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we infer from (3.6) 

IF(o + it)jF(o) I ::::; ec.y2loga 

which proves (3.3). 

4. The asymptotic behaviour of PI (u). 

According to (2.15). a first approximation to F (s) for s in the �n�e�i�g�h�~� 

bourhood of the origin is exp {(log s) 2/ 2 log r}. If we had to evaluate the 
integral (cf. (1.16)) 

a + ioo J' e(logS)'12Iog r eusl r ds (a> 0) 

a-iao 

for large positive values of u we would choose an integration path passing 
through the �s�a�d�d�l�e�~�p�o�i�n�t� near the origin. i.e. the point s = o. where 0 

satisfies 

log 0 - :-"-- + U r- I = 0. 
o log r 

0>0. . . . (4. 1) 

For u > 0 the number 0 is uniquely determined by (4.1). H enceforth 0 

denotes this special function of u. We now take a = 0 in (1.16) also: 

a+ioo 

r f ds PI (u) = -2' F(s) euslr 2" ' 
nl S 

r;-ÎCXl 

With the abbreviations 

we have 

s=o + it. t=yo 

" (u. y) = F(s)J F (0) . ei u Y 'Ir (i + i y) - 2 

00 

K (u) = f" (u. y) dy. 

- 00 

r 
PI (u) = - F (a) eU

' lr K (u) . 
2na 

First we prove that for any number J. > 0 we have 

J. 

I K (u) -.f " (u. y) dy I ::::; C7 aC. (i.) 

- < 

(4.2) 

(4.3) 

(4.4) 

. (4.5) 

. (4.6) 

For u �~� co we have 0 -7 O. and so C9 can be chosen such that u > C9 

implies a<e-1. Now by (3.2). (3.3) and (4.3) we have for u>c9 
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with ClO(l) = Min (Cl' c2l2) iE l < 1. clO(l) = Cl iE l:> 1. It Eollows. 
that. iE l < e-1 0'-1. 

e-Ia- I Ij" (u. y) dy I ~ t:rt OCIO(l) • • • • • • (4.7) 
). 

Furthermore we have. by (3.1).I,,(u.y)1 <: (1 + y2)-1 Eor any u and 
y. and it Eollows that 

CD CD Ij ,,(u.y)dyl ~ j 1~y2~eo . .... (1.8) 

e-Ia- I e- Ia- I 

and also 

CD 

IJ'x(u.y)dyl ~ eo iE l;:::e-IO'-I. 

l 

(4.9) 

F rom (4.7), (4.8), (4 .9) and the analogous inequalities for y < 0, (4.6) 
follows immediately (C7 = 2e, Cs (2) = Min {I. CIO (J.)}) . 

For a doser investigation of ,,( u, y) for small values of J y J we use 
(2.15). Introducing the abbreviations (s = 0' + ia y) 

al CD 

I: ak S-21ti k flog r = g (s), I: fJn sn = w (s),. . . (i. 10) 
-al I 

e(u. y) =exp [llog2 (1 + iy) + 2 log 0' • log (1 + ig)I/210g r- l (i. 11) 
- ~ log (1 + iy) + iuyO'/r + g(s)] ~ 

we have 

,,(u. y) = e (u. y) e-g (7)+ O'(S) -w (,) • • • • • (4. 12) 

If 0' < e- 1• I y I <: 1 we have 

Iw(s)1 < ClIO ••••• • •• (4.13) 

and by (2.16) and (4.10) 

Jg(0'+iO'y) J< C12' . .. (4. 14) 

In virtue of (3.1) and (4.3) we have 

1,,(u,y) 1 ~ 1,,(u,O) 1 = 1 (- 00 < y < CD). . • (4. 15) 

and it follows from (4.12) , (4 .13) and (4 .14) that 

l I 

I j,,(u.y)dy-e-g(' )je(u,y)dyl < Cl3O' for O< l < 1. U>C9' (4.16) 

-Á - l 
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}. 

We transform f e(u, y) dy by introducing a new variabIe z by 
-I. 

t Z2 = log (1 + iy)-iy. 

y=Z+!12Z2+fl3 Z3 + ... (lZ I< CI1) 

On expressing u in terms of a by (4.1) we obtain from (4 .11) 

(4. 17) 

(4. 18) 

\log2(I+iy)+z210ga . . ~ 
Q(u,y)=exp ? 210gr -ïlog(1 +ty)+g(a+tay)~(4.19) 

IE we put, for a moment, 

log a/log r = v 

the function e g(s) becomes an analytical function of the variables v and y 
in the range I Im v 1< t7T/log r, I y 1 < cos Um v log r), since g(s) is 
analytical for Re s > 0 (cf. (2.16)). Moreover it is a periodic function of v 
with period I. It follows that e g(s) can be written in the form 

7J 

eg(' + i~y) = JE Xn (v) yn . (4.20) 
n = O 

wh ere the functions Xn (v) are analytical in the strip I I m v I < tn/ log r, 
periodical mod I, and satisfy 

IXn (v) ! < c7t (- 00 < v < 00, n = 0,1. 2, ... ). 

If v is real (4 .20) converges for I y I < l. 
We now easily deduce from (4.19) and (4.20) that o (u, y) dd

y 
can be 

~ z 
written in the form (a real) 

e (u, y) dy = ez' log '/210g r i 1jJn (~Og a') zn 
dz n = O log r , 

( lz l < CI6)" (4.21) 

Again, '/j'n (v) is analytical for I Im v 1< t:r/ log rand 

(-00 < v< 00, n =0,1, 2, .. . ). 

It is easily verified that 

. (4.22) 

Now take ClS < 1 such that -CIS -< Y -< ClS implies I z 1< -}C14' 

Cl ï I z I < i and either I arg z I < ·h or I arg -z i < !;r. Let (1 and (::! denote 
the values of z for y = -C IS and y = + CIS, respectively, and put 
Re ( I:! = R e r.?2 = Cl!)' Now the integral 

f," .r e (u, y) dy 

13 
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can be expanded in a familiar way by means of (4.21): for any positive 
integer N we have (u> c9. 0< e- 1) 

I j
c,: 2N+l (I )j~ , 10ÇJ,-1 I e (u. y) dy - 2 tpn -og a e -z' 210ÇJ r zn dz < 

n=O log r 

(4.23) 

On taking for our integration path the broken line consisting of the 
segments (Cl' 0) and (0. C2)' we find because of 

1 C17 ; 1,2 1 < -}. 1 arg - ;11 < in:, : arg C21 < in: 

(put 1 z 1 = t on both parts of the path) if n :> 2N + 2: 

ç. IJ e-Z ' log, - I/2loÇJ r zn dz I < 
" 

1; 1 ro 

< j' (2 cu)- n+2N+2 e- t ' log ,-1 /110g rit 12N+2 dt <J. 
- 1;, 1 -00 

It now follows from (4.23) that (u > C9' 0< e-1) 

c .. 

I J e (u, y) dy-

_ (2n: log r)* ; (~~)m (2m)! tp2 (lOg a) 1< C21 (N) . 
log a-I m=O log a-I 2m m! m log r (log O-I)N+ ~ 

(4.24} 

On taking À = CI S in (4 .6) and (4.16) we find (cf. (4.5). (4.1). (2 .15), 
(4.13) and (4.14» 

PI (u}=r l / log r e~7::~ -G+lo~ r)IOg'- !I09 109,- 1 X 
_ V 2n: 

. . (4.25} 
\ N (lOgO) l 
J 1: Cflm log r ( 1 ) 

Xc m=O (log o- I)m + 0 (log O-I)N+I ' 

where the functions 

( ) _ (I }m (2 m)! ( ) Cflmv-og r -2m ,1fJ2mV ••• m. 
. . (4.26} 

are periodic functions of v with period 1. analytical in I lm v 1 < -!n:/10g r. 
Especially 

Cflo (1
1
0g a) = eg(,) = exp ~ f ak e-2nikloÇJo/log r ~. • • (4.27} 
og r ( -00 ~ 



669 

Formula (4.25) is our fin al result for the asymptotic behaviour of Pdu); 
a is related to u by (4.1) and cannot be expressed explicitly in terms of u 
in a simple way. 

5. Pinal results cOllcerning P (u) . 

The difference P(u) - Pdu) is relative1y smal1. We have, by (1.15) 

P (u-I) :s; PI (u) :s; P (u). 

and on the other hand. by (1 .9). 

. . . . (5. 1) 

P(u)-P(u-l)=P(u/r) :S; PI (ur-I + 1). (5.2) 

It follows that 

o ~ P(U)-PI (u) :S; PI (ur- I + 1). . . . . (5.3) 

In order to show that P t (ur- 1 + I) / PI (u) is small we first give a first
order asymptotic expression for PI (u) explicitly in terms of u. It is readily 
derived from (4.1), 

that. if u ~ co . 

log a-I = log u -log log u + log log r -log r + 0 (log log u/log u). 

log log a-I = log log u + 0 (log log u/ log u). 

log2 a = (log u -log log U)2 - 2 log (r/log r) . (log u -log log u) + 
+ 210g log u + log2 (r/log r) + 2 log (r/ log r) + 0 1 (log log u)2/log u I. 

and we obtain from (4 .25) 

I P ( ) _ (log u-log !og u + log log r)2 + 
og t U - 21 og r 

P 1 ~ . + ( 2 + log r ~ log u -log log u + log log r - t log 27l + (5. 4) 

+ ~ ~ 2 . k (log u-log log u + log log r) ~ + 
..:;., ak exp 711 I 

- 00 og r 

+ 0 I (log log u)2/ log u I. 
The an are defined by (2 .11) and (2.13). 

From (5.4) it is easily deduced that 

PI (u r- I + l)/Pt (u) = 0 I exp (-log u + log log u) 1= 0 (u- !). 

Now (5 .3) shows that (4.25) and (5.4) re ma in valid if Pj (u) is replaced 
by P(u). 

If rand rh are integers we have P (h) = p (rh); thus (5.4) proves (1.4) . 
The more precise expansion (4 .25) however cannot easily be expressed 
explicitly in terms of u (or rh). 
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