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Abstract3

A graph is k-degenerate if its vertices can be successively deleted so that when4

deleted, they have degree at most k. A k-tree is a graph that can be formed by5

starting with Kk+1 and iterating the operation of making a new vertex adjacent to6

all the vertices of a k-clique of the existing graph. A structural characterization of7

maximal 2-degenerate graphs with diameter 2, containing 45 distinct infinite classes of8

graphs, is proven. A forbidden subgraph characterization of k-trees with diameter 2 is9

proven.10

Keywords: degeneracy, diameter, k-tree, k-path11

1 Introduction12

In this paper, we work toward a characterization of the maximal k-degenerate graphs with13

diameter 2.14

Definition 1 Let k be a positive integer. A graph is k-degenerate if its vertices can be15

successively deleted so that when deleted, they have degree at most k. A graph is maximal16

k-degenerate if no edges can be added without violating this condition.17

A k-tree is a graph that can be formed by starting with Kk+1 and iterating the operation18

of making a new vertex adjacent to all the vertices of a k-clique of the existing graph.19

A k-leaf is a degree k vertex of a maximal k-degenerate graph.20

Lick and White introduced k-degenerate graphs in 1970 [13], and their properties have21

been studied by many authors [2, 7, 8, 9, 10, 11, 12, 14, 16, 19]. For n ≥ k + 1, a maximal22

k-degenerate graph has at least one k-leaf, and a k-tree has at least 2.23

The three maximal 2-degenerate graphs of order 5 are shown below [3]. The two on24

the left are 2-trees.25

K2 + K3 P4 + K1 W−
5

26
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Undefined notation and terminology will generally follow [3]. In particular, the join of27

graphs G and H is denoted G+H, and the distance between vertices u and v is d (u, v). The28

eccentricity eG (v) of a vertex v is the maximum distance between v and any other vertex29

of G. If G is a graph, the square G2 is formed by adding all edges between pairs of vertices30

with distance 2 in G.31

We solve two special cases of the problem of characterizing the maximal k-degenerate32

graphs with diameter 2. One restricts the problem to maximal 2-degenerate graphs, the other33

restricts it to k-trees (which are all maximal k-degenerate). The first provides a structural34

characterization, and the latter provides a forbidden subgraph characterization.35

This work is inspired by a previous paper [6] I coauthored with Zhongyuan Che on36

the Wiener index of maximal k-degenerate graphs. We showed that the Wiener index is37

minimized when these graphs have diameter 2. We also characterized 2-trees with diameter38

at most 2.39

Proposition 2 [6] The following are equivalent for a 2-tree G:40

1. G has diameter at most 2.41

2. G does not contain P 2
6 .42

3. G is T + K1 for any tree T , or any graph formed by adding any number of vertices43

adjacent to pairs of vertices of K3.44

2 Maximal 2-degenerate graphs with diameter 245

In this section, we provide a structural characterization of maximal 2-degenerate graphs with46

diameter 2.47

Definition 3 A dominating vertex of a graph is a vertex adjacent to all other vertices.48

A fan is the graph Pn−1 + K1.49

Lemma 4 If G is a maximal 2-degenerate graph with order n ≥ 3 containing a dominating50

vertex, then G is a 2-tree that can be represented as T +K1 for some tree T . If G has exactly51

two 2-leaves, then it is a fan.52

Proof. We use induction on n. When n = 3, G = K3 and the result holds. Let G be a53

maximal 2-degenerate graph with order n containing dominating vertex u, and assume the54

result holds for all graphs with order n − 1. Then G has a 2-leaf v, which is adjacent to55

u. Now G − v is maximal 2-degenerate with order n − 1 [13], so it is a 2-tree that can be56

represented as T +K1. Then the other neighbor of v is a neighbor of u, so G is a 2-tree that57

can be represented as T + K1.58

If G has exactly two 2-leaves, then deleting its dominating vertex produces a tree with59

exactly two leaves, a path. Thus G is a fan. 260

61

Definition 5 When constructing a maximal 2-degenerate graph, we duplicate a 2-leaf by62

adding another 2-leaf with the same neighborhood. The inside graph H of a maximal 2-63

degenerate graph G is formed by deleting all the 2-leaves. The stem set of G is the set of64

neighbors of 2-leaves.65
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Note that in a maximal 2-degenerate graph with diameter 2, any 2-leaf can be dupli-66

cated arbitrarily many times. The new 2-leaf is distance two from its duplicate, and hence67

at most two from every other vertex. Thus the result is also a maximal 2-degenerate graph68

with diameter 2.69

Lemma 6 In any maximal 2-degenerate graph with diameter 2 and order n > 3, either70

A. all 2-leaves have a single common neighbor, or71

B. the stem set is S = {u, v, w}, and there are 2-leaves with neighborhoods {u, v},72

{u,w}, and {v, w}.73

Proof. Any maximal 2-degenerate graph with diameter 2 has at least one 2-leaf. No 2-leaves74

can have disjoint neighborhoods, since then they would be at least distance 3 apart. If all75

2-leaves have the same neighborhood, the result follows. If two 2-leaves have distinct neigh-76

borhoods, we may call them {a, b} and {a, c}. Any other 2-leaf must have neighborhood77

{b, c} or {a, x} for some x. 278

79

Theorem 7 Let G be a maximal 2-degenerate graph with diameter 2. Then G is a 2-tree80

that can be represented as T + K1 for some tree T , or the inside graph of G is one of the81

44 possibilities shown below. (Vertices labeled x may be duplicated arbitrarily many times.)82

There must be at least one 2-leaf of G neighboring any pair of black vertices or pair of black83

and gray vertices, and there may be at least one 2-leaf of G neighboring any pair of black84

and lightgray vertices.85

86

87

x
x

x
88

89

90

3



91

92

93

94

95

96

The proof of this theorem has many cases. We use Case A.2.1 to mean case A, subcase97

2, subsubcase 1, and similarly for the other cases. Figures are referenced in parentheses,98

with labels beginning with their main case (A or B). We say an inside graph is valid if it is99

the inside graph of a maximal 2-degenerate graph with diameter 2.100

Proof. Let G be a maximal 2-degenerate graph with diameter 2 with inside graph H. By101

Lemma 6, there are two possibilities for the positions of the 2-leaves.102

Case A. All 2-leaves of G have a single common neighbor u.103

Case A.1. If u is a dominating vertex of H, it does the same for G, so by Lemma 4,104

G is a 2-tree that can be represented as T + K1 for some tree T .105

Case A.2. If u has eccentricity 2 in H, let v1, ... vj be distance 1 from u, w1, ... wk106

be distance 2 from u. Now no 2-leaf of H has neighborhood {u, vi} since a 2-leaf of G that107

neighbors it and u is more than 2 from w1.108

Case A.2.1. If w1 is a 2-leaf of H, there is a 2-leaf of G that neighbors it and u.109

Then w1 neighbors all other wi, and since w1 neighbors some vi, k ≤ 2. If k = 1, then u is110

a dominating vertex of H − w1. By Lemma 4, H − w1 is a 2-tree. Now its 2-leaves are not111

2-leaves of H, aside from possibly u. Then w1 is adjacent to all (two) of them, and H − w1112

is a fan with at most five vertices (A1, A2, A3).113

Since all 2-leaves of G have a single common neighbor u, it is colored black (uniquely,114

in Case A). Any 2-leaf of H must be black or gray, and any vertex distance 3 from u will115

be gray. If {u, u′} is a dominating set of H, then u′ will be lightgray if not already colored.116

Since these statuses are trivial to check, verification will be left to the reader for the other117

figures.118
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A1 A2 A3
119

If k = 2, there is no 2-leaf of H with neighborhood {u,w2}, since a 2-leaf of G neighboring it120

is not within 2 of w1. Then w2 is a 2-leaf of H−w1. As before, H−w1−w2 is a 2-tree, and w1121

and w2 have two or three neighbors in it, including all its 2-leaves. Now T = H−w1−w2−u122

is a tree with all vertices either neighbors of w2 or within 2 of w1.123

If T a path, its length is at most 5. If T = P2, there is one possibility (A4). If T = P3,124

w1 may neighbor a leaf and w2 may or may not neighbor the nonleaf, or w1 may neighbor the125

nonleaf (A5, A6, A7). If T = P4, w1 may neighbor a leaf or nonleaf (A8, A9). If T = P5, w1126

must neighbor the middle vertex, and w2 neighbors the leaves (A10). If T has three leaves,127

w2 neighbors two, and w1 neighbors the third, so T = K1,3 (A11).128

A4 A5 A6 A7

A8 A9 A10 A11
129

Case A.2.2. Suppose there is a 2-leaf v1 of H neighboring u and w1. Then there is a 2-leaf130

of G neighboring u and v1. Then there is no w2, but v1 may be duplicated arbitrarily many131

times. Let K be the inside graph of H (delete v1 and all its duplicates). Then w1 is a 2-leaf132

of K. Then u is a dominating vertex of K − w1, so by Lemma 4, K − w1 is a fan. This fan133

must have order 3, 4, or 5 (A12, A13, A14).134

A12 A13 A14
135

Case A.2.3. If u is a 2-leaf of H and no wi is, j = 2. If both v1 and v2 are 2-leaves of136

H − u, then H − u − v1 − v2, has order at most 4, so it is K2 (A15), K3 (A16), or K4 − e.137

In the latter case, there are two ways to attach v1 and v2 to K4 − e (A17, A18).138

A15 A16 A17 A18
139

Assume v1 is a 2-leaf of H − u and v2 is not. If v1 ↔ v2, say w1 ↔ v1. Then v2 is adjacent140

to all other w’s. If v2 ↔ w1, v2 is adjacent to all vertices, so by Lemma 4, H is a 2-tree, and141
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some wi is a 2-leaf, contrary to assumption. If v2 = w1, then w1 is a 2-leaf of H − u − v1.142

By Lemma 4, H − u− v1 − w1 is a fan. Now some 2-leaf of G has neighborhood {u,wi}, so143

all ws must be adjacent, and k = 3 (A19).144

Assume v1 = v2. Since v1 is a 2-leaf of H − u, its neighbors are (say) w1 and w2.145

Now v2 is adjacent to all other w’s, and k > 2. Now some 2-leaf of G has either v2 or wi146

as a neighbor, so one of these vertices neighbors all w’s (excluding itself). Then H − u− v1147

has a dominating vertex, so by Lemma 4, it is a fan with 2-leaves w1 and w2. If v2 is the148

dominating vertex, the fan has order at most 5, due to v1. Order 5 duplicates A14, but order149

4 yields a new case (A20). If (say) w3 is the dominating vertex, the fan has order 5 or 6150

(A21, A22).151

A19 A20 A21 A22
152

Case A.3. If eH (u) > 2 and vertex y is at least 3 from u, then {u, y} is the neighborhood153

of a 2-leaf a of G. If dH (u, y) ≥ 4, there is a vertex z with dH (u, z) = 2 and dH (a, z) > 2, so154

this is impossible. Thus eH (u) = 3. Let v1, ... vj be distance 1 from u, w1, ... wk be distance155

2 from u, and x1, ... xl be distance 3 from u. Note j, k ≥ 2 since H has no cut-vertex [13].156

Now all vertices in the stem set other than u must be adjacent to each wi and xi (else157

a 2-leaf has eccentricity more than 2). No vi is in the stem set, since it cannot be adjacent158

to an xi. Since K4 is not 2-degenerate, there are at most 3 stems excluding u, and l ≤ 2. No159

wi is a 2-leaf of H, since if there were, it would be adjacent to a vi, and all wi and xi. Now160

x1 is a 2-leaf only if there is no x2, so H has at most two 2-leaves.161

Case A.3.1. Assume u and x1 are 2-leaves of H. Then j = k = 2, and there is no x2.162

Thus H has order 6, and H−u−x1 = K4− e. There are three ways it can be arranged, but163

the case where w1 = w2 combines into the case where v1 = v2. In the third case, H = P 2
6164

(A23, A24).165

A23 A24
166

Case A.3.2. Assume u is the only 2-leaf of H, and l = 1 (there is no x2). Then at least167

one of v1 and v2 are 2-leaves of H − u. If both are 2-leaves, then 3 ≤ k ≤ 4 since each wi168

is adjacent to some vi. If k = 3, then H − u − v1 − v2 = K4 − e by Lemma 4. Then v1169

and v2 have one common neighbor, and there are two choices (A25, A26). If k = 4, then170

H −u− v1− v2 is P4 +K1 or K1,3 +K1 by Lemma 4. If it is P4 +K1, there are three choices171

for the adjacencies between the v’s and w’s, two of which produce valid inside graphs (A27,172

A28). If it is K1,3 + K1, some v and w have distance more than 2.173

A25 A26 A27 A28
174
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Assume only v1 is a 2-leaf of H − u. If its neighbors are v2 and (say) w1, at least one of175

which are 2-leaves of H − u− v1. If v2 is a 2-leaf of H − u− v1, k = 3, and its neighbors are176

either adjacent or not (A29, A30). If v2 is a not 2-leaf of H − u− v1, w1 is, with neighbors177

x1 and v2 or (say) w2. If w1 ↔ v2, x1 and v2 are adjacent to all remaining w’s. Thus w2 is178

the only 2-leaf of this graph, which is W−
5 (A31). If w1 ↔ w2, x1 and v2 are adjacent to all179

w’s of H − u− v1 − w1. Thus w2 is the only 2-leaf of this graph, which is W−
5 (A32).180

A29 A30 A31 A32
181

Suppose v1 is the only 2-leaf of H − u with neighbors (say) w1 and w2, and w1 is a 2-leaf182

of H − u − v1. If w1 has neighbors x1 and v2, then H − u − v1 − w1 has order at least 4.183

Now w2 is adjacent to all other w’s (so v1 is distance 2 from them) and v2 is adjacent to all184

w’s, except perhaps w2. Since x1 is adjacent to all w’s, H − u − v1 − w1 contains K3,k−2,185

so k ≤ 4. There are two possibilities (A33, A34). If w1 has neighbors w3 and x1, then w3186

neighbors v2 and x1. As before, H − u− v1 − w1 − w3 contains K3,k−3, so k ≤ 5. There are187

two possibilities (A35, A36).188

A33 A34 A35 A36
189

Case A.3.3. Assume u is the only 2-leaf of H, and l = 2. Then 2 ≤ k ≤ 4. Now one or190

both of v1 and v2 are 2-leaves of H − u. If k = 2, there are two cases, both leading to valid191

graphs (A37, A38). If k = 3, there is one way to make both v1 and v2 2-leaves of H − u.192

However, some v and w will have distance more than 2, so this is not to a valid graph. If193

only v1 is a 2-leaf this leads to a valid graph (A39). If k = 4, there is one way to connect194

each w to a v, but this does not lead to a valid graph.195

A37 A38 A39
196

Case A.3.4. Assume u is not a 2-leaf. Then x1 is the only 2-leaf of H, so there is no x2.197

Then essentially the same argument as in Case A.3.2 repeats, with u and x1 switching roles,198

and the same graphs are found.199

Case B. The stem set is S = {u, v, w}, and there are 2-leaves with neighborhoods200

{u, v}, {u,w}, and {v, w}. Thus u, v, and w will be colored black.201

Each 2-leaf of the inside graph H is in S, so H has at most three 2-leaves.202

Case B.1. If H has three 2-leaves, it may be K3 (B1). If not, it has order at least 4,203

so none of the 2-leaves of H are neighbors. Then each 2-leaf of G has distance more than 2204

from a 2-leaf of H, which is impossible.205
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Case B.2. If H has two 2-leaves, the third vertex in S must be in both of their206

neighborhoods. Thus H has order at most 5. Thus H is K4 − e or P4 + K1 (B2, B3).207

Case B.3. If H has one 2-leaf v, then u must be one of its neighbors. If u is a 2-leaf of208

H − v, H has order 5, so it is W−
5 . There are two distinct choices for which vertex is w (B4,209

B5). If u is not a 2-leaf of H − v, v has another neighbor, x, that is. Then u is adjacent to210

every vertex of H − v−x. If u is adjacent to x, then by Lemma 4, H is a 2-tree, so it has at211

least two 2-leaves, a contradiction. If u is not adjacent to x, then by Lemma 4, H − v− x is212

a 2-tree. Now x is adjacent to all 2-leaves of H − v − x, so H − v − x is a fan. Now w must213

be one of the 2-leaves of H − v− x , but it cannot neighbor all vertices of the fan unless the214

fan is K3 and H = W−
5 , a previous case.215

B1 B2 B3 B4 B5
216

2217

218

A structural characterization of maximal 2-degenerate graphs with diameter 2 allows219

us to evaluate or bound parameters on this class, which would otherwise be difficult. Sharp220

bounds have been proved for the maximum degree of maximal planar graphs with diameter221

2 [18, 20]. We state sharp bounds on the maximum degree ∆ of maximal 2-degenerate graph222

with diameter 2. A maximal 2-degenerate graph with ∆ = n − 1 must have diameter at223

most 2. A maximal 2-degenerate graph with ∆ = n − 2 need not have diameter at most 2224

(for example, add one vertex to a fan with at least 5 vertices). Proposition 2 implies 2-trees225

with diameter 2 have ∆ ≥ 2
3
n, and this bound is sharp.226

Corollary 8 A maximal 2-degenerate graph G with order n and diameter at most 2 has227

∆ (G) ≥



n− 1 1 ≤ n ≤ 4
3 n = 5
4 6 ≤ n ≤ 8

n− 5 9 ≤ n ≤ 11
n− 6 12 ≤ n ≤ 16⌈

2
3

(n− 1)
⌉

n ≥ 16

,

and this bound is sharp for all n.228

Proof. For 1 ≤ n ≤ 4, there is only one maximal 2-degenerate graph, which has a dominat-229

ing vertex. For n = 5, there are three such graphs, one (W−
5 ) of which has no dominating230

vertex. The fact that maximal 2-degenerate graphs have size m = 2n − 3 and minimum231

degree 2 implies ∆ ≥ 4 for n ≥ 6. For 6 ≤ n ≤ 8, this is attained by adding 2-leaves to A4232

and A23.233

Let G be a graph found under Case A, and H its inside graph. Then H has a stem234

that is adjacent to all 2-leaves of G with at most 5 vertices not adjacent to it, and only A39235

attains this. Adding the 2-leaves of G to A39 as evenly as possible produces vertices with236
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degree n−6 and n−4−
⌊
n−8
2

⌋
. Thus ∆ ≥ n−6 for A39 when n ≥ 12. Otherwise, ∆ ≥ n−5237

for graphs in Case A, and this is attained by graphs constructed from A37 when n ≥ 9.238

Let G be a graph found under Case B, and H its inside graph with stem set {u, v, w}.239

Consider summing the degrees of u, v, and w. There are n− 3 other vertices, each of which240

is adjacent to at least two of u, v, and w. The graph induced by u, v, and w has at least two241

edges. Thus 2n− 2 = 2 (n− 3) + 4 ≤ d (u) + d (v) + d (w) ≤ 3∆, so ∆ ≥
⌈
2
3

(n− 1)
⌉
. This242

is attained by graphs constructed from B3. For n ≥ 16,
⌈
2
3

(n− 1)
⌉
≤ n − 6, so the bound243

is as stated. 2244

245

We have seen that some maximal 2-degenerate graphs with diameter 3 are contained246

in a maximal 2-degenerate graph with diameter 2 (graphs A23-A39 above). The smallest247

maximal 2-degenerate graphs not contained in a maximal 2-degenerate graph with diameter248

2 have order 7. They are all those with order 7 and diameter 3, excluding those listed in249

Theorem 7 (A25, A26, A29-A31, A33, A37, A38).250

Proposition 9 Let G be a maximal 2-degenerate graph. Then G is contained in a maximal251

2-degenerate graph with diameter at most 3.252

Proof. If G has diameter at most 3, we are done. If not, consider a vertex v with maximum253

eccentricity. Let S be the set of all vertices with distance more than 2 from v. Add 2-leaves254

adjacent to v and each vertex in S, and call the set vertices added S ′. Now the distance255

between v and any other vertex is at most 2. Vertices in S ′ are all distance 2 from each other.256

A vertex in S ′ and a vertex in G have distance at most 3, since there is now a path through257

v. Thus no new pairs with distance more than 3 are created. This process can be repeated258

with other vertices until a graph is constructed that contains G and has diameter at most 3. 2259

260

3 Diameter 2 k-trees261

In this section, we prove a forbidden subgraph characterization of k-trees with diameter 2.262

Definition 10 A k-path graph G is an alternating sequence of distinct k- and k+1-cliques263

e0, t1, e1, t2, ..., tp, ep, starting and ending with a k-clique and such that ti contains exactly two264

k-cliques ei−1 and ei.265

Note that k-paths are also known a linear k-trees [1]. They are closely related to266

pathwidth [17]; in particular, they are the maximal graphs with proper pathwidth k. I267

have have further examined k-paths in two forthcoming papers [4, 5]. There is a simple268

characterization of k-paths.269

Theorem 11 [15] Let G be a k-tree with n > k + 1 vertices. Then G is a k-path graph if270

and only if G has exactly two k-leaves.271

A k-path with a dominating vertex has nice structure.272

Lemma 12 A k-path has diameter at most 2 if and only if it has a dominating vertex.273

When k ≥ 2, a k-path with a dominating vertex can be represented as P + K1, where P is a274

k − 1-path.275

9



Proof. Every k-path with order n ≤ k + 2 has diameter at most 2 and a dominating276

vertex. Consider constructing the k-path from Kk + K2, which has k-leaves u and v1, and277

N (u) = S1 = N (v1). Iteratively add vertex vi with neighborhood Si, so that Si replaces278

one vertex of Si−1 with vi−1. As long as S1 and Si contain a common vertex, the graph has279

diameter 2 and a dominating vertex. Once S1 and Si do not contain a common vertex, the280

graph has diameter more than 2 and no dominating vertex.281

For the second claim, we use induction on order n. When n = k, G = Kk and the282

result holds. Let G be a k-path with order n > k containing a dominating vertex u, and283

assume the result holds for all graphs with order n − 1. Then G has a k-leaf v, which is284

adjacent to u. Now G− v is a k-path with a dominating vertex, so it can be represented as285

P ′ + K1, where P ′ is a k − 1-path. Then the other neighbors of v induce a clique in P ′, so286

G can be represented as P + K1. 2287

288

Note for k ≥ 2, a k-tree with diameter 2 need not have a dominating vertex.289

Adding a k-leaf to a k-tree cannot change any existing distances. Thus when con-290

structing a k-tree, the diameter can increase, but it cannot decrease, as it can in a maximal291

k-degenerate graph.292

Definition 13 A k-tree is minimal with respect to diameter 3 if deleting any k-leaf293

results in a k-tree with diameter 2.294

We can characterize these graphs. A tree is minimal with respect to diameter 3 if and295

only if it is P4. We have seen in Proposition 2 that a 2-tree is minimal with respect to296

diameter 3 if and only if it is P 2
6 . In general, P k

2k+2 is the smallest k-tree with diameter 3,297

but for k ≥ 3 it is not the only one.298

Algorithm 1 Let P be a k − 2-path, k ≥ 3, of order n − 4 with k-leaves w and x. Join299

dominating vertices y and z to P , forming P +K2. Add u with neighborhood NP (w)∪{w, y},300

and v with neighborhood NP (x) ∪ {x, z}. Let Gk be the class of all graphs formed this way.301

P
w x

y

z

u

v

302

Theorem 14 A graph G is a k-tree minimal with respect to diameter 3 if and only if G ∈ Gk.303

Proof. (⇐) Let G be a graph in Gk constructed using the algorithm. Then G is a k-tree,304

d (u, v) = 3, and u and v are the only pair with distance more than 2.305

(⇒) Let G be as stated. A k-tree with diameter 3 must contain a pair of vertices306

distance 3 apart. Thus in a minimal k-tree with diameter 3, the vertices at distance 3 must307

be k-leaves, and no other vertices are k-leaves. Thus G is a k-path with leaves (say) u308

and v. Since G is minimal, G − u has diameter 2. By Lemma 12, it has a dominating309

vertex y, so G − u − y is a k − 1-path. Similarly, G − v has a dominating vertex z. Thus310

G−{u, v, y, z} is a k− 2-path. Then u and v must each neighbor one of y and z, and one of311

10



the k-leaves of the k−2-path. Thus G can be constructed using the algorithm, so G ∈ Gk. 2312

313

Equivalently, a k-tree has diameter at most 2 if and only if it does not contain any314

graph in Gk. When k = 3 and n ≥ 8, the algorithm produces a unique 3-tree of order n315

minimal with respect to diameter 3 (shown below for n = 8).316

317
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