)

/‘\fh = A ».{3 v Q‘\ ~
- » o
4
Computers Math. Applic. Vol. 24, No. 11, pp. 79-99, 1992 0097-4943/92 $5.00 + 0.00
Printed in Great Britain. All rights reserved Copyright©1992 Pergamon Press Ltd
. .

3z+1 SEARCH PROGRAMS

GAry T. LEAVENS®
Department of Computer Science, 229 Atanasoff Hall
Iowa State University, Ames, lowa 50011-1040, U.S.A.
MIKE VERMEULEN
Hewlett Packard, 3404 East Harmony Road
Fort Collins, CO 80525, U.S.A.

(Received November 1991 and in revised form March 1992)

Abstract—Algorithms for computing peaks of certain statistics related to the 3z + 1 problem are
described, along with data on such peaks up to 56 trillion (5.6 x 10'3). The data result from several
years of computation. The design of the algorithms used illustrates several techniques for program
optimization.

1. INTRODUCTION

The 3z + 1 problem concerns iterates of the following function:

3n+1)/2, ifn=1 (mod 2),

Tlm) = n/2, fn=0 (mod 2).

(1)
¢ which takes odd integers n to (3n + 1)/2 and even integers n to n/2 [1]. The 3z + 1 Conjecture
asserts that, starting from any positive integer n, repeated iteration of this function eventually
produces the value 1. This conjecture is apparently intractable.
The iterates of T' are simply defined. Let 7(®)(n) = n, and for all integers k > 0, let T®)(n) =
T(T*-1(n)). The sequence of iterates (T (n),TM)(n), T} (n),..) is called the T-trajectory
of n. For example, the T-trajectory of 7 is:

7,11, 17, 26, 13,20, 10, 5, 8,4, 2, 1,2, 1, 2,1, ...

An alternative formulation of the 3z + 1 problem considers iterates of the function H that does
not map odd integers n to (3n + 1)/2, but rather to 3n 4 1:

3n+1, ifn=1 (mod 2),

H(n) = n/2, fn=0 (mod2).

(2)

The function H is modeled after the so-called hailstone algorithm, see [2]. One defines the iter-
ates of H in the same way as T. For example, if n is 7, then the sequence of successive iterates of H

*Leavens’s work was supported in part by the National Science Foundation under Grant CCR-9108654 by the
ISU Achievement Foundation and by a GenRad/AEA Faculty Development Fellowship; while graduate students at
MIT both authors’ work was supported in part by the National Science Foundation under Grants DCR-8510014
and CCR-8716884, and the Defense Advanced Research Projects Agency under Contract N00014-83-K-0125.
Computer support was provided in part by the National Science Foundation under Grant DCR 8503662.

The work described in this report was done while the authors were graduate students at MIT, and hence was
supported indirectly by MIT, the Laboratory for Computer Science, and in particular by professors Barbara Liskov
and Bill Weihl.

While the Argus group has benefited from having a running application, Paul Johnson has been helpful beyond
the call of duty in fixing problems with the Argus system (and our programs!) in a timely manner. Paul has also
helped with assembly language programming. We also thank all the members of the Argus group for putting up
with the hailstone system with such good grace.

Thanks also to Kelvin Nilsen who helped correct an earlier draft.

79
CAMWA 24:11-F

80 G.T. LEAVENS, M. VERMEULEN

1s: J
7,22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16,8, 4,2, 1,4,2, 1, ...

We will call such a sequence a H-trajectory.

Notice how the H-trajectory of 7 differs from its T-trajectory. The difference is stated precisely
in the following lemma. The first part states that the T-trajectory of a number is a subsequence
of the corresponding H-trajectory, with the property that every even number in the sequence of
iterates of H can be paired with a number in the iterate sequence of T'. The second part states
that every number k in the H-trajectory of n either occurs in the T-trajectory of n or else k/2
does.

LEMMA 1.

(a) For all i > 0, for all n > 0, and for all k > 0, if T®)(n) = k, then there is some j > 0 such
that, H)(n) = 2k, and HU*Y) = k.

(b) For all j > 0, for all n > 0, and for all k > 0, if H(j)(n) = k, then there is some i > 0 such
that either T®)(n) = k or T®)(n) = k/2.

ProoF. The proof is by induction on ¢, respectively j, for (a) and (b). [
There are graphs in the article by Hayes that show the wildly erratic and unpredicatable
behavior of the iterates of H [2]. The behavior of T is, of course, similarly wild and unpredictable.
We define certain statistics that measure various attributes of the iterates of the functions T
and H. These statistics are related to the 3z + 1 conjecture, since one counts the number of
iterations needed to reach 1, or the maximum value reached in a trajectory.

A necessary condition for T(¥)(n) = 1is that there is some m such that T(™)(n) < n. The stop-
ping time o(n) is the least whole number k such that T(*)(n) is less than n, with the convention
that ¢(1) = 0. If there is no such k, then let o(n) be co. For example, (7) = 7.

The total stopping lime 0o(n) is the least whole number k such that T()(n) is one, with the
convention that 0 (1) = 0. If there is no such k, then let 0, (n) be co. For example, 0, (7) = 11.

The value of steps(n) is the least whole number k such that H*)(n) is one. If there is no
such k, then let steps(n) be oco. It is the analog of total stopping time for H. For example,
steps(7) = 16.

The maximum value, maz_value(n), is the least upper bound of all the integers reached by
iterating H until the value of the iterates reach one. That is,

maz_value(n) = lub{H®)(n) | 0 < k < steps(n)}. (3)

For example, maz _value(7) = 52. Using T instead of H gives an alternative definition of maxi-
mum value.

alt_maz_value(n) = lWub{T®)(n) | 0 < k < g0 (n)}. (4)

For example, alt_maz_value(7) = 26. Except in certain special cases, the mez_value of a number
is always twice its ali_maz_value. The proof of this simple fact depends on part (a) of the following
lemma, which states that if a value occurs in the T-trajectory of a number greater than two, then
it must occur before the iterates reach one.

LEMMA 2.

(a) For all n > 2, and for all k, if there is some 1 > 0 such that H(i)(n) = k, then there is
some 0 < j < steps(n) such that H(J)(n) = k; furthermore, if there is some i > 0 such that
T®(n) = k, then there is some 0 < j < 0o, (n) such that TW(n) = k.

(b) For all n > 0, if alt_maz_value(n) # n, then maz_value(n) = 2 - alt_maz_value(n).]

We are interested in the behavior of these statistics as n varies. Many facts are known abou!™ %
them, see [1]. A number of researchers have observed that if the input n is drawn randomly,*J
say with the uniform distribution on an interval [1, N], then these statistics appear to have nice
limiting distributions as N approaches infinity (see, for example, [3] and [4]). Lagarias and
Weiss [5] describe various random walk models intended to simulate 3z + 1 function iterates.

3z + 1 search programs 81

L Particularly interesting statistics concern the behavior of extreme values of these statistics
as n varies, which we call peaks. An integer n > 0 is a peak in a statistic f, if and only if for all
0 < m < n, f(m) < f(n). These numbers are called peaks because if one graphs the function,
then each peak will be a point higher than has been reached for smaller n. For example, 3 is a
peak in maz_value, because maz_value(3) = 16, maz_value(2) = 2, and maz_value(l) = 1.

This paper describes algorithms for computing such peaks; tables of peaks appear in the
Appendix. The algorithmic optimizations described below were developed in a spirit of friendly
competition between the two authors. Each author developed a program, and so many of our
results have been validated by more than one program. The first program (by Leavens) designed
to experiment with the Argus distributed programming language and system (see references [6]
and [7]). A second program (by Vermeulen) was written in C, to understand the inherent costs
of Argus as opposed to C. Various distributed programs have been running since 1986, although
only Vermeulen’s program is currently running. Vermeulen’s current system, which was started
in August 1990, runs on about 15 workstations (the exact number varies), searches an interval of
about 100 billion per night, and has accumulated between 5 and 15 years of CPU time. (That
is, if the search were run sequentially it would take about 5 CPU-years on the fastest machine,
or about 15 CPU-years on the slowest.)

Peaks appear more and more rarely as one tests larger numbers. While it is easy to verify the
value of steps(n) or maz_value(n) for any particular n, it is very expensive to verify that n is a
peak in either statistic, because this involves showing that all numbers less than n have a smaller
value for steps or maz_value.

One of the mathematical questions we have investigated is whether peaks in one statistic
must be peaks in some other statistic. Since the trajectories under H and T are related (as in
Lemma 1), one might guess that numbers that are peaks in a measure based on iterates of T
would necessarily be peaks in a measure based on H. This is true for maximum values, but

b the question remains open for stopping times and steps. The relationships are summarized in
Table 1.

Table 1. Relationships between peaks in various statistics.

o T oo steps maz_vaelue elt_maz_value
I same
oo distinct same
steps distinct unknown same
maz_value distinct distinct distinct same
alt_maz_value | distinct distinct distinct same same

The fact that peaks in maz_value and alt_maz_value are the same is a corollary of Lemma 2 (b).

COROLLARY 3. An integer k > 0 is a peak in max_value if and only if k is also a peak in
alt_max_value. |

Counter-examples that distinguish between peaks in most other measures can be found by
examining the tables in Appendix A.

The relationship between peaks in steps and peaks in 0o is one of the difficult open questions
that often appear in the study of the 3z + 1 problem. However, it is easy to see that the total
stopping time cannot be greater than the number of steps, nor as small as half the number of
steps.

LEMMA 4. For all n > 0, if steps(n) # oo, then steps(n)/2 < oco(n) < steps(n).

L PROOF. In any H-trajectory, every step of the form 3z + 1 is followed by a division by 2. Thus
the T-trajectory omits at most half of these steps. However, if steps(n) is defined, then there
must be more division by 2 steps in the iteration of H than there are steps that multiply by 3
and add one. [|

82 G.T. LEAVENS, M. VERMEULEN

Y
A different relationship holds between total stopping time and steps. Let odd(n) be the number ()
of odd integers in the iterate sequence of H (excluding 1) and even(n) be the number of even
integers that occur until 1 is reached. That is:

odd(n) < #{k |k mod 2 =1, H®)(n) = k,0 < i < steps(n)}, (5)
even(n) < #{k | kmod 2 =0, HO(n) = k,0 < i < steps(n)}. (6)

Since every step produces an odd or an even number, the sum of odd and even is the number
of steps; that is, for all n > 0, steps(n) = odd(n) + even(n).
It is interesting that the number of even steps is the same as the total stopping time.

LEMMA 5. For all n > 0, 00(n) = even(n).

PROOF. If 04(n) = 0o, then even(n) = co. Furthermore, 0o(1) = 0 = even(l) and 05,(2) =
1 = even(2).

So suppose n > 2 and 0,(n) = m < co. By Lemma 1, for each 0 < 7 < 04,(n), there is
some j > 0 such that 270)(n) = HU)(n). By Lemma 2, j can be chosen so that j < steps(n).
Thus, 0(n) > even(n). However, if 0o(n) > even(n), then there would have to be two iterates
of T with the same value (that is, 0 < i < I < 0o(n), such that TG (n) = TW(n)), but if this
happened there would be infinitely many such cases, and so 0. (n) would be infinite.]

The above analysis does not seem to lead to a proof that peaks in steps are also peaks in total
stopping time. However, the peaks do coincide at least to 12.3 billion (12.3 x 10°), as the first
author’s program verified. So we offer the following conjecture.

CONJECTURE 6. An integer k > 0 Is a peak in steps if and only if k is a peak in total stopping
time (0oo).

This conjecture seems difficult to prove. J

The rest of the paper is organized as follows. Section 2 discusses smaller-scale efficiency issues,
and describes how we turn mathematical insight into better ways to prune the search space.
Section 3 draws some conclusions from this experience. Appendix A gives tables of results from
the search.

From the tables we make the following observations.

e 1,2,3,7,27, and 703, are the only known peaks in steps, stopping time (o), and maz_value;
no larger number is known to be a peak in all three of these statistics.

e 12,235,060,455 is the largest known number that is a peak in both steps and o; no larger
number is known to be a peak in more than one of: steps, stopping time (¢), and maz_value.

e Despite the previous remark, many of the peaks in steps have the same maz_value, and
hence their trajectories are identical after a certain number of iterations.

Unlike the peaks in steps, the maximum values reached by peaks in stopping time, o, rarely
repeat.

See also Lagarias and Weiss for more detailed comparisons in a similar vein [5].

2. SMALL SCALE DESIGN ISSUES

This section describes algorithms for iterating H and T'. Another issue of practical importance,
how to efficiently distribute the search among several computers, will not be discussed in this
paper (see [8]).

A fundamental observation is that peaks are extremely rare. For example, in the first 50 billion
positive integers, there are only 49 peaks in maz_value and only 78 peaks in steps. The peaks ™
become more and more rare as the search progresses; between 1 billion and 50 billion there areJ
only 5 peaks in maz_value and 12 peaks in steps. So a typical number is not a peak, and the
main task of the search is to find this out as quickly as possible. For doing this there are three
basic strategies.

3z + 1 search programs 83

o Cutting off the search by discovering that the input number is not a peak before taking it
through all the iterates of H or T down to 1 (or until the values of the iterates fall below
the starting value if one is searching for peaks in stopping time).

e Running the steps of the iteration algorithm faster.

e Multiplying, dividing, adding, and comparing numbers faster. Algorithms and data struc-
tures for large precision integers were important practical considerations, because the
searches went well past the usual 32 bit integers, and because the iterates exceed these
limits quickly. For example, maz_value(159,487) = 17,202,377,752. Such algorithms and
data structures are well-known [9].

The benefits of the optimizations discussed in this section are summarized in Table 2. The
speedup due to a particular optimization depends on the order in which optimizations are applied.
For example, the a priori cutoff of all numbers k mod 6 = 5 reduces the set of numbers to be
searched by a sixth if one is searching all numbers, but by a third if the set is already restricted
to even numbers. The table lists the optimizations in the order that they were added to Mike
Vermeulen’s program, and then lists the speedup achieved by that optimization assuming the
optimizations listed above it were already applied.

The speedup of seven for using polynomials results from a comparison between an assembly
language program and a polynomial based program. All other speedups were measured while
selectively disabling optimizations on the polynomial search.

Table 2. Effectiveness of optimizations.

Optimization Speedup Cumulative Speedup
None 1.00 1.0
Use Composite polynomials 7.00 7.0
Search only odd numbers 2.00 14.0
Values: a posteriori cutofls 1.84 25.7
Ignore k mod 6 =5 1.41 36.4
Values: a priori cutoff with 8 bit polynomial 1.71 62.1
Steps: a priori cutoff using 8 bit polynomial 1.15 71.3
Use 16 bit polynomials for a priort cutoffs 1.36 97.1
Steps: a posteriort cutoffs 1.88 182.0

2.1. A Priori Cutoffs

The best way to cut off the search on a given input number is to prove that the input cannot
be a peak and to ignore it without spending time on it; this is called an a priori cutoff. A less
effective way to cut off the search on a given input is to prove that the number cannot be a peak
after learning something about its trajectory; this is called an a posterior: cutoff.

A basic result is that it is possible, a priori, to limit the search to odd numbers. For maz_value,
it suffices to note that the first step of H for an even number is to divide it by two.

LEMMA 7. For all k > 0, maz_value(2k) = max{2k, maz_value(k)}.]

The technique used in the proof of the following corollary is an example of reasoning about
the convergence of different trajectories.

COROLLARY 8. The number 2 is the only even peak in maz_value.

PrRoOOF. Let k > 1 be given. By the above lemma, maz_value(2k), is the maximum of 2k
or maz_value(k). If maz_value(2k) = maz_value(k), then 2k is not a peak. So suppose
maz_value(2k) = 2k. But, then 2k is not a peak in maz_value either, since maz_value(2k — 1) >

84 G.T. LEAVENS, M. VERMEULEN

3(2k —1) > 2k. The inequality maz _value(2k — 1) > 3(2k — 1) holds because 2k — 1 is odd, hence J
H(2k — 1) = 3(2k — 1). That 3(2k — 1) > 2k holds for k > 1 holds is shown by the following:

k>1=4k> 4 (7
=>4k-3>1 (8)

= (6k—3)— 2k > 1 9)

= (6k—3) > 2k +1 (10)

= 3(2k — 1) > 2k. (11)

|

Results similar to the above apply to alt_maz_value as well.
For steps, the same observation about the first step of H means that an even number k will
take only one more step than k/2 to return to 1.

LEMMA 9. For all k > 0, steps(2k) = 1 + steps(k).]

CoroLLARY 10. If k is a peak in steps, then the least even number greater than k that can be
a peak in steps is 2k.

PROOF. Let k be a peak in steps. By definition, for all 0 < j < k, steps(j) < steps(k). Thus by
the preceding lemma, steps(2j) is constrained as follows:

steps(2§) = 1+ steps(j) < steps(k) = steps(2k) — 1 < steps(2k). (12)

| 9
A similar result applies to total stopping time.
By these corollaries, it is easy to predict all the even peaks in steps and maz_value. Thus the
search for these peaks ignores all the even numbers, giving a factor of 2 speedup.
For stopping time, the first division by two means that an even number always has a stopping
time of 1.

LEMMA 11. For all k > 0, o(2k) = 1. []

COROLLARY 12. If k > 2 is a peak in stopping time, then k is odd. |

So the search for peaks in stopping time also ignores all the even numbers.

The following results allow the search for peaks in stopping time to effectively ignore half of
the odd numbers as well, that is, those that are equal to 1 modulo 4. The lemma predicts the
first iteration of T" from the fact that the number is equal to 1 modulo 4, and the corollary carries
this analysis one iteration further to predict the stopping time.

LEMMA 13. For all k > 0, if k mod 4 = 1, then T(k) Is even.

PROOF. Suppose k > 0 and k mod 4 = 1. Then k mod 2 = 1, and hence T'(k) = (3k +1)/2. But
(3% + 1) is evenly divisible by 4:

kmod4=1=3kmod4=3 (13)
= (3k 4+ 1) mod 4 =0, (14) "9
and, therefore, (3k + 1)/2 must be evenly divisible by 2. |

COROLLARY 14. For all k > 1, if k mod 4 = 1, then o(k) = 2.

3z + 1 search programs 85

LPROOF. Suppose k > 1. Then 3k + k > 3k + 1, so k > (3k + 1)/4. By the above lemma,
T(k) = (3k +1)/2. But (3k +1)/2 > k and (3k + 1)/2 is even, so T{)(k) = (3k + 1)/4. So by
definition, the stopping time of & is 2. 1

Sad to say, the first author’s search for peaks in stopping time never used the above idea, which
would have resulted in a factor of 1.25 speedup (over and above ignoring the even numbers).

A fruitful idea for finding a priori cutoffs is to see how a number can result from (smaller)
numbers in the course of iterating H or T'. This should be contrasted with the techniques used
above to find cutoffs in stopping time, which see what happens to the number itself when it is
used as input to iterations of T. The idea of looking at convergence between the trajectories of
smaller numbers and the number in question is related to the Collatz graph discussed in [1].

LEMMA 15. Let j and k be given so that 0 < j < k. If there is some m > 0 such that H("‘)(j) =k,
then k cannot be a peak in steps or maz_value.

Proor. Since the steps taken by k are the same as those taken by j after m initial steps,
steps(j) = m + steps(k) and maz_value(j) > maz_value(k). |

LEMMA 16. Let j and k be given so that 0 < j < k. If there is some m > 0 such that T('")(j) =k,
then k cannot be a peak in stopping time, total stopping time, or eli_maz_value.]

The most important practical example of this kind of a priort cutoff is that if ¥ mod 6 = 5,
then k cannot be a peak in any of the statistics mentioned above. This is because if k mod 6 =5,
then k lies on the trajectory of (2k — 1)/3, which is smaller than k. Indeed the iterates of H first
multiply (2k — 1)/3 by 3 and add 1, obtaining 2k, and then divide 2k by 2 obtaining k. This
result is proved in the following lemma.

@ LEMMA 17. Let k > 0. If k mod 6 = 5, then T((2k — 1)/3) = k and H®((2k — 1)/3) = k.

PRrROOF. Suppose k> 0 and k mod 6 — 5. First we note that 2k — 1 is divisible by 3:

kmod 6 = 5 = 2k mod 6 = 4 (15)
=2kmod3=1 (16)
= (2k—-1)mod 3 =0. (17)

To see where T' or H maps (2k — 1)/3 we must know if (2k — 1)/3 is even or odd:

k mod 6 =5 = 2k mod 6 = 4 (18)
= (2k—1)mod 6 =3 (19)
@k=1) | od2=1. (20)

The last implication above follows because there is some integer ¢ such that:
(2k-1)=6¢+3=(2k—1)=3(2¢) +3 (21)
(2’“3”1) =2+ 1. (22)

Since (2k — 1)/3 is odd, according to the definitions of T" and H,
T((%_l)) =k (23)

- H (M) =2k (24)
< H® (@) = k. (25)

()

86 G.T. LEAVENS, M. VERMEULEN

‘ T
COROLLARY 18. Let k > 0. If k mod 6 = 5, then k cannot be a peak in steps, maz_value, \J

stopping time, total stopping time, or all_maz_value.]

Thus, the search programs ignore odd numbers that are equal to 5 modulo 6, for an factor
of 1.33 speedup (over a program that ignores even numbers).

The reader might see what happens when k£ mod 18 = 13. This idea can be carried as far as
one desires. For example, one could keep a table of which numbers modulo 216 cannot be peaks
In maz_value or steps, and a counter that gives the value of the current iterate modulo 216. One
could then use the table to avoid testing numbers that have no hope of being peaks. In the
extreme, one can organize the entire search by constructing the Collatz graph, but the space
requirements become prohibitive.

Other e priort cutoffs are discussed below, after the introduction of composite polynomials.

2.2. A Posteriori Cutoffs

When iterating H to search for peaks in mez_value, one has to check periodically to see if the
values produced are greater than the value of the previous iterate (or greater than the value of
the previous peak). However, these comparisons are fairly expensive for large precision numbers.
It should be obvious that one does not have to make a comparison after dividing by 2, since the
next iterate is smaller than the last. Neither does one have to make a comparison after every
3n+ 1 step of iterating H, but only until the iterates have fallen below the initial value (stopped);
this is due to the following result.

LEMMA 19. Let k > 0 be a peak in maz_value. If for some m > 0, H™)(k) < k, then
maz _value(k) = max{H(k) | 0 < i < m}.

PROOF. Let m > 0, be such that H(™)(k) = j < k. Since j < k, maz_value(j) < maz_value(k),
because £ is a peak. Since after this point the H-trajectory of k is the same as that taken by j,
it cannot be the case that more iterations will reach or exceed the maximum value obtained up
to this point. B

The way this lemma is used in an a posteriori cutoff is to stop making comparisons for purposes
of finding a peak in maz_value after the value of the iterates falls below the initial input number, k.
Note that the lemma depends on k being a peak in maz_value. If this is not the case, the maximum
value may be obtained after the value of an iterate falls below its starting value. An example is
the number 55, which reaches a value of 376 before it first falls below 55 (to 47). It then goes on
to reach a maximum value of 9,232.

After the value of the iterates has fallen below the input value, one can cut off the search for
peaks in steps (or total stopping time) a posteriori using the following lemma to estimate the
maximum number of further iterations that will be needed.

LEMMA 20. Forallk > 0, if HP) = n < j, where j is a peak in steps, then steps(k) < p+steps(j).

Proor. If n = j, then steps(k) = p + steps(j). If n < j, then, since j is a peak in steps,
steps(n) < steps(j), by the definition of a peak. |

A similar results holds for 7" and .

In practice, the above lemma is used as follows. Let the number to be tested be k. After a
step where H divides the current iterate value by two, one finds (if possible) the largest peak, j,
in steps such that the current iterate’s value is no greater than j, and uses the lemma above to
bound steps(k). If this bound on steps(k) indicates that k is not a peak in steps, then k can be
dismissed as far as steps is concerned.

The importance of this a posteriori cutoff is the empirical observation that the cutoff allows
the search for peaks in steps to be cut off, on the average, after a constant number of steps. This
seems to be true in any sufficiently large interval, provided that all but one or two peaks in steps
less than the interval are known. That is, if one knows all the peaks in steps up to j, and if j
is sufficiently large, then over the interval from j + 1 to 2 one should always be able to cut off

3z + 1 search programs 87

W the search after an average of about 15 steps, independent of the value of j.! Considering that

P

the number of steps taken by n goes up logarithmically with the n, this cutoff makes sense as
soon as the average (odd) number starts taking more than 15 steps worth of time plus the time
required to see if the search can be cut off. Furthermore, the value of this cutoff grows as the
search proceeds towards infinity. (The first author used this cutoff instead of some of cutoffs
based on the polynomials discussed below.)

2.8. Speeding Up the Herations

Even with the results above, there are still infinitely many trajectories that must be computed,
at least in part, for a search. Thus these trajectories must be computed efficiently.

The hailstone algorithm in Figure 1, which finds the values of steps(n) and maz_value(n) is
coded in Argus [7]. This algorithm is does not save the entire H-trajectory of n, but just records
the values of the statistics. (In the code % starts a comment, // is a modulo operator and ~=
means “not equal.” In the real programs, n would not be an int, it would be an object of some
type of large-precision natural numbers.)

% input: an integer n > 0
% output: number of steps and max_value reached
steps: int := 0
max_value: int :=n
while n "= 1 do
if n//2)=0
then n :=n/ 2
else n := 3¢n + 1
max_value := int$max(max_value, n)
end
steps := steps + 1
end

Figure 1. The hailstone algorithm, which computes iterates of H.

The problem considered in this sub-section is finding an equivalent algorithm that can be
executed in less time. The focus in this section is on the hailstone algorithm, and the search for
peaks in steps and maz_value.

2.3.1. Make_odd

Division by 2 is best implemented by shifting in a binary representation. Also, shifting a number
by several bit positions is roughly as fast as shifting a number by one bit position. Thus, one idea
for making a faster algorithm is to replace the division by 2 step in the hailstone algorithm by a
step that shifts the input as many bits as necessary in order to make it odd. How effective will
this be? If the value of the hailstone algorithm’s variable n were uniformly distributed among
the even integers by the 3n + 1 step, then half of the time n would not be divisible by 4, and one
fourth of the time n would not be divisible by 8, and so on. Thus the expected number of bit
positions that an even number would be shifted is:

Ea(D) s () s (B) - Sg - o

Thus on the average, shifting n by as many bits as necessary to make it odd does the work of
two divisions by 2. It is, therefore, cost-effective if it takes no more than the time taken by doing
two divisions.

An advantage of shifting n so that it is odd is that one no longer has to check to see whether n
is odd or even, because one can write the hailstone algorithm (for odd inputs) as in Figure 2. In
the figure, the procedure make_odd returns the new value of n and the number of bit positions

1We recorded data for the 100,000 odd numbers in the interval from 17,828,259,369 to 17,828,459,369. Note
that 17,828,259,369 is a peak in steps. In this interval the average number of steps is 276.

88 G.T. LEAVENS, M. VERMEULEN

% input: an odd integer n >0
while n "= 1 do
% n is odd
n := 3*n + 1
% n is even
% check for max_value here
n, p := make_odd(n)
% the number of steps taken this time around the loop is p+1
% check for a posteriorsi cutoffs here
end

Figure 2. Hailstone algorithm using make_odd.

% input: integers n >0, m >0
while n "= 1 do
p, 8 := mBitPoly(n // 2%%m)
n := polyEval(p, n)
% the number of steps taken this time around the loop is s
% check for a posteriors cutoffs
end

Figure 3. Hailstone algorithm using composite polynomials.

that the old value of n had to be shifted to make it odd. Another pleasing property of this
hailstone algorithm is that one can check for cutoffs when n is as Jow as it can be before going
up again, this means that one spends less time checking for cutoffs, on the average.

2.3.2. Composite Polynomials

A more efficient hailstone algorithm than the above takes bigger steps, doing several iterates
at a time. This idea gives a speedup of 7 over the hailstone algorithm of Figure 1. It also leads
to several strategies for cutoffs.

The standard hailstone algorithm looks at the last bit of the value of the variable n to decide
what step to take. By looking at the last m bits of the binary representation of n, one can decide
what the next several steps that will be taken are, combine all these steps into a polynomial, and
then do the work of all those steps by evaluating the polynomial at the value of n. An algorithm
that uses this idea for computing the iterates of H is shown in simplified form in Figure 3. In
the figure, mBitPoly returns both a polynomial and the number of steps that the polynomial
represents. Checking for maz_value is described below.

There are two strategies for expressing the polynomial.

One strategy is to obtain a polynomial of the form:

ke 4+ 2
am

which is equivalent to the sequence of k + m steps taken. For example, for n = 7, the first step
is to multiply by 3 and add 1 (obtaining 22), the second divides by 2 (obtaining 11), the third
multiples by 3 and adds 1 (obtaining 34), and the forth divides by 2 (obtaining 17). These steps
are represented by the following polynomial.

1 3z+1 1/92+43 9z +5

- 1) == | = .

(3 (BE) 1) =5 (B2 4n) = 2 (27)
Such a polynomial is called the standard polynomial, it represents k steps of the form 3n+1 and m
divisions by 2. (It will be shown below why the number of divisions by 2 is equal to the number
of bits considered.) For each n, the standard m bit polynomial for n will be written Spoly,,(n).
This polynomial can be evaluated by multiplying by the appropriate power of 3, adding in the

appropriate integer z and then shifting by the appropriate power of 2. As in the previous section
one ends up with an odd number.

