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STANDARD PATHS IN THE COMPOSITION POSET

FRANCOIS BERGERON, MIREILLE BOUSQUET-MELOU AND SERGE DULUCQ

REsUME. Nousétudions diférents prot@mes dénunération de chemins standard
dans I'ensemble partiellement ord@tes compositions. Nous montrons comment
plusieurs questions, analoguggelles que I'orétudie dans le cas du treillis des
partages d’entiers, s@welent plus simples dans ce contexte. Nous donnons des
formules explicites pour lessies gnrératrices des chemins standard dans cet en-
semble partiellement ordoéret dans certains sous-ensemblesreggsants. Nous
déemontronsgalement une formule donnant le nombre de chemins stardard
tableaux— de forme finale fike.

ABSTRACT. We study different problems of enumeration of standartipat the
poset of compositions of integers. We show that severallpnad similar to those
considered in the poset of partitions of integers becomelsinin this context. We
give explicit formulas for generating functions of stardlgaths in this poset and
interesting subposets, and a closed formula for the nunflstandard paths ending
at a given composition.

1. Introduction. The poset of partitions of integers, the so-called Yountickt has
been studied by many authors (see [3, 4, 10]) and it is wellWkntiat this study is
closely related to the study of irreducible representatiofithe symmetric group and
their characters, as well as other subjects in algebraimgéy and algebra. Sergey
Fomin, in the footsteps of Richard Stanley, has shown thagrataspects of this study
can be extended to other posets [4, 10]. One of these aspeitis enumeration of
up-going paths going from the minimal element of the posetaime given element.
For instance, in the partition lattice these paths cornedppo standard Young tableaux
of a given shape. Fomin gives a general setup for the enuioreiEtsuch paths as well
as for pairs of paths with same endpoint. However, the prolsidied here does not
fall into his framework in a straightforward manner.

We study in this paper the poset of compositions of integegs.us recall that a
compositionP is a sequence of positivex 0) integers(ps, p2, ..., pk). Thep;'s are
called thepartsof the composition and, the number of parts, is said to be feagth
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140 Standard paths in the composition poset

¢(P) of P. Theweight|P| of a compositionP is the sum of its parts

k
[Pl = sz'-
i=1

If |P| = n, we say thaf’ is a composition ofi and write P |= n. Similarly, apartition

A of n is a non-decreasing sequence of positive integerst A, < --- < ) that
sum ton, and we writeA - n. The partition obtained by reordering the parts of a
compositionP in non-decreasing order is denotedP).

We say that a compositio@ covers a compositio® if @) is obtained either by
adding 1 to a part oP, or by adding a part of size 1 #8. The partial order obtained by
transitive closure of this covering relation is denote@nd the poset thus obtained is
denotedl". For partitions, the analogous order corresponds to tHasion of Ferrers
diagrams. The poset of partitions is denofednd the functiom\ : I' — A, defined
above, is a morphism of graded posets (gradedy

Our first objective will be the enumeration, with some parterse of “standard”
(up-going) paths starting with the compositith) and finishing atP = n. We will
then consider such enumeration problems for several sebpoistained by restrictions
on the compositions.

A standard path of length is a sequence = (P, P, ..., P,) of compositions
such that

Pr<Po<P3< -+ <Py,

with P; |= i. The pathy is said toendat the compositiot®,,. We now give a geometric
representation for standard paths. First, definediagramof a compositionP to be

the set of pointgi, j) € Z2 such that 1< j < p;. It is convenient to replace the node
(,7) by the square with corne(s — 1,5 — 1), (« — 1, ), (¢,5 — 1) and(7, j). For a
standard path ending &, we label the squares of the diagramidin the order of their
apparition in the path. IP is obtained by adding a part of size 1 to a composition, we
consider that this new part has been added at the beginniagefuence of ones (if
any), for otherwise the encoding would be ambiguous. Fdairte, the step

(2? 3? 1? 5) < (27 37 17 17 5)

is encoded by the addition of the box labeled 12 in Figure 1.
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Figure 1.
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The labeled diagram obtained in this manner is calleddab&eauof the path, and the
underlying diagram (or composition) of the tableau is @hlts shape This represen-
tation suggests that the length (number of parts) of the@ntp of a standard path
should be called thevidth of the path, and its largest part theightof the path.

We obtain an explicit expression for the exponential getiregdunction of standard
paths counted according to their length:

exp(—x
Pa)-——280 &
(e ) - 2 smn(5))
and show that the enumeration of paths with bounded widtkerg different from the

enumeration of paths with bounded height. This is besttitisd by the fact that the
ordinary generating function of standard pathsvafth 2 is the rational function

22+ 23

(1-—z)(1-2x)

whereas the exponential generating function of patheegjhtat most 2 is:

1
1—sin(z)’

This is in sharp contrast with similar enumeration problémtee Young lattice, where
the two problems coincide in view of the order preservingdtipn between diagrams
of heightk and those of widtlt. In the sequel of this paper, we denbig) the subposet

of compositions of width< %, andI'(*) the subposet of compositions of heightk.

2. Standard paths in the posef’. Denotel’,, ; ; the set of compositions of with ¢
parts of size 1 ang parts of size> 1, and lety, ; ; be the number of standard paths
with endpoint inI",, ; ;. We wish to obtain an explicit expression for the following
exponential generating function:

Fon) 5 (oot ) 5.

n>0 \ i,j

We first encode standard paths using permutations, and tiuene these permuta-
tions as increasing binary trees.
As usual, a permutatiom of [n] = {1,2,...,n} is denoted by the word

o()o(2)---o(n).

Theset of descentsf o is D(o) = {i | o(i) > o(i + 1)}. Anincreasing factorf o of
length?isawordo (i+1)o(i+2) - - - o(i+f) suchthat (i+1) < o(i+2) < --- < o (i+f).
We associate te the unique composition of, denotedP (o) = (p1,p2, ..., pk), SUCh
thatD(o) = {p1,p1+p2,...,p1+p2+---+pr_1}. Hence the number of parts Bf( o),
minus one, is the cardinality @ (o), and the greatest part f(o) is the length of the
longest increasing factor of.
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Let us now recall the classiceicreasing binary treencoding of permutations. For
any wordw = wi w2 - -+ wy, With n > 0 distinct letters on an ordered alphabet, we
recursively define the binary treE(w) to be the empty tree ifv is the empty word,
and otherwise

7T(w) =
7 (u) T (v)

wherea = min(w) is the minimum letter inv, andu andv are the factors ofv such
thatw = wav. Thus7 (u) is the left subtree of the vertex and7 (v) is its right
subtree. Théeftmost branctof 7 (w) is () if w = 0, otherwise the subtree composed of
a together with the leftmost branch @f(u). Theleftmost vertexf 7 (w) is defined to
be lowest vertex of its leftmost branch. Using the definitdff, the tree corresponding
to the permutationy = 524136 is

1
7(524136 = 2/ \3
N AN
5 4 6
Observe that, when reading up the leftmost branch @b), starting with its leftmost
vertex (in this case, 5), we obtain the sequence of lefttiigtal minima ofw (in our
example: 5,2,1).

Clearly, the labels in such a tree will be in increasing oweany path going from
the root to a leaf7 establishes a bijection between permutationgpénd increasing
binary trees with labelg§1,2,...,n}. A jumping-chainin such a tree is a sequence
(11,12, ... ,1¢) Of vertices such tha is the leftmost vertex of the right subtreeiof 4,
for j > 2. One can check recursively thatsatisfies the following properties:

— the number of parts dP (o), minus one, is the total number of left sonsZiio),

— the number of parts of size 1 (o) is the number of left sons ifi (o) having no
brother, counting the leftmost vertex ®f o) whenever it is a leaf,

— the greatest part @ (o) is the length of the longest jumping-chainbfo).

We finally define recursively a bijectioS between standard paths of lengtrand a

subset of permutations ¢f], such that the composition associate&{e) is the shape

of . Let~ be a standard patlPy, P>, Ps, ..., P,), whereP,, = (p1,p2,...,pk), and

v = (P1, P2, Ps,...,P,_1). ThenS(v) is obtained fromS(+’) by insertingn either

— in first position, if P, is obtained by adding a new part of size 1 at the beginning of

Pn—l;

— in positionpy + p2 + - - - + p,,, if P, is obtained fromP,,_; either by adding 1 to the

m! part of P,_1 or by adding a part of size 1 t8,_1, just after then™ part of P,_1

(of size>1).

For example, the sequence of permutations associatedgthtbis process, to the path

v=(1)<(1,1) <(2,1) <(1,2,1) < (2,2,1) < (2,3,1)
<(2,4,1) < (2,4,2) < (2,4,1,2),
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is

1,21 231 4231 45231 452361 452367145236718452369718
henceS(vy) = 452369718.
Note that{p1, p1 +p2,...,p1+p2+---+pr_1} is the set of descents 6f{~). Hence S
is injective. However, we do not obtain all permutationgrdfin this manner, since
can not be inserted in the “middle” of a maximal increasingdg that is, in a rise that
is not the last one of this increasing factor. The set of péatrans actually obtained is
easier to characterize in terms of increasing binary trisespermutatiorr encodes a
standard path if and only if any vertexof 7 (o) not belonging to its leftmost branch
satisfies

if v has two sons, the label of its left son is less than the labig$ oight son. (C)

Thus, the smallest increasing tree that does not corredpardencoding of a standard

path is:
1
AN

2
N
4 3

This is the only excluded tree with four vertices, thus thefficient of z4/4! in the
expansion of (1) will be 23.

Now, sinceP(S(v)) = P,, we can read off the height and the widthobn the tree
7(S(7)), as well as the number of parts equal to FFn

Proposition 1. The exponential generating function of standard paths éncibimposi-
tion poset is
exp(—x)

(cot3 ) ~ 132 sin(30)) "

a=4/2v—(1+u)?

the variablesu and v accounting respectively for the number of parts of dizand
those of size> 1in the endpoint.

F(u,v,x) = (2)

where

We will give two different proofs of this proposition. Thedtrone is short and natural,
but does not explain how we got formula (2). The second onegedbon the permutation
encoding of standard paths, and gives equationg'far; v, ) that are easy to solve.

First proof. Let's consider a standard pattfs, ..., P,+1) such thatP,.1 belongs
to I',+1,4 ;. Then P, either belongs td",, ; ;, ', j+1,j—1, Or I';, ;—1 ;. Conversely, by
counting the compositions of,+1 ; ; that cover a given composition bf, ; ;, I'y, j+1,j—1
orI',, ;—14, one finds that the coefficients, ; ; are totally determined by the initial
conditionsyg 00 = 1,70, = 0 if ¢ or j is not zero, and the recurrence

Yol = Vg + (L + ) nirrj—1+ (1 +5)Yni-14-
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Of coursey, ; ; is zero ifi or j is negative. This recurrence implies thatu, v, z)
is the unique formal power series satisfyifigu, v,0) = 1 and the partial differential
equation:

0 0 0

%F(u, v,x) = (1+u)v %F(u, v,x) +uF(u,v,x) + U%F(u, v,x). (3)
One can check that expression (2) satisfies equation (3) thvthprescribed initial
condition. In order to derive formula (2) from equation @)e could replace the above
initial condition by F'(u, 0, x) = exp(u x) and(%F(O, v, a:))|v:0 =expz) —1—z.

Second proofUsing the increasing binary tree encoding of standard pagfimed
above, the problem of computirfg(u, v, =) becomes a classical problem of enumera-
tion of labeled trees [8], and we obtain:

aiF(u,v,x) = F(u,v,z) (u+G(u,v,)), F(u,v,0) =1,
x
2
iG(u,v,x) =v+(1l+u) G(u,v,x)+m, G(u,v,0) =0.
oz 2
That is the actual system we solved.]
Remark.The first few terms of the serids(u, v, z) are:
x? 3 x4
1+uz+ (v+u?) > +(v+4vu+u3)§ +(v+4v2+6vu+11vu2+u4)m

5
+(v+14vz+34uvz+8vu+23u2v+26vu3+u5)%+

Settingu = v = 1, we obtain

2 3:.3 4 5 6 7

T T T T €T
1+m+2§+6§ +23m +107a +5865+3690ﬁ

8 9
+ 2624% + 20799% +

Using the Maple packaggdev [9], with the help of Bruno Salvy, we obtained the fol-
lowing expression for the asymptotic expansion of the coeffit ofz™ /n!in F'(1,1, x):

((a+1) In(a) +a(n+1)) < 1( ))”n!7 (@)

aIn(a)? V2 In
wherea = 1 ++/2. Forn from 0 to 9, formula (4) gives the following values
0.83, 0.96, 2.02, 6.02, 22.99, 10698, 586.01, 369006, 2624503, 20799678

showing that this approximation is very good even for smalles ofn.
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3. Standard paths of bounded height.The story is similar for the posefs*) of

compositions of height bounded lty Once again, Iel“gfg,j be the set of compositions
of n of height< k£, having: parts of size 1 ang parts of size> 2. As before, Ietyffi),j

be the number of standard paths with endpoilﬁfﬁ*i’j, and

n

Hi(wv,2) = 30 | Domiyuv’ | Tn

n>0 %,J

Let's begin with the simplest non-trivial cask:= 2. We could proceed as in the
derivation of F'(u, v, x), writing the basic recurrence:

2 . 2 . 2
%(H)l,i,j =1 +-7)77(L,3—1,j +(1 +Z)%(L73+1J—1’

with n+1 = i +2;j. However, we can easily derivé(u, v, 1) directly from F'(u, v, x)
since
IimOF(u/a;,v/xz,a;) = Hj(u,v,1).

Hence we get:
1

(cos(%) -4 sin(§)>27

wheres = v/2v — u2. Observe that for, = x andv = 22, this identity becomes

HZ(ua v, 1) =

1 1
(codz/2) —sin(z/2))>  1—sin(z)

Hy(x,22,1) = = %(Setﬁx) +tanx)), (5)

showing that the number of standard paths of length 1 and height at most 2
coincides with then eulerian number. It is interesting to observe that (5) is not
D-finite (see Stanley [11, section 4 a)] and the note belowijs Tlustrates that the
problem of enumerating paths in the composition pagét is quite different from
the corresponding problem in the context of partitions sihtas been shown that the
generating functions for the number of tableaux of boundggtit are allD-finite [6, 1].

For a generak, the study ofl'(*) becomes more intricate, but the techniques are
essentially the same as those of section 2. Using the inngebimary tree encoding of
standard paths, we can derive a system of differential enstvith H;, as one of its
solutions.

Proposition 2. The exponential generating functidiy (u, v, =) of standard paths of
height bounded b¥ is such that

g Hi(u,v,z) = Hi(u,v,z) (u+ I g—1(u, v, x))

T

0

% Ik,f(u>vvx) = Jk,f(uva?x) (6)
0

9z Jeo(u,v,2) = Jg o(u, v, 2) (u+ I p—1(u, v, ) + Jg—1(u, v, ),
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for ¢ = 1,...,k — 1, with initial conditions I}, o(u,v,z) = 0, Hy(u,v,0) = 0,
It j(u,v,0) = 0and J j(u,v,0) = v.

Proof. We will only outline the proof, which uses a classical enuatien technique for

labeled trees [8]. These are counted according to theil(ei@blex) and parameters

accounting for the number of parts equal to 1 and those grése 1 in the corre-
sponding composition. We consider the following differelaisses of increasing binary
trees:

— Hy is the set of increasing binary trees such that all verticgsrlonging to the
leftmost branch satisfy conditioff, and all jumping-chain-lengths are bounded by
k; the generating function for this set is denofég(w, v, x);

— Iy is the set of increasing binary trees such that all vertiatisfg conditionC, the
length of the maximal jumping-chain starting from the lefishvertex is at mogt,
and all jumping-chain-lengths are boundediyyhe generating function for this set
is denoted/y, »(u, v, x).

System (6) is obtained by considering the effect of remothiegoot of such trees. This

operation generates two subtrees, each belonging to ohe pfévious classes[]

Note. The solutions of system (6) amonstructible differentially algebraiseries as
defined in [2]. Recall that a serias = y(x), with coefficients inK, is said to be
constructible differentially algebraic (CDF for short)fdr somek > 1, there exisk

seriesy, . . .,y With y; = y and polynomialdy, . . . , P, (with coefficients inkK) such
that ,

vi = Py, uk)

v, = Py, u).

The class of CDF series contains polynomials, algebraieseand series expansions
around 0 of usual functions suché&s log(1 +z), or trigonometric functions and their
inverses. It is closed for sum, product, composition, dgidn, integration, inversion
(1/y(z)), and inversion for composition. However it is not closedienHadamard
product (term-wise product). All CDF series are analytmend O, hence this class does
not contain the class dp-finite series (see [11, 12]), which is the class of formaieser
satisfying some non trivial linear differential equatioittwpolynomial coefficients

po(z) y + p1(z) ' +pa(x) y' +pp(x) y(k) -0

Conversely, the series expansion around 0/afdS z) is not D-finite, but it is CDF.
Thus the two classes are non-comparable.

4. Standard paths of given width. For the study of the posét;,, of compositions of
width k&, we consider a refined weighton the paths in this poset, setting, for a path

of shape(ps, p2, . .., pk)

v(y) = atab? - ab

We want to compute the generating function

felenza,. . m) = > v(Y).

~ path of widthk
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Observe that we are now using ordinary generating functibimsse turn out to be more
convenient in this case. We have the following simple ruteafeecursive computation
of the fi's.

Proposition 3. The generating functioff, (1, z2, ... ,zx) of standard paths of width
kis arational function that can be computed recursively #tstio the following relation:

K
oz, 2, 20) = 37— L _1. S (Al(fk—l) +> Ai (fre1— Az’—l(fk—l))) ;

1=2

where, for any functiog(xy, ..., zx),

Ai(9) = zig(®1, T2, . o Tim1, Tivd,s - - - Thd),
and
dg
Al(g) = 33'2—8 (33'1, L2yee.yTj—1, 0, Ti+ly - - - ,l‘k).
T

With fo = 1, we obtain successively

T1

fi(zy) =

)

1—(L‘1

1 2 1—
fz(fL'l, 332) = 122 L2y _ HZlfL‘z( (L'lfL'z)
(1—aq

1—21—a\1—2p 1-—m J(1—22)(1— 21— x2)

DenotingLy(z) = f(z,x,...,z), we deduce that:

x 2?(1+2x)

L) = 3= L) = = a2

23(1+ 4o — 322?)
(1—2)%2(1—22)(1— 3x)’

ZH(L+2)(1+ 120 — 3122 +12:3)
(1—2)2(1—22)%2(1— 3x)(1— 4x)

Li(x) = La(z) =

Proof. Use the geometric representation of paths by tableaux ibesicin the first
section. A tableau of widtk can be obtained by adding a new cell either

— at the top of a column of another tableau of wigth

— at the beginning of a tableau of width— 1,

— or after the(i — 1)™ column (of height greater than 1) of a tableau of witith 1.
In terms of generating functions, these three cases cameggspectively to

(zp+axp+- - +ap) fr, A1(fe-1), Ai (fier— Aica(fe-1)) . O



148 Standard paths in the composition poset

5. Standard paths of given shapeWe finally derive an expression for the number of
standard paths (or tableaux) of shape p, . . . , pr). This number is the coefficient of
atah? - 2P in the seriesfy(z1, 22, . .., zx) defined in the previous section. Recall
that the answer to this question, for the partition lattisegiven by the hook formula
[5, 7].

To begin with, we associate to a tabléBwf width £ a binary tree with vertices.
This tree encodes the order in which the partsioéire created, and only depends

on the labelsa, a, ..., ax) occurring (from left to right) in the lowest row df.

The tree A(a1,az, ..., ax) is recursively defined as follows: fdr = 0, the tree is
empty; if & = 1, the tree is reduced to one vertex, and,kas 1, the left (resp. right)
subtree ofd(a1, ay, ..., ar)isA(a1, az, ..., ar) (respA(ag+1, ags2, - . ., ap—1)), where

¢ =max{j|0 < j < k anda; < a;}. By conventiongg = 0. This means that the
rightmost part of the tableau was created by inserting dadedlleda;, just after the cell
labeleda,, and that the parts lying between tHe and thek™ part were created later.
For example, the tree associated to the tableau of Figure 1 is

5
N
2 4
AN N
1 3
Figure 2.

Reading the tree in suffix order, we label its vertices withitiiegergk, k—1,...,1)
(see Figure 2). From now on, a vertex will be denoted by itellab

Proposition 4. The number of standard paths of shdpe p», . . . , pr) with underlying
tree A is:

(pr+p2+---+pp)! @

.A(plvav apk) HjeA [(pj — 2)| T 3]’] 5

where

M; M;
Ty = -1 +Zpi> S5 = Z Di,y
=7

1=my

m; is the minimum label of the tree composegligether with its right subtree, and;

is the maximal label among the vertices that hguetheir leftmost branch. Hence, the
total number of tableaux of shagg;, . . ., px) is the sum o€ termsN 4(p1, . .., pr),
with Cy, = (3)/(k + 1) being the usuat™ Catalan number.

Example.If A is the tree of Figure 2, thetwmi, my, m3, ma,ms) = (1,1,3,3,3)
and (M, My, M3, My, Ms) = (1,5,3,4,5), and the number of tableaux of shape
(1, P2, p3, pa, ps) associated tol is

NA(p1,p2p3, pas ps) =
(pr1+p2+p3+pst+ps—1)!
p1!(p2 — 2)!Ipst(pa — 1)1 (ps — D)V (p2 + p3 + pa+ ps — 1)(p3 + pa) (p3 + pa + ps)
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Proof. We proceed by induction oh. The statement is clearly true whén= 0 or
k = 1.Fork > 1, letB (resp.C) be the left (resp. right) subtree gf. Supposée3 has/
vertices. Then:

pe—2 pr — 1
NB(p1, - pe—1,00+ - + pr)Ne(Dests - - -, Pr—1)- (8)

—2+ l?_ i _1 + I'f_ ;
NA(p17 s apk’) = < Zl_gp ) < ZZ—Z+lp )

This identity reflects the fact that any tableéBwf shape(ps, . . . , pr) with underlying

tree. A can be obtained by the following procedure:

— first, build an auxiliary tableau of shape,, . .., ps_1,p¢ + - - - + pr) with underlying
treeB.

The next steps will consist in transforming the last parhid tableau. Thus,

— in the last part of the auxiliary tableau, select aBeif py,; + - - - + pi labels not
containing the two minimal ones. The gewill be used to label the lagt— ¢ parts
of the tableal” being constructed,;

— remove from the last part of the current tableau the celiesponding to the labels
in L.

The final result fofl" is obtained by adding to the current tabldau ¢ columns in the

following manner:

— once again, select ifi a setl’ of py+1 + - - - + p,_1 labels not containing the minimal
element ofL;

— build a tableau of shap@y+1, ..., pr—1) with underlying treeC, and append this
tableau to the right of the current tableau;

— the final tablead” is obtained by adding A" part of sizep;, labeled in increasing
order by the remaining labels.

A careful verification shows that the right hand-side of @j<fies recurrence (8), with

the same initial conditions, thus the proposition is proved

Résune substantiel en francais.Le treillis des partages d’entiers ou treillis de
Young — fait I'objet de nombreusestudes, en liaison notamment avec ladhe des
repesentations du groupe sgtique. Nousetudions ici un ensemble partiellement
ordonre voisin : celui des compositions d’entiers. Rappelons mgizompositionde
I'entier n est une suitép, py, . . ., pr) d’entiers strictement positifs, telle que la somme
desp; soitégalean. Lesp; sont appdds lespartsde la composition. Le nombre de
parts est ldargeur de la composition, et la plus grande part estaateut

Nous cefinissons sur 'ensemble des compositions un ordre pariidisant qu’une
compositionP couvreune compositiorf) si P s’obtient, soit en rajoutantd une part
de @, soit en ajoutand () une nouvelle part de taille 1. Par analogie avec les tableaux
de Young standard, nous appelahemin standarde longueur: toute suite croissante
de compositions = (Py, P», ..., P,) telle que, pour tout, P; soit une composition de
i. Laformede~ est la composition final®’,, lalargeur et lahauteurde~ sont celles
de P,. L'objet de notreétude est Enungration de chemins standard, dont la hauteur
ou la largeur @rifientéventuellement certaines contraintes.

Une bijection entre les chemins standard de longuetrcertaines permutations de
n €élements nous permet tout d’abord d’obtenir &ais ¢erératrice exponentielle des
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chemins standardageraux, puis celle des chemins standard de hauteuébgrar une
entierk fixé (Propositions 1 et 2). Ceéres sontonstructiblement diéirentiellement
algébriquesau sens de [2]. Rappelons que pour le treillis de Young i sgrératrice
des chemins standard est cellestsimple, des involutions, tandis que léses corre-
spondant aux tableaux de Young de hauteur @®@sont en gréral assez mal connues.
On sait toutefois qu’elles sont D-finies [11].

Nous consiérons ensuite les chemins standard de largeuréeor@ontrairement
au cas du treillis de Young, ce preiohe est bien diffrent de letude des chemins de
hauteur borae. Nous donnons une formule permettant de calcélaursivement les
series grératrices ordinaires correspondantes, qui sont de sirspiéss rationnelles
(Proposition 3).

Pour finir, nous nous itessons au nombre de chemins standard de formeedpnn
c’esta-dire que nous cherchons un analogue de la formuleedasrres. Pour cela,
nous associons tout d’aboacchaque chemin standard de largeun arbre binairé &
sommets. Puis, nougchontrons une formule donnant le nombre de chemins standard
de longueurn, d’arbre sous-jacent et de forme finale&x qui prouve que ce nombre
est encore un diviseur de (Proposition 4).
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