant. Also unlike the individual primes, no indirect method
is known for enumerating the twins; my investigation, like the others, simply sieves the
individual primes to the desired upper bound, then checks directly for the twin pairs among
them.  The "Prime k-tuples conjecture," formulated by Hardy and Littlewood (1923), has
as a corollary the following asymptotic formula for the count of twin primes:

(2)        pi_2(x) ~ L_2(x) = 2c_2*int(1/(ln(t))^2, t, 2, x)

where pi_2(x) is the number of twin-prime pairs (q, q+2) such that q <= x, and c_2 is the
"twin-primes constant,"

(3)        c_2 = 0.66016 18158 46869 57392 78121 ...,

computed to 42 decimals by J. W. Wrench (1961). See Riesel (1994, pp. 60-68) for a
discussion of (2), often styled the "Hardy-Littlewood approximation," and (3).

Although (1) is convergent, the partial sums approach the limit with agonizing slowness.
However, assuming the Hardy-Littlewood approximation (2), an accurate estimate can
easily be derived (Fröberg, 1961) for the remainder term, producing a result which
converges to the same limit much more rapidly:
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(4)        B*(x) = B(x) + 4c_2/ln(x) ,

where B*(x) is the accelerated approximation to Brun's constant and B(x) is the partial
sum of the reciprocals of the twins:

(5)        B(x) = sum(1/q + 1/(q+2), q, q <= x) .

Furthermore, Brent (1975) conjectures a corresponding standard deviation of

(6)        sigma_B(x) = sqrt(8c_2)/(sqrt(x)*ln(x))

for the estimates of B from B*(x).

Brent (1975, 1976) extended the previous enumerations of the twins, and their reciprocal
sums, to 1e11; his resulting estimate for Brun's constant was 1.90216 054 +/- 0.00000 050.
To improve on this result, the author has extended these calculations three orders of
magnitude, to an upper bound of 1e14.

Computational Technique; the Pentium Flaw

The calculations were carried out exclusively on personal computers powered by Intel x86
CPUs, a mixture of 486DX-33 and Pentium systems. The operating environment was
Microsoft's DOS and Windows 3.x with Win32s support added. The code was written in C,
using the Windows 3.x and Win32s APIs, and compiled using Borland C++ 4.02. The
computational power of the individual units was enhanced by distributing the calculations
independently and asynchronously across multiple systems---five 486DX-33s early on,
eventually expanding to more than a dozen Pentium systems.

The most critical section of the code lies in the procedures which sieve large blocks of
integers (typically twenty million, though block size is adjusted to available physical
system memory) for primes. A variation of the sieve of Eratosthenes is used, with a
number of tricks added to improve speed. One array holds the base primes (those <=
sqrt(x)) used as trial divisors; actually, it contains the differences between successive
primes, which require less storage (one byte for each prime < 4.3e8, or < 3.04e11 if half
the difference is stored; see Brent (1973, p. 961) and Riesel (1994, p. 80)) and from which
successive base primes are reconstructed by integer addition. The second array, usually
much larger, has one byte corresponding to each odd integer in the block to be sieved; the
byte is set to 1 for primes and zero for composites. The base primes are read in at startup
from a disk file, which uses bit encoding (mod 30) to store primality information for 30
numbers per byte (bit encoding proved inefficient for the arrays in memory, due primarily
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to the absence in Intel x86 processors of any native mode or instructions supporting bit-
based memory addressing).

The cumulative effect of evolutionary optimization illustrates the incredible power residing
within current personal computers. Throughput was initially about 1.7e8 integers per day
on a 386/387; current versions do about 1e11 per day on modestly equipped Pentiums.
This compares quite favorably with the throughput of 6.6e11 per day implied by Young
and Potler (1989), employing a Cray-2 on a similar problem which required no floating
point arithmetic. The biggest speed boosts came from the moves to 16-bit and 32-bit
Windows, the first allowing access to all of extended memory for the arrays of primes, the
second eliminating segment arithmetic.

At first calculations were performed in runs of 1e11 per machine; more recently, in runs of
1e12. Output was dumped to a binary disk file at intervals of 1e9; at the end of a run, a
copy of the output file was appended to a master output file on my home system. A viewer
code was written to allow analysis of the output.

Error detection and prevention was a major consideration from the outset, particularly
since personal computers do not have the reputation for reliability enjoyed by
workstations, mainframes, and supercomputers. A count of primes was maintained, and
compared with published values (Riesel, 1994, pp. 380-383) of pi(x) at intervals. Values of
pi_2(x) and the partial sums B(x) of the reciprocals were compared with those obtained by
Brent (1975, 1976) to 1e11. The reciprocal sums were computed by two independent
methods. One used the IEEE floating point arithmetic native to the Intel numeric
coprocessors, with a 64-bit normalized mantissa (extended precision, or long double data
type, giving 19 significant digits); the other calculated the reciprocals and sums using a
modification of an ultra-precision integer arithmetic package graciously donated to the
public domain by Arjen Lenstra (1988-1991), and as implemented produced 53 decimals
(initially 26 decimals).

The reliance on floating point arithmetic was even more pervasive than it would appear,
since the magnitude of the integers being investigated exceeded the capacity of the 32-bit
registers native to the Intel processors. Thus integers exceeding 2^32 - 1 had to be
represented as long double floating point values, with care required to guard against any
associated rounding or truncation errors.

Naturally, many errors were encountered during early development, the result of logical
flaws in the algorithms and code. Once these were eliminated, the calculations proceeded
smoothly. Suddenly, after a group of runs was assembled and analyzed on 13 June 1994, a
discrepancy appeared: the count of primes < 2e13 was incorrect. In the process of
attempting to eliminate this error (and at the same time port the code to 32-bit Windows), it
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was discovered that bugs in the Borland compiler were also producing erroneous results
(due to incorrect rounding of quotients) in the ultra-precision sums. Not until 10 September
1994 was a ported version of the code produced with all known sources of error
eliminated.

Ever more cautious (paranoid?), this time I restarted the entire calculation from zero and
performed each run (of size 1e12) in duplicate on two machines. The first run of the first
1e12 was performed on the only Pentium in the group; it had been added to the mix the
previous March. The duplicate run was completed on my wife's 486DX-33 on 4 October
1994. It was immediately clear that their ultra-precision reciprocal sums differed. Using
binary search, the difference was soon isolated to the results for the twin pair
824633702442 +/- 1, for which not only the ultra-precision results differed, but even the
floating point reciprocals returned from the CPU were in error. Several days were then
spent looking for the culprit; compiler error, memory error, system bus, etc. By 19 October
1994 I was all but certain the error was within the floating point hardware unit of the
Pentium CPU itself. After several more days fruitlessly quizzing tech support at the system
vendor and finally at Intel itself, I dispatched (30 October 1994) an e-mail query regarding
the error to several parties whom I thought would be interested and would have access to a
large variety of systems. The message and its consequences were spread worldwide over
the Internet within days, and eventually Intel admitted that such errors (which occurred
only in floating point division and remaindering operations, with unusual denominators)
were the result of a production flaw in nearly all (over a million) of the Pentium CPUs
produced to that time. Although the error was quite rare and often of extremely small
magnitude, a crisis in public relations and consumer confidence ensued, and Intel
eventually agreed to replace all such chips with corrected versions, at the company's
expense. In January 1995, Intel announced (PC Week, 1995) a $475 million accounting
charge to cover the cost of the episode. More elaborate technical details may be found in
Sharangpani and Barton (1994) and in Coe (1995). One final point of interest in this regard
is that the original error of 13 June 1994, the incorrect count of primes, appears to have
originated in the use of the fmod remaindering instruction in the sieving process; fmod in
turn invokes one of the fdiv family of instructions, which is then executed in the FPU
hardware divider.

After this tempest began to settle (mathematicians in general, and this one in particular, are
not accustomed to being besieged by inquiries and visits from network news, the BBC, the
Washington Post, the Wall Street Journal, and the New York Times, as well as journalists
from France, Australia, and Malaysia), attention returned to the work at hand. With
commendable haste, Intel provided a replacement chip for the errant Pentium (as well as
one for a colleague's system) and also supplied a 90-MHz Pentium system to help make up
for lost time. Naturally, all remaining calculations were carried out in duplicate, and the
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wisdom of this caution was confirmed when other discrepancies appeared between
duplicate runs. Twice the errors were tracked to intermittently defective memory (SIMM)
chips; parity checking had failed to report either error. On another occasion, a disk
subsystem failure generated a wholesale lot of incorrect, yet plausible data. In the most
recent instance, a soft memory error appears to be the culprit.

Although many may dismiss machine errors such as these as of no practical consequence
(except to mathematicians) or as evidence of the unreliability of personal computers, I
believe there is a more important conclusion to be drawn. Any significant computation, for
which there is no simple check available, should be performed in duplicate, preferably on
two different systems, using different CPUs, hardware, operating systems, application
software, and algorithms. In practice, it is difficult to obtain this degree of independence;
but certainly, one must be suspicious of the result of any single, lengthy machine
computation, whether it is performed on a personal computer or the world's finest
supercomputer. As we tell our students---check your work!

Computational Results

Table 1 contains a brief summary of the computational results, including the counts pi_2(x)
of twin-prime pairs; the values of Brent's (1975) r_3(x),

(7)        r_3(x) = L_2(x) - pi_2(x) ;

the partial sums B(x) of (5); and the extrapolations B*(x) of B(x) to the limit according to
(4), yielding a sequence of approximations to Brun's constant believed to be of ever
increasing accuracy. Note that in the interest of simplicity, both Table 1 and Table 2 use the
floating point format (common to most programming languages) for numbers in scientific
notation. More extensive versions of Table 1 are available at
http://www.trnicely.net/twins/t2_0000.htm, at http://www.trnicely.net/twins/t2_0001.htm,
and at this site. Furthermore, the latest updated count of the twin primes, and the
corresponding estimates for Brun's constant and the error bound, are available at
http://www.trnicely.net/counts.html.

 Table 1. Counts of twin-prime pairs and estimates of Brun's constant. 

==========================================================================

  x         pi_2(x)       r_3(x)          B(x)                B*(x) 

==========================================================================

 8e10      182855913      -984.74   1.796977508288414   1.902160400157630 

 9e10      203710414     -6872.36   1.797468808649461   1.902160532806004 

 1e11      224376048     -7183.32   1.797904310955119   1.902160541422583 

 2e11      424084653     -8611.89   1.800681441692738   1.902160557807120 

 3e11      615885700    -11077.61   1.802238425610275   1.902160567207455 
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 4e11      802817718    -23093.64   1.803314522594797   1.902160635784981 

 5e11      986222314    -13877.92   1.804133287736837   1.902160595672241 

 6e11     1166916933    -18008.47   1.804792314084921   1.902160611601456 

 7e11     1345394380    -23486.68   1.805342641847864   1.902160627757985 

 8e11     1521998439    -22360.26   1.805814337650692   1.902160625580581 

 9e11     1696987738    -14624.66   1.806226588713636   1.902160608308483 

 1e12     1870585220    -25353.18   1.806592419175883   1.902160630437725 

 2e12     3552770943     46121.50   1.808931049664746   1.902160521956607 

 3e12     5173760785     34043.13   1.810246818931813   1.902160531376364 

 4e12     6756832076    -19173.40   1.811158095237466   1.902160561178057 

 5e12     8312493003    -17742.07   1.811852563407868   1.902160559627288 

 6e12     9846842484      4228.51   1.812412158420305   1.902160551021909 

 7e12    11363874338    -28648.11   1.812879924669885   1.902160561654484 

 8e12    12866256870    -50032.56   1.813281195346818   1.902160567365323 

 9e12    14356002120    -58481.45   1.813632156341301   1.902160569662763 

 1e13    15834664872    -66566.94   1.813943760684607   1.902160571080154 

 2e13    30198862775    -99750.43   1.815940298662853   1.902160579010763 

 3e13    44078684643   -172868.71   1.817066852499448   1.902160583828792 

 4e13    57657248284   -127115.12   1.817848459999912   1.902160581536889 

 5e13    71018282471    -72805.14   1.818444902933538   1.902160578986490 

 6e13    84209699420      8870.37   1.818926002994568   1.902160575928305 

 7e13    97262712867    -75675.28   1.819328479041238   1.902160578303203 

 8e13   110198743491    -68932.89   1.819673984268776   1.902160577983921 

 9e13   123033833767    -33794.18   1.819976357302832   1.902160577217768 

 1e14   135780321665    -56770.51   1.820244968130271   1.902160577783278 

==========================================================================

The slow growth of r_3(x) provides further evidence in favor of the Hardy-Littlewood
approximation (2), which itself implies the truth of the conjecture of the infinitude of the
twin primes.

Not shown are the counts of primes pi(x), maintained primarily for checking purposes;
these are available at http://www.trnicely.net/pi/pix_0000.htm, at
http://www.trnicely.net/pi/pix_0001.htm, and at this site. Note, however, that the generated
data files include values for pi(x) for (1e9)(1e9)(1e14), which may well be one of the most
extensive such listings in existence, and could be useful for other purposes.

As has been mentioned, the counts pi_2(x) and the corresponding partial sums B(x) so
obtained agreed with all the values previously published by Brent (1975, 1976) to 1e11.
Beyond that point, a number of the values of pi_2(x) and B(x) were checked (using an
alternating exchange via electronic mail) against preliminary partial results obtained by M.
Kutrib and J. Richstein (1996, 1997) in a similar calculation. All counts thus checked
agreed, and all the partial sums agreed to at least 18 significant digits, with residual
discrepancies believed to be caused by bugs in the gcc compiler used by the other party.
Additional checking mechanisms were incorporated as previously explained.
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One additional result of interest in this regard is the value of B(1e14) obtained from the
ultra-precision arithmetic:

B(1e14) = 1.82024 49681 30270 52889 47178 38619 53382 83464 90782 17191 413 ,

with at least 41 decimals (and probably 47 decimals) believed to be correct.

Brun's constant and the error analysis

The extrapolated sum B*(1e14) is believed to produce the most accurate value known to
date for Brun's constant,

(8)        B = B(+infinity) = 1.90216 05778 +/- 0.00000 00021

The stated error estimate corresponds to one standard deviation in the following sense.
Based on the evidence presented below, it is believed that if the algorithm used to derive
this error estimate sigma(x) is applied to a large number of randomly chosen values of x
(for each of which B(x) is computed and then extrapolated to B*(x)), the true value
B(+infinity) of Brun's constant will lie between B*(x) - sigma(x) and B*(x) + sigma(x)
about 68 % of the time; between B*(x) - 2*sigma(x) and B*(x) + 2*sigma(x) about 95 %
of the time; between B*(x) - 3*sigma(x) and B*(x) + 3*sigma(x) about 99 % of the time;
etc., just as would be expected of the behavior of the standard deviation of a normally
distributed variable.

The error estimate sigma(x) is computed as follows. Brent (1975) conjectures on
theoretical grounds that the values of

(9)        P(x) = sqrt(x)*ln(x)*[B*(x) - B(+infinity)]

are asymptotically normally distributed with mean o(1) and standard deviation sqrt(8c_2).
From the results of my computations, I evaluated P(x) at each of the (more than 105)
tabulated data points, using B*(1e14) for B(+infinity). The resulting distribution was in
reality only roughly normal, with mu = 0.01351, sigma_P = 0.6703, skewness a_3 =
-0.6809, and kurtosis a_4 = 1.7859. The standard deviation sigma_P differed significantly
from the value of 2.2981 predicted by Brent (1975). However, Brent (1975) based his
ultimate error estimate not on the standard deviation of P(x), but on its absolute upper
bound (over all tabulated points >= 1e4) of approximately 3.5.

Nonetheless, it seems preferable to base the error bound on the global behavior of P(x),
rather than its behavior at one extreme point. Thus one might hope that the standard
deviation (in some sense) sigma(x) of B*(x) - B(+infinity) could be deduced from (9) as
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(10)        sigma(x) = sigma_P(x)/(sqrt(x)*ln(x)) ,

where sigma_P(x) is the standard deviation of the distribution of P(t) over all tabulated
values of t < x, using B*(x) in place of B(+infinity). This would then provide the source of
the final error estimate quoted in (8):

(11)        sigma(1e14 ) = 0.6703/(sqrt(1e14)*ln(1e14)) ~ 0.00000 00020 8

For purposes of comparison, the error estimate generated using Brent's (1975) logic would
be

(12)        E_B = 3.495/(sqrt(1e14)*ln(1e14)) ~ 0.00000 00108 4

since the maximum of abs(P(x)) would still occur at x = 860000 with a value nearly
identical to Brent's.

Certainly, the use of equation (10) as thus interpreted merits a healthy dose of skepticism.
As a practical test of its validity, I also applied it separately to each decade value of x in
[1e4, 9e13], calculating sigma_P(x) for the distribution of P(t) over all tabulated values t <
x (using B*(x) for B(+infinity)); and then from (10), sigma(x), the error estimate for B*(x)
based on the data points < x. In other words, for each such decade value x, I computed an
error estimate using the same algorithm which produced the error estimate quoted in (8).
This error estimate was then compared with the best known estimate for the true error in
B*(x), namely B*(x) - B*(1e14). Decade rather than linear intervals were chosen so that
the sample would be logarithmically distributed and thus presumably less influenced by the
fact that values near 1e14 would show artificially low error rates (due to the necessity of
treating B*(1e14) as the best known value for B(+infinity)).

Partial results are shown in Table 2, which lists the values of x, sigma_P(x), sigma(x), and
the error E(x) scaled to sigma(x):

(13)        E(x) = (B*(x) - B*(1e14))/sigma(x) .

                 Table 2. 

 Success of sigma(x) as an error predictor. 

=========================================== 

  x    sigma_P(x)     sigma(x)      E(x) 

=========================================== 

 1e04    1.04287    1.13228e-03    1.26966 

 1e05    1.17395    3.22452e-04    0.00842 

 1e06    1.17952    8.53762e-05   -2.89571 

 1e07    1.46618    2.87656e-05    0.96245 

 1e08    1.30196    7.06790e-06    1.04135 
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 1e09    1.29540    1.97673e-06   -0.17122 

 1e10    1.23791    5.37619e-07   -0.41209 

 8e10    1.00181    1.41084e-07   -1.25901 

 9e10    1.13094    1.49458e-07   -0.30094 

 1e11    1.11493    1.39200e-07   -0.26121 

 2e11    0.93614    8.04440e-08   -0.24832 

 3e11    0.85703    5.92089e-08   -0.17862 

 4e11    1.14191    6.75853e-08    0.85820 

 5e11    0.84107    4.41554e-08    0.40514 

 6e11    0.83010    3.95152e-08    0.85583 

 7e11    0.87371    3.82879e-08    1.30523 

 8e11    0.80947    3.30204e-08    1.44751 

 9e11    0.72422    2.77339e-08    1.10064 

 1e12    0.78024    2.82378e-08    1.86468 

 2e12    1.56969    3.91870e-08   -1.42462 

 3e12    1.15503    2.32114e-08   -1.99932 

 4e12    1.17522    2.02503e-08   -0.82000 

 5e12    1.03070    1.57638e-08   -1.15175 

 6e12    0.84056    1.16630e-08   -2.29455 

 7e12    0.96812    1.23716e-08   -1.30369 

 8e12    1.08938    1.29636e-08   -0.80363 

 9e12    1.11698    1.24824e-08   -0.65056 

 1e13    1.11802    1.18111e-08   -0.56753 

 2e13    1.08612    7.92982e-09    0.15479 

 3e13    1.15637    6.80338e-09    0.88860 

 4e13    0.89701    4.52841e-09    0.82890 

 5e13    0.82343    3.69178e-09    0.32592 

 6e13    0.95020    3.86663e-09   -0.47974 

 7e13    0.78574    2.94591e-09    0.17649 

 8e13    0.74248    2.59307e-09    0.07738 

 9e13    0.71818    2.35609e-09   -0.24002 

=========================================== 

Of the complete set of 90 values of x thus sampled, abs(E(x)) was less than sigma(x) in 62
cases (69 %); less than 2*sigma(x) in 86 cases (96 %); and less than 3*sigma(x) in all
cases. Furthermore, varying the presumed ultimate value of B(+infinity) by as much as
plus or minus sigma(1e14) from B*(1e14) produced no appreciable change in this
distribution of errors; neither did changing the granularity of the data points from 1e9 to
1e0. Thus, sigma(x) indeed appears to be a reliable predictor of the error in B*(x) -
B(+infinity), behaving in a manner similar to the standard deviation of a normally
distributed variable.

Admittedly, this technique of error estimation is long on pragmatism and short on rigor;
only a theoretical breakthrough or an enormous amount of additional computation will
decide its ultimate fate. This is hardly unexpected when dealing with Brun's constant, the
twin-primes conjecture, and the Hardy-Littlewood approximation, all of which have
proved singularly resistant to analytical attack.



10/28/21, 1:10 PM Enumeration to 1e14 of the twin primes and Brun's constant

https://faculty.lynchburg.edu/~nicely/twins/twins.html 11/14

Acknowledgments

The author wishes to express his appreciation to Richard P. Brent and the late Daniel
Shanks, for their advice and encouragement; to Martin Kutrib and Jörg Richstein, for
participating in our alternating exchange of preliminary results; to Intel Corporation, for
the donation of computer systems and processors; and to my wife, Linda Carol, for
enduring my excessive hours of work.

Literature Cited

Bohman, Jan. 1973. Some computational results regarding the prime numbers below
2,000,000,000. Nordisk Tidskr. Informationsbehandling (BIT) 13:242-244; errata
(1974) ibid. 14:127. MR 48 #217.
Brent, Richard P. 1973. The first occurrence of large gaps between successive primes.
Math. Comp. 27(124):959-963. MR 48 #8360.
Brent, Richard P. 1975. Irregularities in the distribution of primes and twin primes.
Math. Comp. 29(129):43-56, MR 51 #5522. Corrigendum (1976) ibid. 30(133):198,
MR 53 #302. Addendum (1976) reviewed ibid. 30:379.
Brun, Viggo. 1919. La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 +
1/41 + 1/43 + 1/59 + 1/61 + ..., où les dénominateurs sont 'nombres premieres
jumeaux' est convergente ou finie. (French) Bulletin des sciences mathématiques
43:100-104, 124-128.
Coe, Tim. 1995 (April). Inside the Pentium FDIV bug, Dr. Dobb's Journal
20(4:229):129-135.
Fröberg, Carl-Erik. 1961. On the sum of inverses of primes and twin primes. Nordisk
Tidskr. Informationsbehandling (BIT) 1:15-20.
Hardy, G. H. and Littlewood, J. E. 1923. Some problems of 'Partitio Numerorum' III:
On the expression of a number as a sum of primes, Acta Math. 44:1-70. See also
Collected papers of G. H. Hardy (1966), Clarendon Press, Oxford I:561-630.
Kutrib, Martin, and Jörg Richstein. 1996 (February). Primzahlen: Zwillinge aus dem
Parallelrechner. (German) Spektrum der Wissenschaft, pp. 26-31.
Lenstra, Arjen K. 1988-1991. The original version of this package, the ZBIGINT
ultraprecision integer package developed, and graciously placed in the public
domain, by Lenstra, Mark Riordan, and Marc Ringuette), is available (19 March
2001) at http://www.funet.fi/pub/crypt/cryptography/rpem/rpem/ (thanks to Charles
Doty for this pointer).
PC Week. 1995 (23 January). Intel, DEC, and Sun post strong fiscal quarters.
12(3):99.



10/28/21, 1:10 PM Enumeration to 1e14 of the twin primes and Brun's constant

https://faculty.lynchburg.edu/~nicely/twins/twins.html 12/14

Richstein, Jörg. 1997. Unendliche Geschwisterliebe unter Zahlen oder Die Suche
nach den Primzahlzwillingen. (German) Überblicke Mathematik 1996/1997, 135-
143, Überbl. Math., Vieweg, Braunschweig, 1997. MR 99f:11117.
Riesel, Hans. 1994. Prime numbers and computer methods for factorization. 2nd
edition. Birkhäuser Boston. 464 pp. + xvi. ISBN 0-8176-3743-5. MR 95h:11142.
Selmer, Ernst S. 1942. A special summation method in the theory of prime numbers
and its application to "Brun's Sum." (Norwegian) Nordisk Mat. Tidskr. 24:74-81. MR
8,316g.
Shanks, Daniel and Wrench, John W., Jr. 1974 (January). Brun's constant. Math.
Comp. 28(125):293-299; corrigenda (1974) ibid. 28:1183. MR 50 #4510.
Sharangpani, H. P. and Barton, M. L. 1994 (30 November). Statistical analysis of
floating-point flaw in the Pentium processor (1994). Intel Corporation.
Weintraub, Sol. 1973. Four tables concerning the distribution of primes. UMT 38.
Math. Comp. 27:676-677.
Wrench, John W., Jr. 1961. Evaluation of Artin's constant and the twin-prime
constant. Math. Comp. 15:396-398. MR 23 #A1619.
Young, Jeff and Potler, Aaron. 1989. First occurrence prime gaps. Math. Comp.
52(185):221-224. MR 89f:11019.

Unpublished Addendum

NOTE: This addendum is not part of the published journal article.

At the present time (2009), the author believes the error analysis in the paper
"Enumeration to 1.6e15 of the twin primes and Brun's constant" (1999) to be more
accurate than the one presented in this paper. It obtains a considerably more
conservative result, namely, that the error bound at any specific value of x is given by

    |B*(x) - B| < E_2(x) = 4.14083/(sqrt(x)*ln(x)) 

See the referenced paper for details. By this formula, the result of the calculations up
to 1e14 becomes

    B = 1.90216 05778 +/- 0.00000 00129 

Furthermore, although the cited paper represents this error bound as having a 99 %
confidence level, the author is now (2009) of the opinion that this error bound is best
characterized as representing only "at least one standard deviation," i.e., a confidence
level of at least 68.27 %.
The latest updated count of the twin primes, and the corresponding estimates for
Brun's constant and a definitive error bound, are available at
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http://www.trnicely.net/counts.html.
A more extensive version of Table 1, for 0 to 1e16, is available at
http://www.trnicely.net/twins/t2_0000.htm. See also a corresponding table for the
interval 1e16 to 2e16.
Tables of the values of pi(x), determined by direct count as part of this project, are
available for the interval 0 to 1e16 and for the interval 1e16 to 2e16.
Complete counts and reciprocal sums of the prime constellations from Nicely's
computations (1993-2009), including over two million data points from 0 to 2e16, are
now available (these are very large files, over 60MB each even in zipped form).
A similar project has been initiated by Pascal Sebah, with results available at
http://numbers.computation.free.fr. Sebah has carried his computations to 1e16, with
our results agreeing within rounding error.
Another project similar to this one was initiated by Patrick Fry, Jeffrey Nesheiwat,
and Boleslaw K. Szymanski, titled "Rensselaer's twin primes computing effort" (ca.
1997-2004). No final results of this work have been found; links to some preliminary
and partial results have been collected at
http://www.trnicely.net/twins/twins4.html#RTPCE.
The reciprocal sums B(x) listed in Table 1 are believed to be correct, and correctly
rounded, to all digits shown. The calculation of these quantities was carried out in
long double precision (extended precision, 64-bit mantissa, 19 significant digits),
using the Intel FPU hardware (numeric coprocessor). However, these calculations
were also carried out to 53 decimal places in software, using the author's
modification of the ZBIGINT ultraprecision integer package developed, and
graciously placed in the public domain, by Arjen K. Lenstra, Mark Riordan, and
Marc Ringuette (1988-1991). The original ZBIGINT package is available at
http://www.funet.fi/pub/crypt/cryptography/rpem/rpem/ (thanks to Charles Doty for
this pointer). The predecessor of this package was Lenstra's LIP (long integer
package). Its descendant is NTL (Number Theory Library), maintained by Victor
Shoup. However, these packages have to a large extent been rendered obsolete by
GMP (GNU MP), the GNU multiple precision library, and MPFR, a C library for
multiple-precision floating-point computations with correct rounding, reliable
precision control, and compatibility with the ANSI/IEEE 754-1985 standard.
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