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STANDARD PATHS IN THE COMPOSITION POSET

FRANÇOIS BERGERON∗, MIREILLE BOUSQUET-MÉLOU AND SERGE DULUCQ

RÉSUMÉ. Nousétudions diff́erents probl̀emes d’́enuḿeration de chemins standard
dans l’ensemble partiellement ordonné des compositions. Nous montrons comment
plusieurs questions, analoguesà celles que l’ońetudie dans le cas du treillis des
partages d’entiers, se révèlent plus simples dans ce contexte. Nous donnons des
formules explicites pour les séries ǵeńeratrices des chemins standard dans cet en-
semble partiellement ordonné et dans certains sous-ensembles intéressants. Nous
démontronśegalement une formule donnant le nombre de chemins standard− ou
tableaux− de forme finale fix́ee.

ABSTRACT. We study different problems of enumeration of standard paths in the
poset of compositions of integers. We show that several problems similar to those
considered in the poset of partitions of integers become simpler in this context. We
give explicit formulas for generating functions of standard paths in this poset and
interesting subposets, and a closed formula for the number of standard paths ending
at a given composition.

1. Introduction. The poset of partitions of integers, the so-called Young lattice, has
been studied by many authors (see [3, 4, 10]) and it is well known that this study is
closely related to the study of irreducible representations of the symmetric group and
their characters, as well as other subjects in algebraic geometry and algebra. Sergey
Fomin, in the footsteps of Richard Stanley, has shown that several aspects of this study
can be extended to other posets [4, 10]. One of these aspects is the enumeration of
up-going paths going from the minimal element of the poset tosome given element.
For instance, in the partition lattice these paths correspond to standard Young tableaux
of a given shape. Fomin gives a general setup for the enumeration of such paths as well
as for pairs of paths with same endpoint. However, the problem studied here does not
fall into his framework in a straightforward manner.

We study in this paper the poset of compositions of integers.Let us recall that a
compositionP is a sequence of positive (> 0) integers(p1, p2, . . . , pk). Thepi’s are
called thepartsof the composition andk, the number of parts, is said to be thelength

Reçu le 3 mai 1994 et, sous forme définitive, le 11 juillet 1995.
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140 Standard paths in the composition poset

`(P ) of P . Theweight|P | of a compositionP is the sum of its parts

|P | =

k
∑

i=1

pi.

If |P | = n, we say thatP is a composition ofn and writeP |= n. Similarly, apartition
λ of n is a non-decreasing sequence of positive integersλ1 ≤ λ2 ≤ · · · ≤ λk that
sum ton, and we writeλ ` n. The partition obtained by reordering the parts of a
compositionP in non-decreasing order is denotedλ(P ).

We say that a compositionQ covers a compositionP if Q is obtained either by
adding 1 to a part ofP , or by adding a part of size 1 toP . The partial order obtained by
transitive closure of this covering relation is denoted≺ and the poset thus obtained is
denotedΓ. For partitions, the analogous order corresponds to the inclusion of Ferrers
diagrams. The poset of partitions is denotedΛ and the functionλ : Γ −→ Λ, defined
above, is a morphism of graded posets (graded by|P |).

Our first objective will be the enumeration, with some parameters, of “standard”
(up-going) paths starting with the composition(1) and finishing atP |= n. We will
then consider such enumeration problems for several subposets obtained by restrictions
on the compositions.

A standard path of lengthn is a sequenceγ = (P1, P2, . . . , Pn) of compositions
such that

P1 ≺ P2 ≺ P3 ≺ · · · ≺ Pn,

with Pi |= i. The pathγ is said toendat the compositionPn. We now give a geometric
representation for standard paths. First, define thediagramof a compositionP to be
the set of points(i, j) ∈ Z

2 such that 1≤ j ≤ pi. It is convenient to replace the node
(i, j) by the square with corners(i − 1, j − 1), (i − 1, j), (i, j − 1) and(i, j). For a
standard path ending atP , we label the squares of the diagram ofP in the order of their
apparition in the path. IfP is obtained by adding a part of size 1 to a composition, we
consider that this new part has been added at the beginning ofa sequence of ones (if
any), for otherwise the encoding would be ambiguous. For instance, the step

(2, 3, 1, 5) ≺ (2, 3, 1, 1, 5)

is encoded by the addition of the box labeled 12 in Figure 1.
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The labeled diagram obtained in this manner is called thetableauof the path, and the
underlying diagram (or composition) of the tableau is called its shape. This represen-
tation suggests that the length (number of parts) of the endpoint P of a standard pathγ
should be called thewidth of the path, and its largest part theheightof the path.

We obtain an explicit expression for the exponential generating function of standard
paths counted according to their length:

F (x) =
exp(−x)

(

cosh
(

x√
2

)

−
√

2 sinh
(

x√
2

))2 , (1)

and show that the enumeration of paths with bounded width is very different from the
enumeration of paths with bounded height. This is best illustrated by the fact that the
ordinary generating function of standard paths ofwidth 2 is the rational function

x2 + x3

(1− x) (1− 2x)

whereas the exponential generating function of paths ofheightat most 2 is:

1
1− sin(x)

.

This is in sharp contrast with similar enumeration problemsin the Young lattice, where
the two problems coincide in view of the order preserving bijection between diagrams
of heightk and those of widthk. In the sequel of this paper, we denoteΓ(k) the subposet
of compositions of width≤ k, andΓ(k) the subposet of compositions of height≤ k.

2. Standard paths in the posetΓ. DenoteΓn,i,j the set of compositions ofn with i
parts of size 1 andj parts of size> 1, and letγn,i,j be the number of standard paths
with endpoint inΓn,i,j. We wish to obtain an explicit expression for the following
exponential generating function:

F (u, v, x) =
∑

n≥0





∑

i,j

γn,i,ju
ivj





xn

n!
.

We first encode standard paths using permutations, and then encode these permuta-
tions as increasing binary trees.

As usual, a permutationσ of [n] = {1, 2, . . . , n} is denoted by the word

σ(1)σ(2) · · ·σ(n).

Theset of descentsof σ is D(σ) = {i | σ(i) > σ(i + 1)}. An increasing factorof σ of
length` is a wordσ(i+1)σ(i+2) · · ·σ(i+`) such thatσ(i+1) < σ(i+2) < · · · < σ(i+`).
We associate toσ the unique composition ofn, denotedP(σ) = (p1, p2, . . . , pk), such
thatD(σ) = {p1, p1 +p2, . . . , p1 +p2 + · · ·+pk−1}. Hence the number of parts ofP(σ),
minus one, is the cardinality ofD(σ), and the greatest part ofP(σ) is the length of the
longest increasing factor ofσ.
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Let us now recall the classicalincreasing binary treeencoding of permutations. For
any wordw = w1 w2 · · · wn with n ≥ 0 distinct letters on an ordered alphabet, we
recursively define the binary treeT (w) to be the empty tree ifw is the empty word,
and otherwise

T (w) =
a

, Z
T (u) T (v)

wherea = min(w) is the minimum letter inw, andu andv are the factors ofw such
that w = ua v. ThusT (u) is the left subtree of the vertexa, andT (v) is its right
subtree. Theleftmost branchof T (w) is ∅ if w = ∅, otherwise the subtree composed of
a together with the leftmost branch ofT (u). Theleftmost vertexof T (w) is defined to
be lowest vertex of its leftmost branch. Using the definitionof T , the tree corresponding
to the permutationω = 524136 is

T (524136) =

1
, Z

2
, Z

5 4

3
Z

6

Observe that, when reading up the leftmost branch ofT (w), starting with its leftmost
vertex (in this case, 5), we obtain the sequence of left-right local minima ofw (in our
example: 5,2,1).

Clearly, the labels in such a tree will be in increasing orderon any path going from
the root to a leaf.T establishes a bijection between permutations of[n] and increasing
binary trees with labels{1, 2, . . . , n}. A jumping-chainin such a tree is a sequence
(i1, i2, . . . , i`) of vertices such thatij is the leftmost vertex of the right subtree ofij−1,
for j ≥ 2. One can check recursively thatT satisfies the following properties:
– the number of parts ofP(σ), minus one, is the total number of left sons inT (σ),
– the number of parts of size 1 inP(σ) is the number of left sons inT (σ) having no

brother, counting the leftmost vertex ofT (σ) whenever it is a leaf,
– the greatest part ofP(σ) is the length of the longest jumping-chain ofT (σ).
We finally define recursively a bijectionS between standard paths of lengthn and a
subset of permutations of[n], such that the composition associated toS(γ) is the shape
of γ. Let γ be a standard path(P1, P2, P3, . . . , Pn), wherePn = (p1, p2, . . . , pk), and
γ′ = (P1, P2, P3, . . . , Pn−1). ThenS(γ) is obtained fromS(γ′) by insertingn either
– in first position, ifPn is obtained by adding a new part of size 1 at the beginning of

Pn−1,
– in positionp1 + p2 + · · · + pm, if Pn is obtained fromPn−1 either by adding 1 to the

mth part ofPn−1 or by adding a part of size 1 toPn−1, just after themth part ofPn−1

(of size> 1 ).
For example, the sequence of permutations associated, through this process, to the path

γ = (1) ≺ (1, 1) ≺ (2, 1) ≺ (1, 2, 1) ≺ (2, 2, 1) ≺ (2, 3, 1)

≺ (2, 4, 1) ≺ (2, 4, 2) ≺ (2, 4, 1, 2),
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is
1, 21, 231, 4231, 45231, 452361, 4523671, 45236718, 452369718

henceS(γ) = 452369718.
Note that{p1, p1 +p2, . . . , p1 +p2 + · · ·+pk−1} is the set of descents ofS(γ). Hence,S
is injective. However, we do not obtain all permutations of[n] in this manner, sincen
can not be inserted in the “middle” of a maximal increasing factor, that is, in a rise that
is not the last one of this increasing factor. The set of permutations actually obtained is
easier to characterize in terms of increasing binary trees:the permutationσ encodes a
standard path if and only if any vertexν of T (σ) not belonging to its leftmost branch
satisfies

if ν has two sons, the label of its left son is less than the label ofits right son. (C)

Thus, the smallest increasing tree that does not correspondto an encoding of a standard
path is:

1
Z

2
, Z

4 3

This is the only excluded tree with four vertices, thus the coefficient ofx4/4! in the
expansion of (1) will be 23.
Now, sinceP(S(γ)) = Pn, we can read off the height and the width ofγ on the tree
T (S(γ)), as well as the number of parts equal to 1 inPn.

Proposition 1. The exponential generating function of standard paths in the composi-
tion poset is

F (u, v, x) =
exp(−x)

(

cos
(

α
2 x
)

− 1 +u
α sin

(

α
2 x
)

)2 , (2)

where

α =
√

2v − (1 +u)2,

the variablesu and v accounting respectively for the number of parts of size1 and
those of size> 1 in the endpoint.

We will give two different proofs of this proposition. The first one is short and natural,
but does not explain how we got formula (2). The second one is based on the permutation
encoding of standard paths, and gives equations forF (u, v, x) that are easy to solve.

First proof. Let’s consider a standard path(P1, . . . , Pn+1) such thatPn+1 belongs
to Γn+1,i,j. ThenPn either belongs toΓn,i,j, Γn,i+1,j−1, or Γn,i−1,j. Conversely, by
counting the compositions ofΓn+1,i,j that cover a given composition ofΓn,i,j, Γn,i+1,j−1

or Γn,i−1,j, one finds that the coefficientsγn,i,j are totally determined by the initial
conditionsγ0,0,0 = 1, γ0,i,j = 0 if i or j is not zero, and the recurrence

γn+1,i,j = jγn,i,j + (1 + i)γn,i+1,j−1 + (1 + j)γn,i−1,j.
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Of course,γn,i,j is zero if i or j is negative. This recurrence implies thatF (u, v, x)
is the unique formal power series satisfyingF (u, v, 0) = 1 and the partial differential
equation:

∂

∂x
F (u, v, x) = (1 +u) v

∂

∂v
F (u, v, x) + uF (u, v, x) + v

∂

∂u
F (u, v, x). (3)

One can check that expression (2) satisfies equation (3) withthe prescribed initial
condition. In order to derive formula (2) from equation (3),one could replace the above
initial condition byF (u, 0, x) = exp(ux) and( ∂

∂v
F (0, v, x))

∣

∣

v=0 = exp(x) − 1− x.

Second proof.Using the increasing binary tree encoding of standard pathsdefined
above, the problem of computingF (u, v, x) becomes a classical problem of enumera-
tion of labeled trees [8], and we obtain:

∂

∂ x
F (u, v, x) = F (u, v, x) (u + G(u, v, x)), F (u, v, 0) = 1,

∂

∂ x
G(u, v, x) = v + (1 +u) G(u, v, x) +

G(u, v, x)2

2
, G(u, v, 0) = 0.

That is the actual system we solved.�

Remark.The first few terms of the seriesF (u, v, x) are:

1 +ux + (v + u2)
x2

2!
+ (v + 4v u + u3)

x3

3!
+ (v + 4v2 + 6v u + 11v u2 + u4)

x4

4!

+ (v + 14v2 + 34u v2 + 8v u + 23u2v + 26v u3 + u5)
x5

5!
+ . . .

Settingu = v = 1, we obtain

1 +x + 2
x2

2!
+ 6

x3

3!
+ 23

x4

4!
+ 107

x5

5!
+ 586

x6

6!
+ 3690

x7

7!

+ 26245
x8

8!
+ 207997

x9

9!
+ . . .

Using the Maple packagegdev [9], with the help of Bruno Salvy, we obtained the fol-
lowing expression for the asymptotic expansion of the coefficient ofxn/n! in F (1, 1, x):

(

(α + 1) ln(α) + α (n + 1)
)

αα ln(α)2

(

1√
2 ln(α)

)n

n!, (4)

whereα = 1 +
√

2. Forn from 0 to 9, formula (4) gives the following values

0.83, 0.96, 2.02, 6.02, 22.99, 106.98, 586.01, 3690.06, 26245.03, 207996.78

showing that this approximation is very good even for small values ofn.
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3. Standard paths of bounded height.The story is similar for the posetsΓ(k) of
compositions of height bounded byk. Once again, letΓ(k)

n,i,j be the set of compositions

of n of height≤ k, havingi parts of size 1 andj parts of size≥ 2. As before, letγ(k)
n,i,j

be the number of standard paths with endpoint inΓ
(k)
n,i,j, and

Hk(u, v, x) =
∑

n≥0





∑

i,j

γ
(k)
n,i,ju

ivj





xn

n!
.

Let’s begin with the simplest non-trivial case:k = 2. We could proceed as in the
derivation ofF (u, v, x), writing the basic recurrence:

γ
(2)
n+1,i,j = (1 + j)γ

(2)
n,i−1,j + (1 + i)γ

(2)
n,i+1,j−1,

with n + 1 = i+ 2j. However, we can easily deriveH2(u, v, 1) directly fromF (u, v, x)
since

lim
x→0

F (u/x, v/x2, x) = H2(u, v, 1).

Hence we get:

H2(u, v, 1) =
1

(

cos(β
2 ) − u

β
sin(β

2)
)2 ,

whereβ =
√

2v − u2. Observe that foru = x andv = x2, this identity becomes

H2(x, x2, 1) =
1

(

cos(x/2) − sin(x/2)
)2 =

1
1− sin(x)

=
d

dx
(sec(x) + tan(x)), (5)

showing that the number of standard paths of lengthn − 1 and height at most 2
coincides with thenth eulerian number. It is interesting to observe that (5) is not
D-finite (see Stanley [11, section 4 a)] and the note below). This illustrates that the
problem of enumerating paths in the composition posetΓ(k) is quite different from
the corresponding problem in the context of partitions since it has been shown that the
generating functions for the number of tableaux of bounded height are allD-finite [6, 1].

For a generalk, the study ofΓ(k) becomes more intricate, but the techniques are
essentially the same as those of section 2. Using the increasing binary tree encoding of
standard paths, we can derive a system of differential equations withHk as one of its
solutions.

Proposition 2. The exponential generating functionHk(u, v, x) of standard paths of
height bounded byk is such that

∂

∂ x
Hk(u, v, x) = Hk(u, v, x) (u + Ik,k−1(u, v, x))

∂

∂ x
Ik,`(u, v, x) = Jk,`(u, v, x)

∂

∂ x
Jk,`(u, v, x) = Jk,`(u, v, x) (u + Ik,k−1(u, v, x)) + Jk,`−1(u, v, x),

(6)
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for ` = 1, . . . , k − 1, with initial conditionsIk,0(u, v, x) = 0, Hk(u, v, 0) = 0,
Ik,j(u, v, 0) = 0 andJk,j(u, v, 0) = v.

Proof. We will only outline the proof, which uses a classical enumeration technique for
labeled trees [8]. These are counted according to their size(variablex) and parameters
accounting for the number of parts equal to 1 and those greater than 1 in the corre-
sponding composition. We consider the following differentclasses of increasing binary
trees:
– Hk is the set of increasing binary trees such that all vertices not belonging to the

leftmost branch satisfy conditionC, and all jumping-chain-lengths are bounded by
k; the generating function for this set is denotedHk(u, v, x);

– Ik,` is the set of increasing binary trees such that all vertices satisfy conditionC, the
length of the maximal jumping-chain starting from the leftmost vertex is at most̀,
and all jumping-chain-lengths are bounded byk; the generating function for this set
is denotedIk,`(u, v, x).

System (6) is obtained by considering the effect of removingthe root of such trees. This
operation generates two subtrees, each belonging to one of the previous classes.�

Note. The solutions of system (6) areconstructible differentially algebraicseries as
defined in [2]. Recall that a seriesy = y(x), with coefficients inK, is said to be
constructible differentially algebraic (CDF for short) iffor somek ≥ 1, there existk
seriesy1, . . . , yk with y1 = y and polynomialsP1, . . . , Pk (with coefficients inK) such
that

y′1 = P1(y1, . . . , yk)
...

y′k = Pk(y1, . . . , yk).

The class of CDF series contains polynomials, algebraic series, and series expansions
around 0 of usual functions such asex, log(1 +x), or trigonometric functions and their
inverses. It is closed for sum, product, composition, derivation, integration, inversion
(1/y(x)), and inversion for composition. However it is not closed under Hadamard
product (term-wise product). All CDF series are analytic around 0, hence this class does
not contain the class ofD-finite series (see [11, 12]), which is the class of formal series
satisfying some non trivial linear differential equation with polynomial coefficients

p0(x) y + p1(x) y′ + p2(x) y′′ + · · · + pk(x) y(k) = 0.

Conversely, the series expansion around 0 of 1/ cos(x) is notD-finite, but it is CDF.
Thus the two classes are non-comparable.

4. Standard paths of given width. For the study of the posetΓ(k) of compositions of
width k, we consider a refined weightν on the paths in this poset, setting, for a pathγ
of shape(p1, p2, . . . , pk)

ν(γ) = xp1
1 xp2

2 · · · xpk

k .

We want to compute the generating function

fk(x1, x2, . . . , xk) =
∑

γ path of widthk

ν(γ).
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Observe that we are now using ordinary generating functions. These turn out to be more
convenient in this case. We have the following simple rule for a recursive computation
of thefk ’s.

Proposition 3. The generating functionfk(x1, x2, . . . , xk) of standard paths of width
k is a rational function that can be computed recursively thanks to the following relation:

fk(x1, x2, . . . , xk) =
1

1− x1 − . . . − xk

(

Λ1(fk−1) +
k
∑

i=2

Λi

(

fk−1 − ∆i−1(fk−1)
)

)

,

where, for any functiong(x1, . . . , xk),

Λi(g) = xig(x1, x2, . . . , xi−1, xi+1, . . . , xk+1),

and

∆i(g) = xi
∂g

∂xi
(x1, x2, . . . , xi−1, 0, xi+1, . . . , xk).

Withf0 = 1, we obtain successively

f1(x1) =
x1

1− x1
,

f2(x1, x2) =
1

1− x1 − x2

(

x1x2

1− x2
− x2x

2
1

1− x1

)

=
x1x2(1− x1x2)

(1− x1)(1− x2)(1− x1 − x2)
.

DenotingLk(x) = f(x, x, . . . , x), we deduce that:

L1(x) =
x

1− x
, L2(x) =

x2(1 +x)

(1− x)(1− 2x)
,

L3(x) =
x3(1 + 4x − 3x2)

(1− x)2(1− 2x)(1− 3x)
, L4(x) =

x4(1 +x)(1 + 12x − 31x2 + 12x3)

(1− x)2(1− 2x)2(1− 3x)(1− 4x)
.

Proof. Use the geometric representation of paths by tableaux described in the first
section. A tableau of widthk can be obtained by adding a new cell either
– at the top of a column of another tableau of widthk,
– at the beginning of a tableau of widthk − 1,
– or after the(i − 1)th column (of height greater than 1) of a tableau of widthk − 1.
In terms of generating functions, these three cases correspond respectively to

(x1 + x2 + · · · + xk)fk, Λ1(fk−1), Λi

(

fk−1 − ∆i−1(fk−1)
)

. �
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5. Standard paths of given shape.We finally derive an expression for the number of
standard paths (or tableaux) of shape(p1, p2, . . . , pk). This number is the coefficient of
xp1

1 xp2
2 · · · xpk

k in the seriesfk(x1, x2, . . . , xk) defined in the previous section. Recall
that the answer to this question, for the partition lattice,is given by the hook formula
[5, 7].

To begin with, we associate to a tableauT of width k a binary tree withk vertices.
This tree encodes the order in which the parts ofT are created, and only depends
on the labels(a1, a2, . . . , ak) occurring (from left to right) in the lowest row ofT .
The treeA(a1, a2, . . . , ak) is recursively defined as follows: fork = 0, the tree is
empty; if k = 1, the tree is reduced to one vertex, and, fork > 1, the left (resp. right)
subtree ofA(a1, a2, . . . , ak) isA(a1, a2, . . . , a`) (resp.A(a`+1, a`+2, . . . , ak−1)), where
` = max{j |0 ≤ j < k andaj < ak}. By convention,a0 = 0. This means that the
rightmost part of the tableau was created by inserting a celllabeledak just after the cell
labeleda`, and that the parts lying between the`th and thekth part were created later.
For example, the tree associated to the tableau of Figure 1 is:

5
, Z

2
Z

1

4
Z

3

Figure 2.

Reading the tree in suffix order, we label its vertices with the integers(k, k−1, . . . , 1)
(see Figure 2). From now on, a vertex will be denoted by its label.

Proposition 4. The number of standard paths of shape(p1, p2, . . . , pk) with underlying
treeA is:

NA(p1, p2, . . . , pk) =
(p1 + p2 + · · · + pk)!
∏

j∈A
[

(pj − 2)! rj sj

] , (7)

where

rj = −1 +
Mj
∑

i=j

pi, sj =

Mj
∑

i=mj

pi,

mj is the minimum label of the tree composedofj together with its right subtree, andMj

is the maximal label among the vertices that havej in their leftmost branch. Hence, the
total number of tableaux of shape(p1, . . . , pk) is the sum ofCk termsNA(p1, . . . , pk),
with Ck =

(2k
k

)

/(k + 1) being the usualkth Catalan number.

Example.If A is the tree of Figure 2, then(m1,m2,m3,m4,m5) = (1, 1, 3, 3, 3)
and (M1,M2,M3,M4,M5) = (1, 5, 3, 4, 5), and the number of tableaux of shape
(p1, p2, p3, p4, p5) associated toA is

NA(p1, p2p3, p4, p5) =

(p1 + p2 + p3 + p4 + p5 − 1)!
p1!(p2 − 2)!p3!(p4 − 1)!(p5 − 1)!(p2 + p3 + p4 + p5 − 1)(p3 + p4)(p3 + p4 + p5)

.



F. Bergeron, M. Bousquet-Ḿelou and S. Dulucq 149

Proof. We proceed by induction onk. The statement is clearly true whenk = 0 or
k = 1. Fork > 1, letB (resp.C) be the left (resp. right) subtree ofA. SupposeB has`
vertices. Then:

NA(p1, . . . , pk) =

(−2 +
∑k

i=` pi

p` − 2

)(−1 +
∑k

i=`+1 pi

pk − 1

)

NB(p1, . . . , p`−1, p` + · · · + pk)NC(p`+1, . . . , pk−1). (8)

This identity reflects the fact that any tableauT of shape(p1, . . . , pk) with underlying
treeA can be obtained by the following procedure:
– first, build an auxiliary tableau of shape(p1, . . . , p`−1, p` + · · ·+pk) with underlying

treeB.
The next steps will consist in transforming the last part of this tableau. Thus,
– in the last part of the auxiliary tableau, select a setL of p`+1 + · · · + pk labels not

containing the two minimal ones. The setL will be used to label the lastk − ` parts
of the tableauT being constructed;

– remove from the last part of the current tableau the cells corresponding to the labels
in L.

The final result forT is obtained by adding to the current tableauk − ` columns in the
following manner:
– once again, select inL a setL′ of pk+1 + · · ·+p`−1 labels not containing the minimal

element ofL;
– build a tableau of shape(p`+1, . . . , pk−1) with underlying treeC, and append this

tableau to the right of the current tableau;
– the final tableauT is obtained by adding akth part of sizepk labeled in increasing

order by the remaining labels.
A careful verification shows that the right hand-side of (7) satisfies recurrence (8), with
the same initial conditions, thus the proposition is proved. �

Résuḿe substantiel en français.Le treillis des partages d’entiers− ou treillis de
Young− fait l’objet de nombreuseśetudes, en liaison notamment avec la théorie des
repŕesentations du groupe symétrique. Nouśetudions ici un ensemble partiellement
ordonńe voisin : celui des compositions d’entiers. Rappelons qu’une compositionde
l’entiern est une suite(p1, p2, . . . , pk) d’entiers strictement positifs, telle que la somme
despi soit égaleà n. Lespi sont appeĺes lesparts de la composition. Le nombre de
parts est lalargeur de la composition, et la plus grande part est sahauteur.

Nous d́efinissons sur l’ensemble des compositions un ordre partielen disant qu’une
compositionP couvreune compositionQ si P s’obtient, soit en rajoutant 1̀a une part
deQ, soit en ajoutant̀aQ une nouvelle part de taille 1. Par analogie avec les tableaux
de Young standard, nous appelonschemin standardde longueurn toute suite croissante
de compositionsγ = (P1, P2, . . . , Pn) telle que, pour touti, Pi soit une composition de
i. La formedeγ est la composition finalePn, la largeur et lahauteurdeγ sont celles
dePn. L’objet de notreétude est l’́enuḿeration de chemins standard, dont la hauteur
ou la largeur v́erifientéventuellement certaines contraintes.

Une bijection entre les chemins standard de longueurn et certaines permutations de
n éléments nous permet tout d’abord d’obtenir la série ǵeńeratrice exponentielle des
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chemins standard géńeraux, puis celle des chemins standard de hauteur bornée par une
entierk fixé (Propositions 1 et 2). Ces séries sontconstructiblement différentiellement
algébriquesau sens de [2]. Rappelons que pour le treillis de Young, la série ǵeńeratrice
des chemins standard est celle, très simple, des involutions, tandis que les séries corre-
spondant aux tableaux de Young de hauteur bornée sont en ǵeńeral assez mal connues.
On sait toutefois qu’elles sont D-finies [11].

Nous consid́erons ensuite les chemins standard de largeur bornée. Contrairement
au cas du treillis de Young, ce problème est bien diff́erent de l’́etude des chemins de
hauteur borńee. Nous donnons une formule permettant de calculer récursivement les
séries ǵeńeratrices ordinaires correspondantes, qui sont de simplesséries rationnelles
(Proposition 3).

Pour finir, nous nous intéressons au nombre de chemins standard de forme donnée,
c’est-̀a-dire que nous cherchons un analogue de la formule deséquerres. Pour cela,
nous associons tout d’abordà chaque chemin standard de largeurk un arbre binairèak
sommets. Puis, nous démontrons une formule donnant le nombre de chemins standard
de longueurn, d’arbre sous-jacent et de forme finale fixés, qui prouve que ce nombre
est encore un diviseur den! (Proposition 4).
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9. B. Salvy,Examples of Automatic Asymptotic Expansions, Technical Report 114, Institut
National de Recherche en Informatique et Automatique, 1989.

10. R. P. Stanley,Differential Posets, J. Amer. Math. Soc.1 (1988), 919–961.
11. R. P. Stanley,Differentiably Finite Power Series, European J. Combin.1 (1980), 175–188.
12. D. Zeilberger,A Holonomic Systems Approach to Special Functions Identities,, J. Comput.

Appl. Math.32 (1990), 321–368.

F. BERGERON

LACIM − UNIVERSITÉ DU QUÉBECÀ MONTRÉAL
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