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Abstract

A Nordhaus-Gaddum class theorem provides sharp upper and lower
bounds for the sum p (G) + p

(
G
)
and product p (G) · p

(
G
)
for some

graph parameter p (G). This can be generalized to decompositions into
k factors. Let p (k;G) denote the maximum of

∑k
i=1 p (Gi) over all k-

decompositions of G. The maximum core number of a graph, Ĉ(G), is
the maximum k such that G has a k-core, the maximal induced subgraph
H ⊆ G such that δ(G) ≥ k. Furedi, Kostochka, Stiebitz, Skrekovski, and
West [2005] determined some bounds and exact values of Ĉ (k;Kn) for
k ∈ {2, 3, 4}. We determine the extremal decompositions for k ∈ {2, 3, 4}
and construct a number of other decompositions that attain large values
of this parameter.

Keywords: Nordhaus-Gaddum, decomposition, maximum core num-
ber, block design

1 Introduction

Consider the following problem. An international round-robin sports tourna-
ment is held between teams. The games are split between locations in di�erent
countries, which can host multiple games simultaneously. The teams can travel
to di�erent locations to play, but it is impractical for the fans to visit more
than one location. In this situation, it is reasonable to want teams that play
at a given location to play as many games there as possible so that local fans
can see them as much as possible. More precisely, we can compute the min-
imum number of games played by the teams at that location. We then wish
to maximize the sum of these minimum numbers over all the locations in the
tournament.
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Thus we wish to �nd the maximum sum of the minimum degrees over all
possible decompositions of a graph into k factors. This is a generalization of
a Nordhaus-Gaddum Theorem, which �nds sharp upper and lower bounds for
the sum of a parameter on a graph and its complement. Furedi, Kostochka,
Stiebitz, Skrekovski, and West [2005] [3] determined some bounds and exact
values of this quantity for k ∈ {2, 3, 4}. We extend these results by determin-
ing all possible decompositions achieving these bounds and considering larger
values of k.

The speci�c parameter that we will study is the maximum core number,
which is equivalent to the degeneracy of a graph. We require a few de�nitions.
(See [2] and [8] for basic terminology.)

De�nition 1. The k-core of a graph G, Ck (G), is the maximal induced sub-
graph H ⊆ G such that δ(G) ≥ k, if it exists.

The maximum core number of a graph, Ĉ(G), is the maximum k such that

G has a k-core. Given k = Ĉ(G), the maximum core of G is Ck(G).

Cores were introduced by S. B. Seidman [6] and have been studied exten-
sively in [1]. It is easy to show that the k-core is well-de�ned and that the
cores of a graph are nested. There is a simple algorithm for determining the
k-core of a graph, which we shall call the k-core algorithm.

Algorithm 2. [k-Core Algorithm] Iteratively delete vertices of degree less than
k until none remain.

It is straightforward to show that this will produce the k-core if it exists.

De�nition 3. [5] A graph is k-degenerate if its vertices can be successively
deleted so that when deleted, each has degree at most k. The degeneracy of a
graph G is the smallest k such that it is k-degenerate.

As a corollary of the k-core algorithm, we have the following min-max
relationship.

Corollary 4. For any graph, its maximum core number is equal to its degen-
eracy.

It is immediate that δ (G) ≤ Ĉ (G) ≤ 4 (G). We can characterize the
extremal graphs for the upper bound. For simplicity, we restrict the statement
to connected graphs. (see also [8] p. 199)

Proposition 5. Let G be a connected graph. Then Ĉ (G) = 4 (G) ⇐⇒ G is
regular.

Proof. If G is regular, then its maximum and minimum degrees are equal, so
the result is obvious.
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For the converse, let Ĉ (G) = 4 (G) = k. Then G has a subgraph H with
δ (H) = 4 (G) ≥ 4 (H), so H is k-regular. If H were not all of G, then since
G is connected, some vertex of H would have a neighbor not in H, implying
that 4 (G) > 4 (H) = δ (H) = 4 (G). But this is not the case, so G = H,
and G is regular.

We can also consider the extremal graphs for the lower bound δ (G) ≤
Ĉ (G).

De�nition 6. A graph G is k-monocore if Ĉ(G) = δ(G) = k.

One important application for the maximum core number is the bound
χ (G) ≤ 1 + Ĉ (G) for the chromatic number. This bound was �rst proved by
Szekeres and Wilf in 1968 [7], stated in di�erent terms. This bound is useful in
proving part of the original Nordhaus-Gaddum Theorem, χ (G)+χ

(
G
)
≤ n+1.

One common way to study a graph parameter p (G) is to examine the sum
p (G) + p

(
G
)
and product p (G) · p

(
G
)
. A theorem providing sharp upper

and lower bounds for this sum and product is known as a theorem of the
Nordhaus-Gaddum class. Of the four possible bounds, the sum upper bound
has attracted the most attention. We will examine results of this type for
maximum core number.

It is convenient to consider a graph and its complement as a decomposition
of a complete graph. This makes it possible to generalize the problem to more
than two factors.

De�nition 7. [3] A k-decomposition of a graph G is a decomposition of G
into k factors. For a graph parameter p, let p (k;G) denote the maximum of∑k

i=1 p (Gi) over all k-decompositions of G.

It may be that it is possible to delete some edges from one of the factors so
that it still has the same maximum core number. Thus we are most interested
in the critical subgraphs of the factors of the decomposition. Conversely, given
the critical subgraphs, we can distribute the extra edges arbitrarily. This
�nal step is uninteresting, so we will tend to describe a k-decomposition as
{H1, ...,Hk}, where each Hi is a critical subgraph of a factor.

2 k-Decompositions and Maximum Core Num-

ber for k ∈ {2, 3, 4}
Translating our motivating problem into graph theory terms, we wish to �nd
δ (k;Kn) over all values of k and n. We will investigate Ĉ (k;Kn), which may
be the same thing.

Consider 2-decompositions and maximum core number. The upper bound
is implicit in [2].
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Theorem 8. We have Ĉ (G) + Ĉ
(
G
)
≤ n− 1. The graphs for which Ĉ (G) +

Ĉ
(
G
)

= n − 1 are exactly the graphs constructed by starting with a regular
graph and iterating the following operation.

Given k = Ĉ (G), H a k-monocore subgraph of G, add a vertex adjacent to
at least k + 1 vertices of H, and all vertices of degree k in H (or similarly for
G).

Proof. Let p = Ĉ (G) and suppose G has an n − p-core. These cores use at
least (p+ 1) + (n− p+ 1) = n+ 2 vertices, and hence share a common vertex
v. But then dG (v) + dG (v) ≥ p+ (n− p) = n, a contradiction.

If G is regular with k = Ĉ (G), then G is n − k − 1-regular, so Ĉ (G) +
Ĉ
(
G
)

= n − 1. If a vertex v is added as in the operation, producing a graph

H, a k + 1-core is produced, so Ĉ (H) + Ĉ
(
H
)

= (n+ 1)− 1.
Suppose that for a graph G, Ĉ (G) + Ĉ

(
G
)

= n− 1. If G and G are both
monocore, then they must be regular. If G has a vertex v that is not contained
in the maximum cores of bothG andG, then Ĉ (G− v)+Ĉ

(
G− v

)
= (n− 1)−

1. Then v is contained in the maximum core of one of them, say G. Further,
given k = Ĉ (G), v is contained in a k-monocore subgraph H of G, and H − v
must be k − 1-monocore. Then v must have been adjacent to all vertices of
degree k − 1 in H − v. Thus G can be constructed as described using the
operation.

This theorem says that in any extremal 2-decomposition into spanning
factors, they must be regular. This generalizes to k-decompositions.

Corollary 9. Let D be a k-decomposition of Kn into factors that are critical

with respect to a maximum core number. Then
∑

D

(
Ĉ (Gi)

)
≤ n − 1 with

equality exactly for decompositions into k spanning regular graphs.

Proof. Given vertex v, we have
∑

D

(
Ĉ (Gi)

)
≤
∑
dGi

(v) ≤ n − 1. Equality
holds exactly when every factor is regular.

Next we consider k-decompositions with the restriction that each vertex is
contained in exactly two factors. Consider the following construction.

Algorithm 10. Let r1, ..., rk be nonnegative integers at most one of which is
odd. Let Gij, 1 ≤ i < j ≤ k be an ri-regular graph of order ri + rj + 1, and let
Gji = Gij. Let Gi = ⊕

j,j 6=i
Gji. Let Sk be the set of all k-decompositions of the

form {G1, ..., Gk} constructed in this fashion.
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Figure 1: A decomposition produced by Algorithm 10 (k = 4).
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Theorem 11. A k-decomposition with order n > 1 and every vertex in exactly

two factors has
∑

D

(
Ĉ (Gi)

)
≤
(

2k−3
k−1

)
n − k

2 , and equality holds exactly for

those decompositions in the set Sk.

Proof. Since each vertex is contained in exactly two of the k factors, so we
can partition them into

(
k
2

)
distinct classes. Let Hij = V (Gi) ∩ V (Gj) and

let nij = |Hij | for i 6= j, nii = 0. Hence n =
∑

i,j nij . For v ∈ Hij , we have

Ĉ (Gi) ≤ dGi
(v) ≤ dGi[Hij ] (v) +

∑k
t=1 nit. Sum for each of the two factors

and each of the
(
k
2

)
classes. Then (k − 1)

∑k
i=1 Ĉ (Gi) ≤ 2 (k − 2)

∑
i,j nij +∑

i,j,i 6=j (nij − 1) = (2k − 3)n−
(
k
2

)
, so

∑k
i=1 Ĉ (Gi) ≤

(
2k−3
k−1

)
n− k

2 .

(⇒) If this bound is an equality, then all k of the factors must be regular.
Let rij = dGi[Hij ] (v) for v ∈ Gi [Hij ]. Also, all edges between two classes
sharing a common factor must be in that factor, so it is a join of k−1 graphs. A
join of graphs is regular only when they are all regular. Now since Gi is regular,
its complement must also be regular. But this implies that all the constants
rji, j 6= i are equal. Let ri be this common value. Then nij = ri + rj + 1, so
n = (k − 1)

∑
ri +

(
k
2

)
. This implies that at most one of ri and rj is odd, so

at most one of all the ri's is odd.
(⇐) Let Gi be a factor of a decomposition D constructed using the algo-

rithm. It is easily seen that Gi is regular of degree (k − 3) ri +(k − 2)+
∑

j rj .

Summing over all the factors, we see
∑

D

(
Ĉ (Gi)

)
=
(

2k−3
k−1

)
n− k

2 .

Now consider 3-decompositions. The formula in the following theorem was
proven by Furedi et al [3].

Theorem 12. We have Ĉ (3;Kn) =
⌊

3
2 (n− 1)

⌋
, and the extremal decompo-

sitions that achieve
∑3

i=1 Ĉ (Gi) = 3
2 (n− 1) all consist of three n−1

2 -regular
graphs. For n = 1, {K1,K1,K1} is the only extremal 3-decomposition, and for
odd order n > 1 they are exactly those in the set S3.

Proof. Let G1, G2, and G3 be the three factors of an extremal decomposition
for Ĉ (3;Kn). It is obvious that {K1,K1,K1} is the only possibility for n = 1,
so let n > 1. The previous theorem shows that

∑3
i=1 Ĉ (Gi) ≤ 3

2 (n− 1).
Now any vertex can be contained in at most two of the three factors, since

its degrees in the three graphs sum to at most n−1. Now adding a vertex with
adjacencies so that it is contained in exactly one of the three factors increases
n by one and

∑3
i=1 Ĉ (Gi) by at most one, so this cannot violate the bound.

Thus deleting a vertex of an extremal decomposition contained in only one of
the three factors would decrease n by one and

∑3
i=1 Ĉ (Gi) by at most one.

For n odd, this is a contradiction and for n even it can occur only when it is
the only such vertex.

If there are only two distinct classes, then add a vertex joined to all the
vertices of the two disjoint factors. This increases n by one and

∑3
i=1 Ĉ (Gi) by
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two. Hence if the new decomposition satis�es the bound, so does the original,
and if the original decomposition attains the bound, then n must be even.

Thus by the previous theorem, those decompositions with
∑3

i=1 Ĉ (Gi) =
3
2 (n− 1) are exactly those in S3. Further, by the proof of this theorem the
factors of such a decomposition are all 1+

∑
rj-regular. Now 2 (r1 + r2 + r3) =∑

(nij − 1) = n− 3, so
∑

j rj = n−3
2 . Thus the factors are all n−1

2 -regular.
Finally note that joining a vertex to all vertices of one factor of an extremal

decomposition of odd order attains the bound for even order, so Ĉ (3;Kn) =⌊
3
2 (n− 1)

⌋
for even orders as well.

An extremal decomposition of even order can be formed from one of odd
order by either joining a vertex to one of the factors or deleting a vertex
contained in two factors. However, the decomposition {K4, C4, C4} shows that
not all extremal decompositions of even order can be formed this way.

Furedi et al [3] also proved that Ĉ (4;Kn) =
⌊

5
3 (n− 1)

⌋
. We employ their

proof of this result to show that all extremal decompositions of order n =
3r + 1 > 1 can be constructed using the following algorithm.

Algorithm 13. Let n, r, a, b, c, and s be nonnegative integers with n = 3r+1,
a+ b+ c = s− 1 and a, b, c, even if s is odd. Let G1, G2, G3 be a, b, c-regular
graphs, respectively, of order s. Let G4, G5, G6 be r − s-regular graphs of
orders r − a, r − b, r − c, respectively. Let S be the set of all decompositions
of the form

{
G1 +G4, G2 +G5, G3 +G6, G3 +G4 +G6

}
.

Theorem 14. We have Ĉ (4;Kn) =
⌊

5
3 (n− 1)

⌋
. For n = 1, the only extremal

4-decomposition is {K1,K1,K1,K1}, and the extremal decompositions of order

n = 3r + 1 > 1 that achieve
∑4

i=1 Ĉ (Gi) = 5
3 (n− 1) are exactly those in S.

Proof. It is obvious that {K1,K1,K1,K1} is the only possibility for n = 1, so
let n > 1. It is easily checked that the decompositions in S exist and achieve
the stated sum. Joining a vertex to one of the factors achieves the stated bound
for n = 3r + 2, and deleting a vertex contained in two of the factors achieves
the bound for n = 3r.

As in the previous theorem, it is easily shown that no vertex is contained
in a single factor or all four factors. If each vertex is contained in exactly two
of the four factors, then Theorem 11 says that

∑4
i=1 Ĉ (Gi) ≤ 5

3n − 2. Hence
this decomposition is not extremal for n = 3r + 1.

Consider an extremal decomposition with a vertex contained in three of
the factors. Call these factors 1, 2, and, 3 so that Ĉ (G1) ≤ Ĉ (G2) ≤ Ĉ (G3).
Let H123 = V (G1) ∩ V (G2) ∩ V (G3) and Hi4 = V (Gi) ∩ V (G4). Then

Ĉ (G1)+Ĉ (G2)+Ĉ (G3) ≤ n−1, so Ĉ (G1)+Ĉ (G2) ≤ 2
3 (n− 1). Now Ĉ (G3)+

Ĉ (G4) ≤ n− 1, so
∑4

i=1 Ĉ (Gi) ≤ 5
3 (n− 1), and Ĉ (4;Kn) =

⌊
5
3 (n− 1)

⌋
.

If
∑4

i=1 Ĉ (Gi) = 5
3 (n− 1), then Ĉ (G1)+Ĉ (G2) = 2

3 (n− 1) and Ĉ (G3)+
Ĉ (G4) = n − 1. The former implies that Ĉ (G1) = Ĉ (G2) = Ĉ (G3) =
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Figure 2: A decomposition produced by Algorithm 13.

1
3 (n− 1). The latter and this imply that Ĉ (G4) = 2

3 (n− 1) and each vertex
in Gi∩G4, i ∈ {1, 2, 3}, is only adjacent to vertices in these two factors. Hence
the vertices partition into H123 and Hi4 = Gi ∩G4, i ∈ {1, 2, 3} whose orders
we call n123 and ni4, respectively. Furthermore, each of the factors is regular.

Then H123 is decomposed into three regular spanning factors whose degrees
are even if n123 is odd, and the other sets are decomposed into two regular
spanning graphs. Let ri,S = dGi[HS ] (v) for v ∈ Gi [HS ]. Hence r1,123 + n14 =
r1,14 + n123, r2,123 + n24 = r2,24 + n123, and r3,123 + n34 = r3,34 + n123. Now
since G4 is regular, so is G4. Thus r1,14 = r2,24 = r3,34, so each of the factors is
regular of the same degree. Let r = 1

3 (n− 1) be this common value, s = n123,
so r − s = r1,14 = r2,24 = r3,34. Let a = r1,123, b = r2,123, and c = r3,123,
so a + b + c = s − 1, n14 = r − a, n24 = r − b, and n34 = r − c. There are
no parity problems, so the extremal decomposition can be constructed by the
algorithm.

The decompositions in set S3 with order n = 3r are also extremal with
Ĉ (4;Kn) =

⌊
5
3 (n− 1)

⌋
= 5

3n − 2. This is also satis�ed by those formed by
deleting a vertex contained in exactly two factors from a decomposition in S.
However, the decomposition {K4, C4,K3,K2} shows that not all such extremal
decompositions fall into the previous two categories.
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3 Constructions for Larger Values of k

For larger values of k, we have decompositions that may be extremal but do
not know the exact value of Ĉ (k;Kn) except in special cases. To simplify the
description of the decompositions, we will use the notation r [G] to denote the
factor G occurring r times.

For k ∈ {2, 3, 4}, we have seen Ĉ (k;Kn) =
⌊

2k−3
k−1 (n− 1)

⌋
. In fact,

Furedi et al [3] produced a simple construction to prove that Ĉ (k;Kn) ≥⌊
2k−3
k−1 (n− 1)

⌋
, but this is not an equality for k ≥ 5.

Algorithm 15. Let S∗5 be the set of all decompositions that can be constructed
as follows. Take a decomposition D in S4 with the additional property that
the sum of some two of the four ri's equals the sum of the other two ri's (e.g.
r1 + r2 = r3 + r4). Let r be this common value. Add the factor Kr+1,r+1 to
the decomposition.

Proposition 16. We have Ĉ (5;Kn) ≥
⌊

11
6 n− 2

⌋
.

Proof. This construction has
∑5

i=1 Ĉ (Gi) = 5
3n−2+ n

6 = 11
6 n−2 for any order

that it can attain. The proof of Theorem 11 shows that a decomposition in Sk

has order n = (k − 1)
∑
ri+

(
k
2

)
. For k = 4, this gives n = 3

∑
ri+6. To satisfy

the property in the construction, all the ri's must be even, and it is obvious
that any nonnegative even r can be attained. Hence for each positive order
n = 6r there is a decomposition in S∗5 with this order. Successively deleting �ve
vertices contained in exactly two factors from such a decomposition provides
decompositions attaining the bound for the other �ve classes of orders mod
6.

Conjecture 17. For n ≥ 2, Ĉ (5;Kn) =
⌊

11
6 n− 2

⌋
.

The decompositions with
∑5

i=1 Ĉ (Gi) = 11
6 n−2 include those in S∗5 . How-

ever, {K4, C4,K3,K2,K2} shows that there are others. The best known upper

bound, due to Furedi et al [3] says that Ĉ (5;Kn) ≤ 2n− 3.

Algorithm 18. Let S∗6 be the set of all decompositions that can be constructed
as follows. Take a decomposition D in S4 with the additional property that
two pairs of two of the four ri's are equal. (e.g. r1 = r2 and r3 = r4). Let r
be the sum of these two values. Add two copies of the factor Kr+1,r+1 to the
decomposition.

Proposition 19. For n ≥ 4, Ĉ (6;Kn) ≥ 2n− 2.

Proof. This construction has
∑6

i=1 Ĉ (Gi) = 5
3n− 2 + 2

(
n
6

)
= 2n− 2 for any

order that it can attain. The proof of Theorem 11 shows that a decomposition
in Sk has order n = (k − 1)

∑
ri +

(
k
2

)
. For k = 4, this gives n = 3

∑
ri + 6.
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To satisfy the property in the construction, all the ri's must be even, and
any nonnegative even r = 4s can be attained. Hence for each positive order
n = 12s+6 there is a decomposition in S∗6 with this order. Successively deleting
vertices contained in exactly two factors from such a decomposition provides
decompositions attaining the bound when 4 ≤ n ≤ 6, 12 ≤ n ≤ 18, and n ≥ 20.
Joining a vertex to each of the two disjoint factors when n = 12s + 6 works
for n ∈ {7, 19}. Now {2 [K4] , 4 [C4]} works for n = 8 and {3 [K4] , 3 [K3,3]}
works for n = 10. Joining a vertex to disjoint factors in these last two works
for n ∈ {9, 11}.

Conjecture 20. For n ≥ 4, Ĉ (6;Kn) = 2n− 2.

The decompositions with
∑6

i=1 Ĉ (Gi) = 2n− 2 include those in S∗6 . There
are many others, including {6 [K2]} and {5 [K4] , PG} where PG is the Pe-
tersen graph. The best known upper bound, due to Furedi et al [3] says that

Ĉ (6;Kn) ≤ 5
2n−

7
2 .

The constructions that we have seen so far start with a small decomposition
and 'expand' it to a bigger one. In some cases, this process can be generalized.

Theorem 21. Suppose there is a k-decomposition of Kn into regular sub-
graphs and

∑k
i=1 Ĉ (Gi) = c (n− 1). Then there are in�nitely many other

k-decompositions with order n′ and
∑k

i=1 Ĉ (Gi) = c (n′ − 1).

Proof. Let r = n − 1. Let D be a decomposition of Krt+1 into r t-regular
spanning factors, where t is even if r is even. Form a k-decomposition D′ with
order n′ by replacing each vertex of Kn with a copy of D so that if vertex v
has degree di in Gi, then di of the r factors are merged together. Finally, join
the corresponding factors in di�erent copies of D.

If the factor Gi has degree di in Kn, then the corresponding factor has
degree di (rt+ 1) + dit. Now since

∑k
i=1 di = c (n− 1) and n′ = n (rt+ 1),

we have
∑k

i=1 (di (rt+ 1) + dit) = (rt+ 1 + t)
∑
di = (rt+ 1 + t) c (n− 1) =

c [n (rt+ 1)− 1 + t (n− 1− r)] = c (n′ − 1).

We now consider a number of decompositions that can be expanded to
in�nite families via the previous theorem.

Decompose Kn into k =
(
n
2

)
K2's. Then

∑k
i=1 Ĉ (Gi) =

(
n
2

)
= n

2 (n− 1) =
1+
√

1+8k
4 (n− 1). Thus this sum can be achieved for any order and in�nitely

many values of k.
Decompose Kn into K3's, which can occur whenever n ≡ 1 or 3 mod 6.

Such a decomposition has k = 1
3

(
n
2

)
= n(n−1)

6 triangles, so
∑k

i=1 Ĉ (Gi) =
2n(n−1)

6 = n
3 (n− 1) = 1+

√
1+24k
6 (n− 1).

In particular, consider k = 7. Let H be an r-regular graph of order
3r + 1. Let G = H + H + H. Then G is 7r + 2-regular, and 7 copies of
G form a decomposition of order n = 7 (3r + 1) = 21r + 7, so n−1

3 = 7r + 2.
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Then
∑7

i=1 Ĉ (Gi) = 7 (7r + 2) = 7
3 (n− 1). This construction shows that

Ĉ (7;Kn) ≥
⌊

7
3 (n− 1)

⌋
for n = 7 (3r + 1). It is straightforward to check

that Ĉ (7;K8) = 15 <
⌊

7
3 (8− 1)

⌋
, so the formulas we consider need not be

��oor-linear� in all cases.
Decompose Kn into K4's, which can occur whenever n ≡ 1 or 4 mod 12

[4]. Such a decomposition has k = 1
6

(
n
2

)
= n(n−1)

12 K4's, so
∑k

i=1 Ĉ (Gi) =
3n(n−1)

12 = n
4 (n− 1) = 1+

√
1+48k
8 (n− 1).

Decompose Kn into K5's, which can occur whenever n ≡ 1 or 5 mod 20

[4]. Such a decomposition has k = 1
10

(
n
2

)
= n(n−1)

20 K5's, so
∑k

i=1 Ĉ (Gi) =
4n(n−1)

20 = n
5 (n− 1) = 1+

√
1+80k
10 (n− 1).

Let n = p2 + p + 1, where p is a prime power. Then there is a projective
plane with n points and n lines, which correspond to vertices and factors of

a decomposition. Then
∑k

i=1 Ĉ (Gi) = kp = kp
k−1 (n− 1) = p2+p+1

p+1 (n− 1) =
(−1+

√
4k−3)k

2(k−1) (n− 1).

k
∑
Ĉ (Gi) Decomposition

2 n− 1 {2 [K1]}
3 3

2 (n− 1) {3 [K2]}
4 5

3 (n− 1) {K3, 3 [K2]}
5 9

5 (n− 1) {4 [K3] , 3K2}
6 2 (n− 1) {6 [K2]}
7 7

3 (n− 1) {7 [K3]}
8 9

4 (n− 1) {K3, 7 [K2]}
9 12

5 (n− 1) {3 [K3] , 6 [K2]}
10 5

2 (n− 1) {10 [K2]}
11 19

7 (n− 1) {8 [K3] , 2 [K2] , 2K2}
12 3 (n− 1) {12 [K3]}
13 13

4 (n− 1) {13 [K4]}
14 25

8 (n− 1) {11 [K3] , 3 [K2]}
15 3 (n− 1) {15 [K2]}
16 17

5 (n− 1) {K5, 15 [K3]}
20 4 (n− 1) {20 [K4]}
21 21

5 (n− 1) {21 [K5]}
30 5 (n− 1) {30 [K5]}

The table contains the best known constructions for which the previous
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theorem is applicable. Note that in the cases k ∈ {5, 8, 11, 14, 15} these de-
compositions are not the best possible for their orders.

There is another way to generate decompositions that are better for some
orders. If a decomposition has

∑k
i=1 Ĉ (Gi) = c (n− 1), then some factor Gi

has Ĉ (Gi) ≤ c
k (n− 1). Generalizing this, we have the following.

Proposition 22. If there is a decomposition of Kn with
∑k

i=1 Ĉ (Gi) = c (n− 1),
then given 0 ≤ p ≤ k − 1, there is a decomposition of Kn with

∑k−p
i=1 Ĉ (Gi) ≥

ck−p
k (n− 1).

Furedi et al [3] also proved the general upper bound that for all positive

integers n and k, Ĉ (k;Kn) ≤
√
k · n. This is not attained for any values of

n and k. Using essentially the same approach, this can be strengthened to a
sharp bound.

Proposition 23. For all positive integers n and k, we have Ĉ (k;Kn) ≤ −k
2 +√

k2

4 + kn (n− 1). This is an equality exactly when there is a decomposition

of Kn into k cliques of equal size.

Proof. For a k-decomposition, let di = Ĉ (Gi) and D =
∑
Ĉ (Gi). Then

m (Gi) ≥
(
di+1

2

)
. Now

n (n− 1)
2

=
(
n

2

)
≥

k∑
i=1

(
di + 1

2

)
=

1
2

k∑
i=1

(
d2

i + di

)
≥ 1

2

(
D2

k
+D

)
.

The �rst inequality is attained exactly when all the factors are cliques, and the
second is attained exactly when all the cliques have the same size. Hence
kn (n− 1) ≥ D2 + kD, so D2 + kD − kn (n− 1) ≤ 0, and D ≤ −k

2 +√
k2

4 + kn (n− 1).

We can obtain the successively simpler but weaker formulas Ĉ (k;Kn) ≤
−k

2 +
√

k2

4 + kn (n− 1) <
√
kn (n− 1) <

√
k
(
n− 1

2

)
<
√
k · n as corollaries.

A decomposition of Kn into k cliques of equal size is a block design. In

particular, it is a

(
n, k,

k+
√

k2+4kn(n−1)

2n , 1
2 +

√
1
4 + n(n−1)

k , 1
)
-design. Hence

the previous result will attain equality whenever such a design exists.

Corollary 24. We have
1. Ĉ

((
n
2

)
;Kn

)
=
(
n
2

)
for n ≥ 2

2. Ĉ
(

n(n−1)
6 ;Kn

)
= n(n−1)

3 for n ≡ 1 or 3 mod 6

3. Ĉ
(

n(n−1)
12 ;Kn

)
= n(n−1)

4 for n ≡ 1 or 4 mod 12
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4. Ĉ
(

n(n−1)
20 ;Kn

)
= n(n−1)

5 for n ≡ 1 or 5 mod 20

5. Ĉ (n;Kn) = (−1+
√

4n−3)n

2 for n = p2 + p+ 1, where p is a prime power

It is immediate that κ (k,Kn) ≤ λ (k,Kn) ≤ δ (k,Kn) ≤ Ĉ (k;Kn). Fur-
thermore, the decompositions constructed above show that these are all equal-
ities for 1 ≤ k ≤ 4. Thus the work on maximum core number does apply to
the motivating problem. Perhaps these equalities hold for all values of n and
k.

Conjecture 25. For all positive integers n and k, we have

κ (k,Kn) = λ (k,Kn) = δ (k,Kn) = Ĉ (k;Kn) .
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